Оформление расчетно графической работы по госту. Порядок оформления расчетно-графической работы. Выполнение задания в среде Pascal

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Microsoft Word ,



Приложение.

Нумерация листов РГР должна быть сквозной. Первым листом является титульный лист.

Оформление заголовков

Заголовки должны четко и кратко отражать содержание разделов, подразделов, при необходимости пунктов.

Заголовки следует писать с абзаца строчными буквами (кроме первой прописной) без точки в конце, не подчеркивая.

Заголовки разделов и подразделов выделяют «полужирным» шрифтом.

Переносы слов в заголовках не допускаются.

Расстояние между заголовками раздела, подраздела и текстом должно быть равно 15 мм.

Расстояние между заголовками раздела и подраздела – 10 мм.

Разделы «Введение», «Заключение», «Список источников» не нумеруются , но включаются в содержание документа.

Оформление иллюстраций

Иллюстрации могут располагаться по тексту РГР или в приложении. Иллюстрации следует нумеровать арабскими цифрами сквозной нумерацией.

На все рисунки документа должны быть приведены ссылки в тексте. При ссылках на иллюстрации следует писать «…в соответствии с рисунком 1….» или «…..на рисунке 1…..».

Слово «Рисунок» и наименование помещают после пояснительных данных и располагают следующим образом: «Рисунок 1 – Детали приборов».

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения, допускается исправлять подчисткой или закрашиванием белой краской и нанесением в том же месте исправленного текста машинописным способом или черными чернилами, помарки и следы неполностью удаленного прежнего текста не допускаются.

РГР вкладывается в файл и сдается методисту на кафедру не позднее установленного срока на бумажном носителе.

Задание № 1 для РГР

Задание № 1 : При выполнении РГР студент должен по номеру варианта определить свой вопрос и представить подробный, развернутый ответ.

1. Технологическое оборудование и принципы построения автоматизированного производства.

2. Размерные, временные и информационные связи в интегрированном производстве.

3. Размерные связи процесса изготовления деталей.

4. Анализ установочных размерных связей при изготовлении деталей.

5. Размерные связи при автоматической установке заготовки на станок.

6. Размерные связи при стыковки транспортных тележек.

7. Операционные размерные связи в автоматизированном производстве.

8. Основные понятия технологичности.

9. Требования к конструкции изделий, предназначенных для автоматической сборки.

10. Показатели технологичности и их определения.

11. Значение и объем сборочных работ.

12. Основные организационные формы сборки.

13. Методы сборки изделий.

14. Способы и средства транспортирования.

15. Самотечные и полусамотечные транспортные системы.

16. Магазинные загрузочные устройства.

17. Бункерные загрузочные устройства поштучной выдачи предметов обработки.

18. Бункерные загрузочные устройства выдачи предметов обработки порциями (партиями).

19. Бункерные загрузочные устройства непрерывной выдачи предметов обработки.

20. Ориентирующие устройства.

21. Автооператоры и промышленные роботы.

22. Выбор типа и компоновки автоматического сборочного оборудования

23. Однопозиционные сборочные станки

24. Многопозиционные сборочные станки

25. Роторные цепные и многоярусные автоматы.

26. Автоматические линии сборки.

27. Гибкие производственные системы сборки.

28. Преимущества гибких производственных систем.

29. Трудности гибкой автоматизации и меры по их преодолению.

30. Современные направления совершенствования режущих инструментов для автоматизированного производства.

31. Разновидности устройств АСИ многоцелевых станков.

32. Способы идентификации режущих инструментов.

33. Автоматический контроль состояния режущих инструментов.

34. Методы и средства контроля качества изделий в ГПС

35. Способы измерения параметров детали с помощью измерительной головки.

36. Автоматизированные системы удаления отходов.

Задание № 2 для РГР

Построение циклограммы работы роботизированного технологического комплекса

Задание № 2 : При выполнении РГР студент должен по последней цифре шифра зачетки определить свой вариант задания и представить подробное решение.

Теоретическая часть

При разработке циклограмм работы автоматических машин (систем машин) обычно решаются следующие задачи:

1. Проектируется четкая последовательность действий и необходимых команд управления для всех исполнительных механизмов машины, на основании которой затем составляется управляющая программа (УП). Для РТК, например, по циклограмме его работы составляется УП для промышленного робота (ПР), который координирует работу остального оборудования;

2. Разработанная последовательность действий оптимизируется с целью сокращения общей длительности цикла и отсутствия простаивания основного технологического оборудования РТК.

Если при разработке циклограммы определяются времена выполнения отдельных действий (тактов цикла), то такие циклограммы используются для расчета длительности всего цикла и отдельных его фрагментов, расчета производительности РТК.

Известны различные формы представления циклограмм: табличные, круговые и пр. Наибольшее распространение получили циклограммы в форме таблицы. Перед построением циклограммы определяется состав оборудования АОЯ и уточняется перечень исполнительных механизмов по каждому оборудованию. Также определяются возможные состояния каждого исполнительного механизма. В данной работе следует учитывать только то оборудование и исполнительные механизмы, которые совершают механические действия (пульты управления, электрошкафы, гидростанции и пр. не учитывать). Для станка следует выбирать те исполнительные механизмы, которые непосредственно участвуют в процессе загрузки-разгрузки детали. Собственно процесс обработки детали по управляющей программе будем считать проходящим между включением и выключением шпинделя и подробно в циклограмме не рассматриваем.

Тогда циклограмма будет включать в себя следующие столбцы:

Оборудование;

Исполнительные механизмы, выполняющие отдельные элементы цикла;

Возможные состояния исполнительных механизмов в цикле;

Необходимое число тактов цикла.

Число строк определяется числом состояний всех исполнительных механизмов. Первоначально выбирается какое-либо состояние всех исполнительных механизмов в качестве исходного. Для выбора исходного состояния можно выбрать любой момент цикла загрузки-разгрузки (например, момент начала загрузки детали).

Циклограмму необходимо составить так, чтобы в конце цикла все исполнительные механизмы вернулись в исходное состояние. Далее следует в текстовом виде описать планируемую последовательность срабатывания всех необходимых исполнительных механизмов. При этом необходимо стремиться к максимальному сокращению времени цикла за счет объединения движений в одном

такте (одновременное выполнение движений).

Однако такое объединение следует осуществлять технически грамотно. Например, нельзя объединять в один такт зажим приспособления станка и разжим схвата ПР (схват может начать срабатывать раньше приспособления и деталь потеряет ориентацию).

Время выполнения каждого движения может быть определено по формулам:

Или

или

где α i β i - углы поворота механизмов;

l i h i - линейные перемещения механизмов;

ω i v i - соответственно паспортные скорости углового и линейного перемещения механизмов по соответствующей координате.

Затем начинается собственно заполнение табличной циклограммы . Как правило большинство исполнительных механизмов имеет два состояния (открыто - закрыто, выдвинуто - задвинуто, включено - выключено ). В этом случае должны выполняться правила последовательности переключения состояний и четности (количество нахождения исполнительного механизма в одном состоянии должно равняться количеству нахождения его во втором состоянии, т.е. сумма должна делиться на два, иначе исполнительный механизм за цикл не вернется в исходное состояние).

Пример выполнения работы

Схема роботизированного технологического комплекса (РТК) приведена на рис. 1. В состав РТК входят:

Токарно- патронный полуавтомат 16К20Ф3;

Промышленный робот М20П.40.01;

Тактовый стол.

Рисунок 1 – Компоновка АОЯ

Для выполнения заданного цикла обработки детали необходимы следующие движения (переходы):

Зажим заготовки в патроне;

Отвод руки ПР;

Обработка детали;

Разгрузка детали из патрона станка на тактовый стол, перемещение тактового стола на 1 шаг (на одну позицию).

