Количественный анализ общие понятия классификация методов. Промывание. Классификация катионов на аналитические группы

Задачей количественного анализа является определение количественного

Все методы количественного анализа подразделяются на химические, физико-химические и физические. К химическим методам относятся гравиметрический, титриметрический и газовый анализы, к физико-химическим – фотометрия, электрохимический и хроматографический анализы, к физическим – спектральный анализ, люминесцентный.

1. Гравиметрический анализ основан на определении массы вещества, выделенного в чистом виде или в виде соединения известного состава. Например, чтобы определить количество бария в его соединениях, ион Ва 2+ осаждают при помощи разбавленной серной кислоты. Осадок ВаSО 4 фильтруют, промывают, прокаливают и точно взвешивают. По массе осадка ВаSО 4 и его формуле вычисляют, сколько в нем содержится

бария. Гравиметрический метод дает результаты высокой точности, но он очень трудоемок.

2. Титриметрический анализ основан на точном измерении объема реактива,

затраченного на реакцию с определенным компонентом. Реактив берется в виде раствора определенной концентрации – титрованный (стандартный) раствор. Момент, когда реактив будет прибавлен в количестве, эквивалентном содержанию определяемого вещества, т.е. окончания реакции, определяется различными способами. При титровании приливают реактив в количестве, эквивалентном количеству исследуемого вещества. Зная объем и точную концентрацию раствора, пошедшего на реакцию с определяемым веществом, вычисляют его количество.

Титриметрический анализ дает менее точные результаты, чем гравиметрический, но важным его преимуществом является большая скорость выполнения анализа. В зависимости от типа реакций, протекающих в процессе титрования, титриметрический анализ включает методы кислотно-основного титрования, методы оксидиметрии и методы осаждения и комплексообразования.

3. Методы фотометрии основаны на измерении поглощения, пропускания и рассеяния света раствором. Для большинства фотометрических методов используют так называемые цветные реакции, т.е. химические реакции, сопровождающиеся изменением окраски раствора. Метод, основанный на определении содержания вещества по интенсивности окраски, называют колориметрией . Оценку интенсивности окраски раствора производят визуально или с помощью соответствующих приборов.

Иногда определяемый компонент превращают в труднорастворимое соединение и о его содержании судят по интенсивности помутнения раствора. Метод, основанный на этом принципе, называют нефелометрией . Методы колориметрии и нефелометрии применяются для определения компонентов, входящих в состав анализируемого вещества в очень малых количествах. Точность этого метода ниже, чем гравиметрического или титриметрического.

4. Электрохимические методы. К этим методам относятся электрогравиметрический анализ, кондуктометрия, потенциометрия м полярография. Электрогравиметрический метод применяется для определения концентрации металлов. Определяемый элемент осаждается путем электролиза на электроде, масса которого известна. Кондуктометрия и потенциометрия относятся к электротитриметрии. Окончание реакции при титровании устанавливают или путем измерения электропроводности раствора или путем измерения потенциала электрода, погруженного в исследуемый раствор. Потенциометрический метод применяется также для определения рН раствора. Определение основано на измерении электродвижущей силы раствора (э.д.с.), которая зависит от концентрации ионов водорода. В полярографическом метод е о количестве определяемого иона судят по характеру вольтамперной кривой (полярограмма), получаемой при электролизе исследуемого раствора с капельным ртутным катодом в особом приборе – полярографе. Этот метод отличается высокой чувствительностью. Применяя полярографический метод, можно в одном и том же растворе качественно и количественно определять различные элементы, не прибегая к химическим реакциям.

Анализа (химические, физико-химические, физические и биологические).

Требования, предъявляемые к реакциям в количественном анализе. Роль

И значение количественного анализа в фармации

Количественный анализ - совокупность методов аналитической химии для определения количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.