В формировании заданного цикла участвуют следующие механизмы:

станка

Зажим детали (патрон);

Вращение детали (обработка);

промышленного робота

Подъем руки;

Выдвижение руки;

Зажим схвата;

Поворот схвата относительно вертикальной оси;

тактового стола

Перемещение детали (заготовки) на один шаг (на одну позицию).

исходное положение оборудования и его механизмов :

Патрон станка зажат, ограждение открыто;

Суппорт в нулевой (исходной) позиции, в резцовой головке установлен необходимый комплект инструментов для обработки заданной детали, т.е. для выполнения заданного цикла обработки линии центров станка, выше уровня расположения заготовок на тактовом столе;

Схват робота разжат, ось детали, первоначально зажимаемой в схвате - горизонтальная; рука втянута и повернута к станку.

В соответствии с составленной последовательностью движений механизмов оборудования за цикл построена циклограмма функционирования АОЯ и алгоритм.

Принцип работы: после выключения станка ПР забирает обработанную деталь устанавливает в исходную ячейку на тактовом столе. Происходит перемещение стола на одну позицию. ПР забирает деталь с тактового стола устанавливает в зоне обработки. Станок включается для выполнения технологических операций. Время всех перемещений принять равным 1с.



Рисунок 2 – Алгоритм функционирования АОЯ

№ варианта Компоновка РТК
1 – промышленный робот М20Ц.40.01 2 – токарно-револьверный станок с ЧПУ 1В340Ф30 3 – магазин накопитель 4 – устройство управления ПР 5 – ограждение 6 – устройство ЧПУ станка 7 – электрошкаф 8 – гидростанция
1 – промышленный робот 2М4Ц.20ГП-3 2 – токарный многорезцовый станок 1Н713 3 – тара (кассетного типа) 4 – устройство управления ПР 5 – гидростанция
1 – промышленный робот ПР4 2 – токарный многорезцовый полуавтомат 1716Ф3 3 – тактовый стол 4 – тара 5 – пульт управления ПР 6 – устройство для удаления стружки
1 – промышленный робот М10П62.01 2 – токарный станок с ЧПУ 16К20Ф3 3 – тактовый стол 4 – устройство ЧПУ ПР 5 – устройство ЧПУ станка 6 – электрошкаф
1 – промышленный робот МП 2 – токарный полуавтомат 1713 3 – тактовый стол
1 – промышленный робот УМ160Ф2.81.02 2 – токарный станок с ЧПУ 1П752МФ3 3 – поворотное устройство 4 – устройство ЧПУ станка 5 – устройство ЧПУ ПР 6 – тара для стружки 7 – загрузочная позиция склада 8 – гидростанция

1 – промышленный робот напольного типа 2 – токарный многорезцовый станок 3 – горизонтальное загрузочное устройство 4 - накопитель
1 – промышленный робот УМ1 2 – токарный полуавтомат агрегатного типа АТ250П 3 – магазин периодического действия 4 – пульт управления 5 – ограждение

1 – ПР Ритм-01-08 2 – станок токарно-винторезный с ЧПУ 3 – вибробункер 4 – устройство ЧПУ станка 5 - устройство ЧПУ ПР 6 - тара

1 – промышленный робот напольного типа 2 – станок с ЧПУ 3 – загрузочное устройство 4 – устройство управления ПР 5 - тара

Задание № 3 для РГР

Теоретическая часть

Магазин емкость для размещения однородных штучных заготовок и выдачи их с требуемой производительностью. Состав магазина: накопитель, отсекатель, питатель.

Основные типы конструкций МЗУ приведены на рис. 1.

Рисунок 1- Магазинные загрузочные устройства для заготовок, закладываемых штабелем в один ряд.

МЗУ рассчитываются на производительность и отсутствие заклинивания.

Исходные данные

Вариант задания – 0. Эскиз детали приведен на рис. 5.

Рисунок 5 – Эскиз ориентируемой детали

Производительность станка – автомата Qa = 90 шт./мин.

Материал детали - сталь.

Частота колебаний лотка f Л = 50 Гц.

Периодичность загрузки бункера Т= 20 мин.

Обеспечение автоматической ориентации детали .

Специальных устройств для систематизации потока деталей не требуется так как предполагаемые конструкции ориентаторов одновременно будут выполнять и эту функцию. Для обеспечения ориентации детали в пространстве определим все возможные различные устойчивые положения детали на лотке и выберем одно – требуемое. Возможные устойчивые различимые положения детали на лотке приведены на рис. 10.

а – донышком вперед,

б – донышком назад,

в – ось детали образует с направлением лотка угол не равный 0º,

г – стоя на торце (ось детали вертикальна)

Рисунок 6 - Возможные различимые устойчивые положения детали на лотке (вид сверху)

Выбираем следующую схему ориентации: В ВБЗУ обеспечиваются два устойчивых положения – а и б . Во вторичном ориентирующем устройстве для всего потока обеспечивается положение а .

Для устранения положений в ширину лотка (с учетом буртика) предусматриваем 8 мм. Для перевода детали из положения г в а или б предусматривается уступ (рис. 7).

Рисунок 7 – Форма ориентирующего уступа

Для обеспечения устойчивого положения детали а или б лотку придается полукруглая форма (рис. 8).

Рисунок 8 – Поперечное сечение оринтирующего устройства ВБЗУ

1 – пружина

2 – рычаг

4 – подводящий лоток

5 – отводящий лоток

Рисунок 9 – Схема вторичного ориентирующего устройства

Расчет ВБЗУ

Расчет режима работы ВБЗУ.

Включает определение средней производительности Q СР , средней скорости движения изделия по лотку V СР , коэффициента заполнения лотка k З .

Средняя производительность ВБЗУ

Средняя скорость движения изделия по лотку (мм/с):

Коэффициент заполнения лотка изделиями определяется по формул:

k З =Р(l 0 ) ·C П = 0, 919·1=0, 919

Коэффициент плотности потока изделий рассчитывается как:

При пассивном ориентировании симметричных валиков и втулок по цилиндрической поверхности (при l И > d ):

Расчет конструктивных размеров чаши.

Включает определение диаметра D , высоты Н , шага лотка t, объема V Д загружаемой партии. Примем цилиндрическую форму чаши (рис. 12).

Для цилиндрической чаши наружный диаметр определяют по формуле:

D=D В +2·Δ,

Внутренний диаметр чаши определяется из выражения:

где V Д – наружный объем загружаемого изделия, мм 3 , V Д = 396мм 3 ;

Т – период времени между заполнениями чаши, мин, Т = 20 мин;

n – число заходов вибродорожек, n = 1 ;

z – число каналов на каждой вибродорожке, z=1 ;

Н Р – высота заполнения чаши изделиями, мм.

Высота заполнения чаши изделиями находится из выражения:

H P ≈ 2, 5·(t+δ)= 2, (11+2) = 32, 5 мм,

Шаг t спирали вибродорожки определяют из условия:

t =k·d+δ= 1, 5·6 +2=11 мм,

где d – диаметр изделия, лежащего на лотке, d = 6 мм;

при l И /d >1,5 коэффициент принимается равным k = 1,5.

Тогда наружный диаметр чаши

D=D В + 2·Δ=290+2·2=294 мм.

Округляем до ближайшего стандартного диаметра в большую сторону D=320 мм.

Рисунок 12 - Конструкция цилиндрической чаши ВБЗУ

Полная высота чаши определяется как H=H P +(1, 0…1, 5)·t =32, 5 +(1, 5·11) =49 мм.

Угол подъема спирали лотка:

Ширина вибродорожки:

Ширина лотка с буртиком

B O =B+ 3=7, 17+3=10, 7 мм

Принимаем толщину дна чаши H Д ≈ 2 мм. Угол конуса чаши выбираем в диапазоне γ 0 =150º .

Расчет параметров движения изделия и колебательной системы .

Включает определение частоты вынужденных колебаний лотка; амплитуды; приведенной массы; жесткости пружинных стержней; размеров пружинных стержней (длины l , диаметра d или сечения b хh ).

Определяем требуемый угол наклона подвесок α, исходя из обеспечения необходимой скорости перемещения заготовок по формуле:

α=arctg 2,25=66 0

Определяем амплитуду колебания лотка Х Н (в см), при которой обеспечивается скорость V ТР , по формуле:

ω=2·π·f Л = 2·3, 14·50=314.

Конструктивно подвески можно выполнять круглыми или плоскими (набранными из пластин). Выбираем плоские пружины. Необходимо определить их длину, ширину и толщину. Параметры пружин определяем из условия, что подвеска представляет собой балку, закрепленную жестко с двух сторон.

Расчетная схема пружин показана на рис. 4.

При плоских пружинах длину l и ширину b задают конструктивно, а толщину (в см), можно определить по формуле:

где а – толщина пружин подвески, см;

l – длина пружины, принимаем l=15 см;

b – ширина пружины, принимаем b = 2 см;

n – число подвесок, принимаем n = 4 ;

i – число пружин в подвеске, принимаем i = 3 ;

G – вес колеблющихся частей и загруженных в бункер заготовок, ориентировочно принимаем G = 15 кг;

φ – собственная частота колебаний системы, 1/с:

φ=1, f Л = 1, 1·50=55 1/с.

Напряжение изгиба (кгс/см 2) при максимальном прогибе для плоских пружин определяем по формуле:

Размах колебаний лотка (в см) определяется графически при амплитуде колебания Х Н по формуле:

Если в приводе вибрационного загрузочного устройства со спиральным лотком у каждой подвески установлен один электромагнит перпендикулярно ее плоскости, то его усилие (в кгс) можно при плоских подвесках определить по следующей формуле:

На основании вышеприведенных расчетов и обобщенной схемы АЗУ принимаем следующий схемный вариант проектируемого автоматического загрузочного устройства. В ВБЗУ осуществляется предварительная пространственная ориентация деталей выдача их с производительностью Q = 120 шт/мин. В ВОУ осуществляется окончательная пространственная ориентация деталей. Затем поток деталей разделяется делителем потока на два потока, каждый из которых направляется в МЗУ- дублеры. Эти МЗУ расположены с противоположных сторон относительно станка-автомата и обеспечивают его правильно ориентированными деталями с заданной производительностью.

Схема управления следит с помощью датчиков переполнения (Д1– Д4) за загрузкой МЗУ и направляющих лотков и, при необходимости, временно отключает ВБЗУ. Общая схема АЗУ

Рисунок 13 - Общая схема АЗУ

Задание

Таблица П1 – Исходные данные для выполнения работы

Таблица П2 - Значение коэффициента трения

Таблица П3 – Чертеж деталей к вариантам

№ варианта Чертеж детали









Список литературы

1.. Автоматизация машиностроения: Учеб. для втузов/ Н.М.Капустин, Н.П.Дьяконова, П.М.Кузнецов; Под ред. Н.М.Капустина. – М.: Высш. шк., 2003. – 223с.: ил.

2. Калабухов А.Н., Полякова Л.Ю. Технологические основы разработки гибких роботизированных производственных модулей: Учебное пособие для студентов технических вузов/Кумертауский филиал УГАТУ. – Кумертау, 2006 – 398 с.

3. Власов и др. Транспортные и загрузочные устройства и робототехника: Учебник для техникумов пециальности « Монтаж и эксплуатация металлообрабатывающих станков и автмоатических линий». – М.: Машиностроение, 1988. – 144 с.: ил.

4. А. Н. Трусов. Проектирование и расчет автоматического загрузочного устройства.Методические указания к лабораторным работам № 2, 3, 4 по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

5. А.Н.Трусов. Построение циклограмм работы автоматически обрабатывающих ячеек. Методические указания к лабораторной работе по дисциплине «Автоматизация технологических процессов и производств» для студентов специальности 220301 «Автоматизация технологических процессов и производств (в машиностроении)» всех форм обучения.

6. СТО УГАТУ 016-2008. Графические и текстовые конструкторские документы. Общие требования к построению, изложению и оформлению. – Взамен СТП УГАТУ 002-98; введен. 2008-01-01. – Уфа: УГАТУ, 2008.

7..ГОСТ 2.104-2006 ЕСКД. Основные надписи. – Взамен ГОСТ 2.104-68; введен. 2006-09-01.-М.: Стандартинформ,2007.

Приложение А

(обязательное)

Образец титульного листа

Министерство образования и науки РФ

Филиал Федерального государственного бюджетного образовательного учреждения высшего образования

«Уфимский государственный авиационный технический университет»

в г.Кумертау

Кафедра «ТПЛАа»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Автоматизация технологических процессов и производств»

Вариант ХХ

Выполнил: ст. гр. КТО-ХХ

А.А. Сидоров

Проверил: ст. преподаватель

Н.Г.Васильева

Кумертау – 201_г


Приложение Б

(обязательное)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для выполнения

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

по дисциплине «Автоматизация производственных процессов»

для студентов по специальности 15.03.05

«Конструкторско-технологическое обеспечение машиностроительных производств»

Составил: ст. преподаватель

кафедры «ПА»

Н.Г.Васильева

Кумертау – 2015г.

Порядок оформления расчетно-графической работы

Расчетно-графическая работа (РГР) выполняется на одной стороне листа формата А4 с применением печатающих графических устройств вывода ЭВМ. Для оформления РГР необходимо использовать текстовый редактор Microsoft Word , шрифт - Times New Roman, размер шрифта 14 пт, через одинарный интервал с абзацным отступом 1,25 см. Выравнивание текста - по ширине.

РГР должна содержать следующие разделы:

Титульный лист (ПРИЛОЖЕНИЕ А);

Введение - снабжается рамкой с основной надписью по ГОСТ 2.104-68, форма 2а, не более 1-2 стр. (ПРИЛОЖЕНИЕ Б);

Развернутый ответ на вопрос, выбранный в соответствии с номером варианта по журналу из задания 1;

Подробное описание с необходимым иллюстративным материалом технологии выполнения задания 2,3 выбранного в соответствии с номером варианта по журналу или по последней цифре шифра зачетки;

Заключение, не более 1-2 стр.;

Список источников (не менее 5);

Приложение.

Расположение текста на листе:

1) Расстояние от рамки формы до границ текста в начале и в конце строк не менее 3 мм;

2) Расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм;

3) Абзацы в тексте начинаются отступом 12,5 мм.

« Составление внешнеторгового контракта и расчет

таможенных платежей»

Расчетно-графическая работа (РГР) предусмотрена учебным планом для студентов очной формы обучения.

В РГР предусматривается проработка студентом условий внешнеторгового контракта. Контракты могут быть как на экспорт, так и на импорт товара.

На выполнение РГР студенту выдается индивидуальное задание, состоящее из следующих условий: наименование товара, его цена и базисные условия поставки. Все эти условия включаются в контракт, но кроме них требуется определить еще ряд пунктов контракта.

Для написания этого раздела РГР студент должен по лекционным материалам и по данным методическим указаниям (раздел 5) ознакомиться с содержанием внешнеторгового контракта. При написании работы студент должен дать обоснование каждого из 16 перечисленных пунктов исходя из особенностей данного товара, срока контракта, выбранного контрагента, его географического положения, валюты и т. д..