Цели количественного анализа

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого - установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Наряду с качественным анализом Количественный анализ является одним из основных разделов аналитической химии. По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ульт-рамикрометодыКоличественный анализ В макрометодах масса пробы составляет обычно >100 мг, объём раствора > 10 мл; в ультрамикрометодах - соответственно 1-10 -1 мг и 10 -3 -10 -6 мл . В зависимости от объекта исследования различают неорганический и органический. Количественный анализ , разделяемый, в свою очередь, на элементный, функциональный и молекулярный анализ. Элементный анализ позволяет установить содержание элементов (ионов), функциональный анализ - содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте. Молекулярный Количественный анализ предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой. Важное значение имеет так называемый фазовый анализ - совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем. Помимо специфичности и чувствительности важная характеристика методов Количественный анализ - точность, то есть значение относительной ошибки определения; точность и чувствительность в Количественный анализ выражают в процентах.



К классическим химическим методам Количественный анализ относятся: гравиметрический анализ, основанный на точном измерении массы определяемого вещества, и объёмный анализ. Последний включает титриметрический объёмный анализ - методы измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - методы измерения объёма анализируемых газообразных продуктов.
Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы Количественный анализ , основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов Количественный анализ находится обычно в пределах 0,005-0,1%; ошибки определения инструментальными методами составляют 5-10%, а иногда и значительно больше.

ХИМИЧЕСКИЕ МЕТОДЫ КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА

Химические методы количественного химического анализа – основаны на принципе проведения химической реакции с определяемым компонентом анализируемой пробы.

Химические методы химического анализа подразделяют на титриметрический, гравиметрический и волюмометрический методы.

1) методы титриметрии:

Титриметрический анализ (титрование) - методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом. Титрование - процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать, начиная от других отметок, не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (точку эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.

Методы аналитической химии могут быть классифицированы на основе различных принципов. В зависимости от измеряемого свойства вещества различают следующие методы: химические; физико-химические; физические (табл. 14). Основой химических методов являются аналитические химические реакции. В основе физико-химических методов лежит измерение каких-либо физических параметров химической системы, зависящих от природы компонентов системы и изменяющихся в процессе химической реакции. К таким параметрам относятся, например, величины потенциалов в потенциометрии, оптических плотностей в спектрофотометрии и т.д. Физические методы не связаны с применением химических реакций. Состав вещества устанавливается изменением каких-либо физических свойств объекта (плотности, вязкости, интенсивности излучения и т.д.). Четких границ между химическими и физико-химическими и физико-химическими и физическими методами нет. Физические и физико-химические методы часто называют инструментальными. В последнее время используют так называемые «гибридные» методы, сочетающие два и более метода. Например, хромато-масс-спектрометрия.

Методы количественного анализа

Методы анализа

Химические

Физико-химические

Физические

гравиметрия

титриметрия

электрохимические

спектроскопические (оптические)

люминесцентные

кинетические

термометрические

хроматографические

спектроскопические (не оптические)

ядерно-физические

радиохимические

Аналитический сигнал

(величина, функционально связанная с содержанием определяемого компонента)

изменение окраски индикатора, выделение газа, осадка и др.

  • - возникает с участием внешних (валентных) электронов и функционально связан с природой и концентрацией вещества;
  • - возникает при взаимодействии вещества с различными видами энергии (электрическая, тепловая, энергия электромагнитного излучения);
  • - получают при взаимодействии с веществом, находящимся в растворе
  • - возникает с участием внутренних электронов или ядер атомов;
  • - агрегатное состояние и химическая форма вещества не имеют значения

Анализ вещества заключается в получении опытным путем данных о его химическом составе. Независимо от используемых методов к анализу предъявляют следующие требования:

  • 1. Точность анализа - это собирательная характеристика метода, включающая их правильность и воспроизводимость.
  • 2. Правильность результатов анализа - получение результатов, близких к действительным.
  • 3. Воспроизводимость - получение одинаковых или близких результатов при повторных определениях.
  • 4. Экспрессность - быстрота проведения анализа.
  • 5. Чувствительность - минимальное количество вещества, которое можно определить данным методом.
  • 6. Универсальность - возможность определять многие компоненты. Особенно важно определять их одновременно в одной пробе.
  • 7. Автоматизация анализа. При проведении массовых однородных анализов следует выбирать метод, допускающий автоматизацию, которая снижает трудоемкость, погрешности, увеличивает скорость, снижает стоимость анализа.
  • 21. Характеристика метод анализа