Требуется по каждому пункту выбрать какой-либо из вариантов его формулировки, подходящий к виду экспортируемой или импортируемой продукции и не противоречащий базисным условиям поставки, и обосновать применение именно этого варианта.

В частности, требуется определить количество товара, способ установления его качества. Установить дату или период поставки, способ фиксации цены, возможность применения и условия предоставления скидок к цене товара.

Базисные условия поставки предусмотрены в выданном задании, но студенту при выполнении работы требуется по ИНКОТЕРМС–2000 сформулировать обязанности стороны, для которой он составляет контракт, т.е. если контракт на экспорт, то следует описать обязательства продавца, а если импортный – обязанности покупателя.

Затем определяется порядок платежа, по которому следует выбрать валюту платежа, его срок, способ, форму расчетов и обосновать свой выбор.

Фирму-экспортера (или импортера) и её контрагента следует придумать самостоятельно.

На основе разработанных условий студент составляет внешнеторговый контракт и рассчитывает таможенные платежи: сбор за таможенное оформление, таможенную пошлину, акциз, налог на добавленную стоимость. Методика расчета перечисленных платежей приведена в разделах 6.1 – 6.4. методических указаний.

В заключительной части РГР студент должен определить, сколько составляют таможенные платежи в сумме и на единицу товара, сколько составит стоимость товара после внесения всех таможенных платежей и на сколько процентов или во сколько раз увеличивается стоимость товара после этих платежей.

Состав и объем пояснительной записки расчетно-графической работы:

1. Задание на выполнение РГР.

2. Проработка условий внешнеторгового контракта.

3. Составленный внешнеторговый контракт.

4. Расчет таможенных платежей.

5. Определение стоимости единицы товара с учетом уплаченных таможенных платежей и расчет увеличения стоимости товара после их уплаты.

Общий объем ПЗ составляет 8 - 10 страниц. Оформление должно соответствовать правилам.

Контрольная работа предусмотрена учебным планом для студентов очно-заочной и заочной формы обучения.

Кроме того, по условиям контрольной работы, на уплату таможенных платежей предоставлена рассрочка под залог товара, который на это время оформляется на склад временного хранения (СВХ). Студент должен рассчитать проценты за рассрочку (см. раздел 6.5) и определить суммы, вносимые в погашение рассрочки с учетом процентов.

Итогом контрольной работы является расчет суммы всех платежей и стоимости единицы товара с учетом таможенных платежей и процентов за рассрочку.

На выполнение контрольной работы студенту выдается индивидуальное задание, состоящее из следующих условий: наименование товара, его цена, базисные условия поставки, платежи, на которые предоставлена рассрочка, срок рассрочки, условия внесения платежей.

В состав контрольной работы входят:

1. Задание на выполнение контрольной работы.

ЗАДАНИЯ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКИХ И КУРСОВЫХ РАБОТ

1. Студент обязан взять из таблицы, прилагаемой к условию задачи, данные в соответствии с номером варианта выданным преподавателем.

вариант – (21)(24)(11)(06)

буквы -абвг

Из каждого вертикального столбца таблицы исходных данных, обозначенного внизу определенной буквой, надо взять только одно число, стоящее в той горизонтальной строке, номер которой совпадает с номером буквы в шифре. Например, вертикальные столбцы табл.1 в задании на растяжение-сжатие обозначены внизу буквами «в», «г», «б», «а», «а»,. В этом случае при указанном выше номере варианта 21241106 студент должен взять из столбцов «а» строку номер 21 (b =1 м, F =12 кН), из столбца «б» - строку номер 24 (a =4 м), из столбца «в» - строку номер 11 (схема №11) и из столбца «г» - строку 06 (Д=0,06 м).

Работы, выполненные не по своему варианту, не засчитываются.

2. Не следует приступать к выполнению расчетно-графических работ, не изучив соответствующего раздела курса и не решив самостоятельно рекомендованных задач. Если студент слабо усвоил основные положения теории и не до конца разобрался в приведенных примерах, то при выполнении работ могут возникнуть большие затруднения. Несамостоятельно выполненное задание не дает возможности преподавателю-рецензенту вовремя заметить недостатки в работе студента. В результате студент не приобретает необходимых знаний и оказывается неподготовленным к экзамену.

4. В заголовке расчетно-графической работы должны быть четко написаны: номер контрольной работы, название дисциплины, фамилия, имя и отчество студента (полностью), название факультета и специальности, учебный шифр.

5. Каждую расчетно-графическую работу следует выполнять на листах формата А4 , чернилами (не красными), четким почерком, с полями.

6. Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.

7. Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Надо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники - формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).

8. Необходимо указать размерность всех величин и подчеркнуть окончательные результаты.

9. Не следует вычислять большое число значащих цифр, вычисления должны соответствовать необходимой точности. Нет необходимости длину деревянного бруса в стропилах вычислять с точностью до миллиметра, но было бы ошибкой округлять до целых миллиметров диаметр вала, на который будет насажен шариковый подшипник.

10. В возвращенной расчетно-графической работе студент должен исправить все отмеченные ошибки и выполнить все данные ему указания. В случае требования рецензента следует в кратчайший срок послать ему выполненные на отдельных листах исправления, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не рассматриваются.

11. В описании порядка решения задач пункты, отмеченные значком *, являются необязательными и выполняются по желанию студента.

Общие справочные данные для решения всех задач

Характеристики материала

Сталь

Бронза

Алюминий

Чугун

Дерево

Модуль упругости Е , МПа

2 ∙ 10 5

1 ∙ 10 5

0,7 ∙ 10 5

1,2 ∙ 10 5

1 ∙ 10 4

Предел текучести , МПа

Предел прочности на растяжение-сжатие , МПа

180/600

100/45

Коэффициент Пуассона μ

0,25

0,34

0,25

0,45

Коэффициент температурного расширения α , 1/град

12 ∙ 10 -6

22 ∙ 10 -6

24 ∙ 10 -6

11 ∙ 10 -6

4 ∙ 10 -6

1. При вычислении допускаемых напряжений при растяжении-сжатии нормируемый коэффициент запаса прочности n необходимо принять:

Для пластичных материалов 1,5;

Для хрупких материалов 3 (коэффициенты запаса при растяжении-сжатии рекомендуется считать одинаковыми);

Для дерева при растяжении 10, при сжатии 4,5.

2. Допускаемые напряжения при сдвиге [τ ] следует принять:

Для дерева 2 МПа;

Для пластичных материалов по соответствующимтеориям прочности.

3. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.

4. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.

5. При проверке жесткости балок допускаемый прогиб следует принимать:

Для шарнирно-опертых балок l /200;

Для консольных балок l /100,

где l – длина пролета (консоли) балки.

6. Принятые для решения учебных задач справочные данные являются примерными и не отражают всего разнообразия видов материалов и их характеристик.

Тема

Задания на расчет стержней и стержневых систем при центральном растяжении-сжатии

Задания по теории напряженного состояния

Задания по геометрическим характеристикам плоских сечений

Задания на расчет балок, работающих на поперечный изгиб

ЗАДАНИЯ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ

Прежде чем приступить к выполнению задания, следует изучить соответствующий теоретический материал по учебнику или конспекту лекций и подробно разобрать приведенные там примеры; разобрать задачи, рассмотренные на практических занятиях.

Приступая к решению задания, надо разобраться в условии задачи и рисунке.

Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.

Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Надо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники - формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).