Количественный анализ, совокупность химических, физико-химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества. Наряду с качественным анализом К. а. является одним из основных разделов аналитической химии. По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ульт-рамикрометоды К. а. В макрометодах масса пробы составляет обычно >100 мг, объём раствора > 10 мл; в ультрамикрометодах - соответственно 1-10-1 мг и 10-3-10-6 мл (см. также Микрохимический анализ, Ультрамикрохимический анализ). В зависимости от объекта исследования различают неорганический и органический К. а., разделяемый, в свою очередь, на элементный, функциональный н молекулярный анализ. Элементный анализ позволяет установить содержание элементов (ионов), функциональный анализ - содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте. Молекулярный К. а. предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой. Важное значение имеет так называемый фазовый анализ - совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем. Помимо специфичности и чувствительности (см.Качественный анализ), важная характеристика методов К. а. - точность, то есть значение относительной ошибки определения; точность и чувствительность в К. а. выражают в процентах.

К классическим химическим методам К. а. относятся: гравиметрический анализ, основанный на точном измерении массы определяемого вещества, и объёмный анализ. Последний включает титриметрический объёмный анализ - методы измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - методы измерения объёма анализируемых газообразных продуктов (см. Титриметрический анализ, Газовый анализ).

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы К. а., основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов К. а. находится обычно в пределах 0,005-0,1%; ошибки определения инструментальными методами составляют 5-10%, а иногда и значительно больше. Чувствительность некоторых методов К. а. приведена ниже (%):

Объёмный.......................................................10-1

Гравиметрический......................................... 10-2

Эмиссионный спектральный.........................10-4

Абсорбционный рентгеноспектральный...... 10-4

Масс-спектрометрический.............................10-4

Кулонометрический....................................... 10-5

Количественный анализ - это большой раздел аналитической химии, позволяющий определить количественный (молекулярный или элементный) состав объекта. Количественный анализ получил широкое распространение. Он применяется для определения состава руд (для оценки степени их очистки), состава почв, растительных объектов. В экологии устанавливают содержание токсинов в воде, воздухе, почве. В медицине с его помощью выявляют подделки лекарств.

Задачи и методы количественного анализа

Основная задача количественного анализа - установление количественного (процентного или молекулярного) состава веществ.

В зависимости от того, каким путем решается эта задача, выделяют несколько методов количественного анализа. Их существует три группы:

  • Физические.
  • Физико-химические.
  • Химические.

Первые базируются на измерении физических свойств веществ - радиоактивности, вязкости, плотности и др. Самые распространенные физические методы количественного анализа - это рефрактометрия, рентгеноспектральный и радиоактивационный анализ.

В основе вторых лежит измерение физико-химических свойств определяемого вещества. К ним относятся:

  • Оптические - спектрофотометрия, спектральный анализ, колориметрия.
  • Хроматографические - газо-жидкостная хроматография, ионообменная, распределительная.
  • Электрохимические - кондуктометрическое титрование, потенциометрическое, кулонометрическое, электровесовой анализ, полярография.

В основе третьих в списке методов лежат химические свойства исследуемого вещества, химические реакции. Химические методы разделяют на:

  • Весовой анализ (гравиметрия) - базируется на точном взвешивании.
  • Объемный анализ (титрование) - базируется на точном измерении объемов.

Методы количественного химического анализа

Наибольшее значение имеют гравиметрический и титриметрический. Их называют классическими методами химического количественного анализа.

Постепенно классические методы уступают свое место инструментальным. Однако они остаются самыми точными. Относительная погрешность этих методов всего 0,1-0,2%, а у инструментальных - 2-5%.

Гравиметрия

Сущность гравиметрического количественного анализа - это выделение интересующего вещества в чистом виде и его взвешивание. Выделение вещества чаще всего проводят осаждением. Иногда определяемый компонент нужно получить в виде летучего вещества (метод отгонки). Так можно определить, например, содержание в кристаллогидратах кристаллизационной воды. Методом осаждения определяют кремниевую кислоту при обработке горных пород, железо и алюминий при анализе горных пород, калий и натрий, органические соединения.