Не следует вычислять большое число значащих цифр, вычисления должны соответствовать необходимой точности. Нет необходимости длину деревянного бруса в стропилах вычислять с точностью до миллиметра, но было бы ошибкой округлять до целых миллиметров диаметр вала, на который будет насажен шариковый подшипник.

Чертежи, схемы следует выполнять при помощи чертежных принадлежностей.

Все параметры, необходимые для расчета: векторы, оси координат, углы, размеры должны быть изображены на рисунке.

Чертеж должен быть аккуратным, его размеры должны позволить ясно показать все силы или векторы скорости и ускорения и др.; показывать все эти векторы и координатные оси на чертеже, а также указывать единицы получае­мых величин нужно обязательно. Решение задач необходимо сопровождать краткими пояснениями (какие формулы или теоремы применяются, как полу­чаются те или иные результаты и т.д.) и подробно излагать весь ход расче­тов. На каждой странице следует оставлять поля для замечаний рецензента.

Работы выполняются на писчей бумаге формата А4 , чернилами (не красными), четким почерком, с полями.

В возвращенной расчетно-графической работе студент должен исправить все отмеченные ошибки и выполнить все данные ему указания. В случае требования рецензента следует в кратчайший срок послать ему выполненные на отдельных листах исправления, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не рассматриваются.

На экзамен необходимо представить зачтенные по разделам курса кон­трольные задания, в которых все отмеченные рецензентом погрешности долж­ны быть исправлены.

При чтении текста каждой задачи учесть следующее. Большинство ри­сунков дано без соблюдения масштабов. На рисунках к задачам все линии, па­раллельные строкам, считаются горизонтальными, а перпендикулярные стро­кам - вертикальными, и это в тексте задач специально не оговаривается. Также считается, что все нити (веревки, тросы) являются нерастяжимыми и невесо­мыми; нити, перекинутые через блок, по блоку не скользят; катки и колеса (для задач по кинематике и динамике) катятся по плоскостям без скольжения. Все связи, если не сделаны уточнения, считаются идеальными.

Когда тела на рисунке пронумерованы, то в тексте задач и в таблице P 1 , t 1 , r 1 и т.д. означают вес или размеры тела 1; P 2 , t 2 , r 2 - тела 2 и т.д. Анало­гично в кинематике и динамике V B , W B означают скорость и ускорение точки В ; V c , W c - точки С; 𝜔 1 , 𝜀 1 - угловую скорость и угловое ускорение тела 1; 𝜔 2 , 𝜀 2 - тела 2 и т.д. Для каждой задачи подобные обозначения могут тоже спе­циально не оговариваться.

Следует также иметь в виду, что некоторые из заданных в условиях зада­чи величин (размеров) при решении каких-то вариантов могут не понадобиться, они нужны для решения других вариантов задачи.

Выбор варианта

Из тридцати схем, предлагаемого задания, студент должен выбрать только одну, номер которой соответствует порядковому номеру его фамилии в журнале преподавателя на начало семестра.

Задание, выполненное не по своему варианту, к защите не принимается.

Защита расчетно-графических работ производится в соответствии с графиком учебного процесса.

При защите задания студент должен дать объяснение по его содержанию, уметь решать типовые задачи и давать ответы по теории соответствующего раздела курса.

Все задачи взяты из следующего источника: Кирсанов М.Н. Решебник . Теоретическая механика /П од ред. А.И.Кириллова . – М.:Физматлит , 2008. -384 с.

СТАТИКА

ПЛОСКАЯ СИСТЕМА СИЛ

Задача 1. ПРОСТАЯ СТЕРЖНЕВАЯ СИСТЕМА

Определить усилия во всех стержнях данной стержневой системы при воздействии на нее силы P .

Данные и схемы брать из таблицы 1 согласно номеру группы и вашему варианту.

Таблица 1

Задача 2. РАВНОВЕСИЕ ЦЕПИ ИЗ 3 ЗВЕНЬЕВ

Найти угол α в положении равновесия цепи и усилия в стержнях.

Данные и схемы брать из таблицы 2 согласно номеру группы и вашему варианту.

Таблица 2

Задача 3. ТЕОРЕМА О ТРЕХ СИЛАХ

Тело находится в равновесии под действием трех сил, одна из которых известный вес тела G P , другая - реакция опоры в точке B (гладкая опора или опорный стержень) с известным направлением, а третья – реакция неподвижного шарнира А . Используя теорему о трех силах, найти неизвестные реакции опор (в кН). Размеры указаны в см .

Данные и схемы брать из таблицы 3 согласно номеру группы и вашему варианту.

Таблица 3

Задача 4. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ТОЧКИ

Найти момент силы F относительно начала координат.

Данные и схемы брать из таблицы 4 согласно номеру группы и вашему варианту.

Таблица 4

Задача 5. ФЕРМА. ПРЯМОУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия в стержнях 1-5 данной фермы с прямоугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 5 согласно номеру группы и вашему варианту.

Таблица 5

Задача 6. ФЕРМА. ТРЕУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия во всех стержнях данной фермы с треугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 6 согласно номеру группы и вашему варианту.

Таблица 6

Задача 7. ФЕРМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

К плоской ферме приложены две одинаковые силы P . Найти усилия в стержнях 1 и 2 (выделены утолщением). Размеры даны в метрах.

Данные и схемы брать из таблицы 7 согласно номеру группы и вашему варианту.

Таблица 7

Задача 8. РАВНОВЕСИЕ ПРОСТОЙ РАМЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор рамы; cos α =0,8.

Данные и схемы брать из таблицы 8 согласно номеру группы и вашему варианту.

Таблица 8

Задача 9. РАВНОВЕСИЕ ТЯЖЕЛОЙ РАМЫ

Тяжелая однородная рама расположена в вертикальной плоскости и опирается на неподвижный шарнир А и наклонный невесомый стержень Н . К раме приложены горизонтальная сила Р , наклонная сила Q и момент М . Учитывая погонный вес рамы ρ , найти реакции опор.

Данные и схемы брать из таблицы 9 согласно номеру группы и вашему варианту.

Таблица 9

Задача 10. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ

Данные и схемы брать из таблицы 10 согласно номеру группы и вашему варианту.

Таблица 10

Задача 11. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ БЕЗ УЧЕТА ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Размеры даны в метрах. Найти реакции опор.

Данные и схемы брать из таблицы 11 согласно номеру группы и вашему варианту.

Таблица 11

Задача 12. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С УЧЕТОМ ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Дан погонный вес рамы ρ , размеры и нагрузки. Найти реакции опор.

Данные и схемы брать из таблицы 12 согласно номеру группы и вашему варианту.

Таблица 12

Задача 13. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ПЛАСТИНЫ И УГОЛКА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Данные и схемы брать из таблицы 13 согласно номеру группы и вашему варианту.

Таблица 13

Задача 14. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ С НИТЬЮ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Конструкция состоит из прямоугольной пластины и жесткого уголка, изогнутого под прямым углом. Тела соединены двумя невесомыми стержнями. Определить реакции опор конструкции (в кН). Размеры даны в метрах.

Данные и схемы брать из таблицы 14 согласно номеру группы и вашему варианту.

Таблица 14

Задача 15. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ

Определить реакции опор конструкции (в кН), состоящей из трех тел, соединенных в точке С шарниром. Размеры указаны в метрах.

Данные и схемы брать из таблицы 15 согласно номеру группы и вашему варианту.

Таблица 15

Задача 16. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Найти реакции опор составной конструкции. Размеры даны в метрах.

Данные и схемы брать из таблицы 16 согласно номеру группы и вашему варианту.