Аналитический сигнал в гравиметрии - масса.

Методика количественного анализа гравиметрией включает этапы:

  1. Осаждение соединения, которое содержит интересующее вещество.
  2. Фильтрование получившейся смеси для извлечения осадка от надосадочной жидкости.
  3. Промывание осадка для устранения надосадочной жидкости и удаления с его поверхности примесей.
  4. Высушивание при низких температурах для удаления воды или при высоких для перевода осадка в подходящую для взвешивания форму.
  5. Взвешивание получившегося осадка.

Недостатки гравиметрического количественного анализа - это длительность определения и неселективность (реагенты-осадители редко бывают специфичными). Поэтому необходимо предварительное разделение.

Расчеты при гравиметрическом методе

Результаты количественного анализа, проведенного гравиметрией, выражают в массовых долях (%). Для расчета необходимо знать массу навески исследуемого вещества - G, массу полученного осадка - m и его формулу для определения фактора пересчета F. Формулы для расчета массовой доли и фактора пересчета представлены ниже.

Можно вычислить массу вещества в осадке, для этого используется фактор пересчета F.

Гравиметрический фактор - постоянная величина для данного исследуемого компонента и гравиметрической формы.

Титриметрический (объемный) анализ

Титриметрический количественный анализ - это точное измерение объема раствора реагента, который расходуется на эквивалентное взаимодействие с интересующим веществом. При этом концентрация используемого реагента устанавливается предварительно. Учитывая объем и концентрацию раствора реагента, рассчитывают содержание интересующего компонента.

Название «титриметрический» происходит от слова «титр», которое обозначает один из способов выражения концентрации раствора. Титр показывает, сколько грамм вещества растворено в 1 мл раствора.

Титрование - процесс постепенного доливания раствора с известной концентрацией к конкретному объему другого раствора. Его продолжают до момента, когда вещества прореагируют друг с другом полностью. Этот момент называют точкой эквивалентности и определяют по изменению окраски индикатора.

  • Кислотно-основный.
  • Окислительно-восстановительный.
  • Осадительный.
  • Комплексонометрический.

Основные понятия титриметрического анализа

В титриметрическом анализе используются следующие термины и понятия:

  • Титрант - раствор, который приливают. Его концентрация известна.
  • Титруемый раствор - жидкость, к которой приливают титрант. Его концентрацию нужно определить. В колбу обычно помещают титруемый раствор, а в бюретку - титрант.
  • Точка эквивалентности - тот момент титрования, когда число эквивалентов титранта становится равным числу эквивалентов интересующего вещества.
  • Индикаторы - вещества, применяемые для установления точки эквивалентности.

Стандартные и рабочие растворы

Титранты бывают стандартные и рабочие.

Стандартные получаются при растворении точной навески вещества в определенном (обычно 100 мл или 1л) объеме воды или другого растворителя. Так можно приготовить растворы:

  • Хлорида натрия NaCl.
  • Дихромата калия K 2 Cr 2 O 7.
  • Тетрабората натрия Na 2 B 4 O 7 ∙10H 2 O.
  • Щавелевой кислоты H 2 C 2 O 4 ∙2H 2 O.
  • Оксалата натрия Na 2 C 2 O 4.
  • Янтарной кислоты H 2 C 4 H 4 O 4 .

В лабораторной практике стандартные растворы готовят, используя фиксаналы. Это определенное количество вещества (или его раствора), находящееся в запаянной ампуле. Такое количество рассчитано на приготовление 1 л раствора. Фиксанал может храниться долгое время, поскольку находится без доступа воздуха, за исключением щелочей, которые реагируют со стеклом ампулы.

Некоторые растворы невозможно приготовить с точной концентрацией. Например, концентрация перманганата калия и тиосульфата натрия изменяется уже при растворении за счет их взаимодействия с парами воды. Как правило, именно эти растворы нужны для определения количества искомого вещества. Раз их концентрация неизвестна, ее нужно определить перед титрованием. Данный процесс называют стандартизацией. Это установление концентрации рабочих растворов их предварительным титрованием стандартными растворами.