Таблица 16

Задача 17. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С РАСПРЕДЕЛЕННЫМИ НАГРУЗКАМИ

Найти реакции опор плоской составной рамы, находящейся под действием линейно распределенной нагрузки с максимальной интенсивностью q 1 и нагрузки с интенсивностью q 2 , равномерно распределенной по дуге окружности. Участок CD представляет собой четверть окружности радиуса R с центром О .

Данные и схемы брать из таблицы 17 согласно номеру группы и вашему варианту.

Таблица 17

Задача 18. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ ДЛЯ ЗАЧЕТОВ И ЭКЗАМЕНОВ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор конструкции (в кН), состоящей из двух тел.

Данные и схемы брать из таблицы 18 согласно номеру группы и вашему варианту.

Таблица 18

Задача 19. ТРЕНИЕ КАЧЕНИЯ

Система состоит из двух цилиндров весом G 1 и G 2 с одинаковыми радиусами R соединенных однородным стержнем весом G 3 . Цилиндры могут кататься без проскальзывания, цилиндр 1 без сопротивления, а цилиндр 2 с трением качения (δ ). В каких пределах меняется внешний момент М при условии равновесия системы?

Данные и схемы брать из таблицы 19 согласно номеру группы и вашему варианту.

Таблица 19

ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ

Задача 20. ПРОСТРАНСТВЕННАЯ ФЕРМА

Найти усилия в стержнях 1-6 пространственной фермы, нагруженной в одном узле вертикальной силой G и горизонтальной F . Ответ выразить в кН.

Данные и схемы брать из таблицы 20 согласно номеру группы и вашему варианту.

Таблица 20

Задача 21. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ПРОСТЕЙШЕМУ ВИДУ

Систему трех сил, приложенных к вершинам параллелепипеда, привести к началу координат. Найти координаты точки пересечения центральной винтовой оси с плоскостью xy . Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 21 согласно номеру группы и вашему варианту.

Таблица 21

Задача 22. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСЕЙ

Найти моменты сил относительно осей. Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 22 согласно номеру группы и вашему варианту.

Таблица 22

Задача 23. ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ, ПОДДЕРЖИВАЮЩИХ ПЛИТУ

Однородная прямоугольная горизонтальная плита весом G опирается на шесть невесомых шарнирно закрепленных по концам стержней. Вдоль ребра плиты действует сила F . Определить усилия в стержнях (в кН).

Данные и схемы брать из таблицы 23 согласно номеру группы и вашему варианту.

Таблица 23

Задача 24. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ

G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным и вертикальным) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 24 согласно номеру группы и вашему варианту.

Таблица 24

Задача 25. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Горизонтальная однородная прямоугольная полка весом G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным 1 и вертикальным 2) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 25 согласно номеру группы и вашему варианту.

Таблица 25

Задача 26. РАВНОВЕСИЕ ВАЛА

Горизонтальный вал весом G может вращаться в цилиндрических шарнирах А и В . К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F , пропорциональная N . На шкив 2 действуют сила натяжения ремней T 1 и T 2 . Груз Q висит на нити, навитой на шкив 3. Определить силу давления N и реакции шарниров в условии равновесия вала (в Н). Учесть веса шкивов P 1 , P 2 , P 3 . Все нагрузки действуют в вертикальной плоскости. Силы даны в Н, размеры в – см.

Данные и схемы брать из таблицы 26 согласно номеру группы и вашему варианту.

Таблица 26

ЦЕНТР ТЯЖЕСТИ

Задача 27. ЦЕНТР ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ

Найти площадь (в м 2 ) и координаты центра тяжести плоской фигуры (в м). Отметки на осях даны в метрах. Криволинейный участок контура является дугой половины или четверти окружности.

Данные и схемы брать из таблицы 27 согласно номеру группы и вашему варианту.

Таблица 27

Задача 28. ЦЕНТР ТЯЖЕСТИ ОБЪЕМНОГО ТЕЛА

Найти координаты центра тяжести однородного объемного тела. Размеры даны в метрах.

Данные и схемы брать из таблицы 28 согласно номеру группы и вашему варианту.

Таблица 28

Задача 29. ЦЕНТР ТЯЖЕСТИ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ ФИГУРЫ

Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней. Размеры даны в метрах.

Данные и схемы брать из таблицы 29 согласно номеру группы и вашему варианту.

Таблица 29

КИНЕМАТИКА

ДВИЖЕНИЕ ТОЧКИ

Задача 30. ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Точка движется по закону x = x (t ) и y = y (t ). Для момента времени t = t 1 найти скорость, ускорение точки и радиус кривизны траектории (x и y даны в см, t 1 в сек).

Данные и схемы брать из таблицы 30 согласно номеру группы и вашему варианту.

Таблица 30

Задача 31. ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ. ДЕКАРТОВЫ КООРДИНАТЫ

Точка движется по закону x = x (t ), y = y (t ) и z = z (t ). Определить скорость, ускорение точки и радиус кривизны траектории при t = t 1 . (x , y и z даны в см, t и t 1 в сек).

Данные и схемы брать из таблицы 31 согласно номеру группы и вашему варианту.

Таблица 31

Задача 32. ЕСТЕСТВЕННЫЙ СПОСОБ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Точка движется по плоской кривой y = y (t )с постоянной скоростью v . Определить ускорение точки, радиус кривизны траектории и косинус угла наклона касательной к траектории с осью ox при заданном значении x .

Данные и схемы брать из таблицы 32 согласно номеру группы и вашему варианту.

Таблица 32

Задача 33. ДВИЖЕНИЕ ТОЧКИ В ПОЛЯРНЫХ КООРДИНАТАХ

Задан закон движения точки в полярных координатах: ρ = ρ (t ) (в метрах), φ = φ (t ). В указанный момент времени найти скорость и ускорение точки в полярных, декартовых и естественных координатах.

Данные и схемы брать из таблицы 33 согласно номеру группы и вашему варианту.

Таблица 33

ПЛОСКОЕ ДВИЖЕНИЕ

Задача 34 . СКОРОСТИ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА

Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом, который вращается против часовой стрелки с постоянной угловой скоростью. Найти скорости точек механизма (в см /с) и угловые скорости его звеньев (в рад/с). Размеры даны в см .

Данные и схемы брать из таблицы 34 согласно номеру группы и вашему варианту.

Таблица 34

Задача 35. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (4 ЗВЕНА)

Найти скорости и ускорения шарниров плоского механизма.

Данные и схемы брать из таблицы 35 согласно номеру группы и вашему варианту.

Таблица 35

Задача 36. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (6 ЗВЕНЬЕВ)

Найти скорости точек A , B , C , D , F , G и ускорения указанных точек.

Данные и схемы брать из таблицы 36 согласно номеру группы и вашему варианту.

Таблица 3 6

Задача 37. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из его звеньев. Длины звеньев даны в сантиметрах. Найти угловые скорости звеньев механизма.

Данные и схемы брать из таблицы 37 согласно номеру группы и вашему варианту.

Таблица 37

Задача 38. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск катится по горизонтальной поверхности без проскальзывания. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 38 согласно номеру группы и вашему варианту.

Таблица 38

Задача 39. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДИСКОМ (СЛОЖНАЯ ГЕОМЕТРИЯ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм изображен в произвольном положении, определяемом некоторым углом φ . Задана угловая скорость одного из звеньев или скорость центра диска. Длины звеньев даны в сантиметрах, радиус диска равен 5 см. Заданы координаты шарнира С и ордината оси диска в осях с началом в шарнире О . Диск катится без проскальзывания. Найти угловые скорости всех звеньев механизма и скорость центра диска (если она не задана) при φ = φ 0 .

Данные и схемы брать из таблицы 39 согласно номеру группы и вашему варианту.