Стандартизация необходима для растворов:

  • Кислот - серной, соляной, азотной.
  • Щелочей.
  • Перманганата калия.
  • Нитрата серебра.

Выбор индикатора

Для точного определения точки эквивалентности, то есть момента окончания титрования, необходим правильный выбор индикатора. Это вещества, изменяющие свой цвет, в зависимости от значения рН. Каждый индикатор изменяет цвет своего раствора при разном значении рН, называемом интервалом перехода. У правильно подобранного индикатора интервал перехода совпадает с изменением рН в области точки эквивалентности, называемом скачком титрования. Для его определения необходимо построить кривые титрования, для чего проводят теоретические расчеты. В зависимости от силы кислоты и основания различают четыре типа кривых титрования.

Расчеты в титриметрическом анализе

Если точка эквивалентности верно определена, титрант и титруемое вещество прореагируют в эквивалентом количестве, то есть количество вещества титранта (n э1) будет равно количеству титруемого вещества (n э2): n э1 = n э2 . Поскольку количество вещества эквивалента равно произведению молярной концентрации эквивалента и объема раствора, то верно равенство

C э1 ∙V 1 = C э2 ∙V 2, где:

C э1 - нормальная концентрация титранта, известная величина;

V 1 - объем раствора титранта, известная величина;

C э2 - нормальная концентрация титруемого вещества, необходимо определить;

V 2 - объем раствора титруемого вещества, определяется в ходе титрования.

C э2 = C э1 ∙V 1 / V 2

Выполнение титриметрического анализа

Методика количественного химического анализа титрованием включает этапы:

  1. Приготовление 0,1 н стандартного раствора из навески вещества.
  2. Приготовление приблизительно 0,1 н рабочего раствора.
  3. Стандартизация рабочего раствора по стандартному раствору.
  4. Титрование исследуемого раствора рабочим раствором.
  5. Проведение необходимых расчетов.

Все методы количественного анализа в зависимости от характера экспериментальной техники, применяемой для конечного определения составных частей анализируемого вещества или смеси веществ, делят на три группы: химические, физические и физико-химические (инструментальные) методы анализа.

К химическим методам анализа относятся:

1. Весовой анализ - измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

2. Объемный анализ - измерение объема жидких, твердых и газообразных продуктов или их водных и неводных растворов.

Известны разнообразные объемные методы:

1) объемный титриметрический - измерение объема израсходованного на реакцию реактива точно известной концентрации;

2) газовый объемный - анализ газовых смесей, основанный на избирательном поглощении из анализируемой газовой смеси определяемого компонента подходящими поглотителями;

3) седиментационный объемный, основанный на расслоении дисперсных систем под действием силы тяжести, сопровождающемся отделением дисперсной фазы в виде осадка и последующем измерении объема осадка в калиброванной центрифужной пробирке. Например, в микро- и ультрамикроанализе содержание серы находят путем окисления ее до сульфатной и последующего осаждения в виде осадка сульфата бария, определяемого указанным методом.

В более широком смысле седиментационным анализом называют метод определения в дисперсных системах величины и относительного содержания частиц различных размеров по скорости седиментации (оседания или всплывания).

Скорость седиментации сферических частиц при известных условиях описывается уравнением Стокса:

где v - скорость седиментации;

Радиус частицы;

Плотность материала частицы;

Плотность дисперсной среды;

Вязкость среды;

Ускорение силы тяжести.

Очень часто в лабораторной практике применяют весовые методы седиментационного анализа, основанное на гидростатическом взвешивании осадка в процессе его накопления при помощи седиментационных стеклянных весов Н. А. Фигуровского.

В ряде случаев разделение методов анализа на химические и физикохимические условно, так как иногда трудно или практически невозможно решить вопрос о принадлежности того или иного метода анализа к какой-либо из указанных групп.

Перечисленные методы являются лишь методами конечного определения определяемого вещества или его составных частей и не отражают всех особенностей химического анализа.

Существенной частью химического анализа, на выполнение которой химику-аналитику иногда приходится расходовать больше времени и труда, чем на конечное определение определяемого вещества, являются методы разложения анализируемого вещества, а также методы разделения, выделения и концентрирования определяемых элементов (или ионов).