Таблица 39

Задача 40. УГЛОВЫЕ УСКОРЕНИЯ ЗВЕНЬЕВ ТРЕХЗВЕННОГО МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана постоянная угловая скорость звена ОА . Длины звеньев даны в сантиметрах. Звенья, направления которых не указано, принимать вертикальными или горизонтальными. Ползун B движется горизонтально, ползун С – вертикально. Найти угловые ускорения звеньев механизма.

Данные и схемы брать из таблицы 40 согласно номеру группы и вашему варианту.

Таблица 40

Задача 41. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма заданы угловые скорости двух его звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать вертикальными или горизонтальными. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 41 согласно номеру группы и вашему варианту.

Таблица 41

Задача 42. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ СКОРОСТЕЙ

Подобрать длины звеньев (в см) шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно. Расстояния даны в см, угловые скорости - в рад/с .

Данные и схемы брать из таблицы 42 согласно номеру группы и вашему варианту.

Таблица 42

Задача 43. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ УСКОРЕНИЙ

Многозвенный механизм приводится в движение кривошипом ОА или ВС , вращающимся с известной угловой скоростью и известным угловым ускорением. Найти угловые скорости и угловые ускорения звеньев механизма. Длины звеньев даны в см, угловые скорости в рад/с, угловые ускорения – в рад/с 2 . Стержни, положение которых не определено углом, вертикальны или горизонтальны.

Данные и схемы брать из таблицы 43 согласно номеру группы и вашему варианту.

Таблица 43

СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ

Задача 44. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 44 согласно номеру группы и вашему варианту.

Таблица 44

Задача 45. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ

Тело равноускоренно вращается из состояния покоя с угловым ускорением ε . Найти скорость и ускорение точки тела с радиусом-вектором r через время t после начала движения.

Данные и схемы брать из таблицы 45 согласно номеру группы и вашему варианту.

Таблица 45

Задача 46. ПЕРЕДАЧА ВРАЩЕНИЙ

Данные и схемы брать из таблицы 46 согласно номеру группы и вашему варианту.

Таблица 46

Задача 47. СФЕРИЧЕСКОЕ ДВИЖЕНИЕ

Твердое тело совершает сферическое движение, заданном углами Эйлера. Найти скорость и ускорение точки, положение которой дано относительно подвижных осей координат.

Данные и схемы брать из таблицы 47 согласно номеру группы и вашему варианту.

Таблица 47

Задача 48. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Геометрическая фигура вращается вокруг оси, перпендикулярной ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону σ (t ). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны функция σ (t ), закон вращения фигуры φ e (t ω e ), время t 1 и размеры фигуры. ВМ или АМ – длина отрезка прямой или дуги окружности.

Данные и схемы брать из таблицы 48 согласно номеру группы и вашему варианту.

Таблица 48

Задача 49. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ

Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону AM (t ) или BM (t ) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны закон вращения фигуры φ e (t ) (или постоянная угловая скорость ω e ), время t 1 и размеры фигуры. Углы даны в рад, размеры – в см. Длина ВМ или АМ – длина отрезка прямой или дуги окружности, АВ – длина отрезка прямой.

Данные и схемы брать из таблицы 49 согласно номеру группы и вашему варианту.

Таблица 49

Задача 50. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. ЧЕТЫРЕХЗВЕННИК

Плоский шарнирно-стержневой механизм приводится в движение кривошипом ОА , который вращается против часовой стрелки с постоянной угловой скоростью ω . Вдоль стержня А движется точка М по закону AM = σ (t ) или BM = σ (t ). Положение механизма при t = t 1 указано на рисунке. Все размеры даны в см. Стержни, положение которых не задано углом, горизонтальны или вертикальны. Найти абсолютную скорость и абсолютное ускорение точки М в этот момент.

Данные и схемы брать из таблицы 50 согласно номеру группы и вашему варианту.

Таблица 50

Задача 51. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. МЕХАНИЗМ С МУФТОЙ

Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или вращающейся на неподвижном шарнире. Кривошип ОА вращается против часовой стрелки с постоянной угловой скоростью ω OA . Горизонтальные и вертикальные размеры на рисунках даны для неподвижных шарниров и для линий движения ползунов (в см ). Найти скорость муфты D (или E ) относительно направляющего стержня (в см /с).

Данные и схемы брать из таблицы 51 согласно номеру группы и вашему варианту.

Таблица 51

Задача 52. ЗАДАЧИ ПО КИНЕМАТИКЕ ПОВЫШЕННОЙ СЛОЖНОСТИ

Данные и схемы брать из таблицы 52 согласно вашему варианту.

Таблица 52

ДИНАМИКА

Задача 53. ДИНАМИКА ТОЧКИ

Данные и схемы брать из таблицы 53 согласно вашему варианту.

Таблица 53

Задача 54. ДИНАМИКА ТОЧКИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 54 согласно вашему варианту.

Таблица 5 4

Задача 55. ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ

На прямолинейном участке пути шайба разгоняется в течение времени t = t 1 переменной силой F , направленной под углом γ к перемещению. На криволинейном участке оси, изогнутой по дуге окружности радиуса r (геометрический центр в точке О ), действует постоянная сила сопротивления F fr . Участки оси сопрягаются в точке В без излома. Вся траектория находится в вертикальной плоскости. Сила F дана в Н. В зависимости от варианта найти расстояние b , скорость v A или силу F fr .

Данные и схемы брать из таблицы 55 согласно номеру группы и вашему варианту.

Таблица 5 5

Задача 56. ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме D , находящейся на горизонтальной плоскости. Трение между призмой и плоскостью отсутствует. Груз А получает перемещение S =1 м относительно призмы вдоль ее поверхности влево или (в тех вариантах, где он висит) по вертикали вниз. Куда и на какое расстояние переместится призма?

Данные и схемы брать из таблицы 56 согласно номеру группы и вашему варианту.

Таблица 5 6

Задача 57 . ДИНАМИЧЕСКИЕ РЕАКЦИИ ВАЛА

На оси, вращающейся в подшипниках под действием момента, закреплен ротор, состоящий из цилиндра и жесткого невесомого стержня с точечной массой на конце. Ось цилиндра составляет малый угол с осью вращения. Найти динамические составляющие реакций подшипников.

Данные и схемы брать из таблицы 57 согласно номеру группы и вашему варианту.

Таблица 57

Задача 58. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ. ПРИВЕДЕННЫЕ МАССЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система, состоящая из пяти тел A , B , C , D , E , движется под действием внешних сил. Заданы радиусы цилиндров и блоков. Радиусы инерции даны для блоков, цилиндры считать однородными. Горизонтальный стержень, находящийся в зацеплении с блоками, считать невесомым. Массы даны в килограммах, радиусы - в сантиметрах. Вычислить приведенную массу системы μ в формуле T = μ , где v A - скорость груза A .

Данные и схемы брать из таблицы 58 согласно номеру группы и вашему варианту.

Таблица 5 8

Задача 59. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (1)

Механическая система с одной степенью свободы состоит из тел совершающих плоское движение. Под действием сил тяжести система из состояния покоя приходит в движение. Какую скорость приобретет груз А , переместившись (вверх или вниз) на S =1 м? Качение цилиндра (или блока) происходит без проскальзывания с коэффициентом трения качения δ . Коэффициент трения скольжения f . Радиусы инерции i C , i D . Внешние радиусы R C , R D , внутренние r C , r D .

Данные и схемы брать из таблицы 59 согласно номеру группы и вашему варианту.

Таблица 5 9

Задача 60. ДИНАМИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА С НЕИЗВЕСТНЫМ ПАРАМЕТРОМ. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (2)

Механическая система, состоящая из четырех тел A , B , C , D и пружины, под действием внешних сил приходит в движение из состояния покоя. Один из параметров системы (жесткость пружины с или момент трения M fr , B на оси B ) неизвестен. Учитывается трение скольжения с коэффициентом f и трение качения с коэффициентом δ fr . Заданы радиусы цилиндра и блока. Радиусы инерции даны для блоков, цилиндры считать однородными.

Данные и схемы брать из таблицы 60 согласно номеру группы и вашему варианту.

Таблица 60

Задача 61. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (3)

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Между грузомА и призмой имеется трение (кроме тех вариантов, где груз висит), качение цилиндра (блока) происходит без проскальзывания. Коэффициент трения скольжения груза о плоскость f , коэффициент трения качения цилиндра (блока) δ . Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 61 согласно номеру группы и вашему варианту.

Таблица 61

Задача 62. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ БЕЗ УЧЕТА ТРЕНИЯ

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 62 согласно номеру группы и вашему варианту.

Таблица 62

АНАЛИТИЧЕСКАЯ МЕХАНИКА

Задача 63. ВЫЧИСЛЕНИЕ ЧИСЛА СТЕПЕНЕЙ СВОБОДЫ МЕХАНИЧЕСКОЙ СИСТЕМЫ

Определить число степеней свободы системы по формуле W =3Д-2Ш-С.

Данные и схемы брать из таблицы 63 согласно номеру группы и вашему варианту.

Таблица 63

Задача 64. ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ ДЛЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

Плоский шарнирно-стержневой механизм с одной степенью свободы движется в вертикальной плоскости под действием сил тяжести и момента М , который вращает звено ОА с постоянной угловой скоростью ω OA . В узлах А , В, С и в центре Е звена АВ расположены материальные точки. На осях неподвижных шарниров О и D имеется трение с постоянным моментом M fr . Сила сопротивления движению ползуна – F fr , остальные связи идеальные. Пренебрегая массами стержней, определить величину момента М .

Данные и схемы брать из таблицы 64 согласно номеру группы и вашему варианту.

Таблица 64

Задача 65. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ (ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР)

Система с идеальными стационарными связями, состоящая из четырех шарнирно соединенных однородных стержней, расположенных в вертикальной плоскости, находится в равновесии под действием силы F и момента М . Учитывая погонный вес стержней ρ , определить реакции опор (в Н).

Данные и схемы брать из таблицы 65 согласно номеру группы и вашему варианту.

Таблица 65

Задача 66. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ. МЕХАНИЗМ С ДИСКОМ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм с идеальными стационарными связями находится в равновесии под действием силы F и моментов M 1 и M 2 . Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск касается горизонтальной поверхности без проскальзывания. Найти величину F .

Данные и схемы брать из таблицы 66 согласно номеру группы и вашему варианту.

Таблица 66

Задача 67 . ДИНАМИКА КУЛИСЫ

Получить уравнение движения кулисного механизма. Найти значение углового ускорения при t =0.

Данные и схемы брать из таблицы 67 согласно номеру группы и вашему варианту.

Таблица 67

Задача 68. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система из двух однородных цилиндров 1 и 2 и бруска 3 с идеальными стационарными связями имеет две степени свободы и движется под действием силы F . Трением пренебречь. Массы даны в килограммах, сила – в ньютонах. Найти ускорение бруска, скользящего по гладкой поверхности.

Данные и схемы брать из таблицы 68 согласно номеру группы и вашему варианту.

Таблица 68

Задача 69. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (1)

Механическая система с идеальными стационарными связями имеет две степени свободы и движется под действием сил тяжести. Три элемента механизма наделены массами, кратными некоторой массе m . Трением пренебречь. Подвижные и неподвижные блоки считать однородными цилиндрами. Найти ускорение груза А или центра цилиндра А .

Данные и схемы брать из таблицы 69 согласно номеру группы и вашему варианту.

Таблица 69

Задача 70. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (2)

Механическая система с идеальными стационарными связями имеет две степени свободы и состоит из пяти тел. Блок (или однородный цилиндр) D катится без проскальзывания по неподвижной горизонтальной плоскости или по подвижной тележке массой . Массой колес тележки пренебречь. Грузы А , В и ось однородного цилиндра Е перемещаются вертикально под действием сил тяжести. Радиусы инерции

Задача 71. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА ДЛЯ КОНСЕРВАТИВНЫХ СИСТЕМ

Консервативная механическая система с идеальными стационарными связями имеет две степени свободы и представляет собой механизм, состоящий из груза А , блока В (больший радиус R , меньший r , радиус инерции i B ) и цилиндра С радиусом R C . Механизм установлен на призме D , закрепленной на осях двух однородных цилиндров Е . К призме приложена постоянная по величине горизонтальная сила F . Качение цилиндра С (блока В ) и цилиндров Е происходит без проскальзывания. Трением качения и скольжения пренебречь. Используя уравнение Лагранжа 2-го рода для консервативных систем, найти ускорение призмы.

Данные и схемы брать из таблицы 71 согласно номеру группы и вашему варианту.

Таблица 71

Задача 72. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 72 согласно номеру группы и вашему варианту.

.

Данные и схемы брать из таблицы 73 согласно номеру группы и вашему варианту.

Таблица 73

Задача 74. ФУНКЦИЯ ГАМИЛЬТОНА

Найти функцию Гамильтона механической системы с двумя степенями свободы по известной функции Лагранжа.

Данные и схемы брать из таблицы 74 согласно номеру группы и вашему варианту.

Таблица 74

Задача 75. ФУНКЦИЯ ГАМИЛЬТОНА

Получить уравнения движения в форме Гамильтона для консервативной системы с одной степенью свободы.

Данные и схемы брать из таблицы 75 согласно номеру группы и вашему варианту.

Таблица 75

ТЕОРИЯ КОЛЕБАНИЙ

Задача 76. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (1)

Найти собственную частоту системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 76 согласно номеру группы и вашему варианту.

Таблица 76

Задача 77. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (2). ЧАСТОТНЫЙ АНАЛИЗ

Найти жесткость одной из пружин, при которой разность собственных частот системы будет минимальна. В ответах даны инерционные коэффициенты и две собственные частоты системы. Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 77 согласно номеру группы и вашему варианту.

Таблица 77

Задача 78. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (3). ПРЕДЕЛЬНЫЕ ЧАСТОТЫ

В ответах даны инерционные коэффициенты, две собственные частоты ω k и три предельные частоты ω limk . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 78 согласно номеру группы и вашему варианту.

Таблица 78

Задача 79. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (4). ЦИЛИНДРЫ

Механическая система с двумя степенями свободы состоит из двух однородных цилиндров и нескольких линейно однородных пружин с одинаковой жесткость с . Цилиндры катаются без проскальзывания и сопротивления по горизонтальной поверхности, пружины в положении равновесия не имеют предварительного напряжения. Массой пружин пренебречь. Определить частоты собственных колебаний системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 79 согласно номеру группы и вашему варианту.

Таблица 79

Задача 80. КОЛЕБАНИЯ УЗЛА ФЕРМЫ

В одном из шарниров плоской фермы (на рисунке выделен ) находится точка с массой m . Стержни фермы упругие. Жесткость стержней

РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

ОФОРМЛЕНИЕ ТЕКСТА

Расчетно-графическая работа оформляется в соответствии с ЕСКД, введенной с 01.07.1996 г., и выполняется на стандартной белой бумаге формата А4 на одной стороне одним из способов:

    рукописным – чертежным шрифтом по ГОСТ 2.304 с высотой букв и цифр не менее 2,5 мм. Цифры и буквы необходимо писать четко синей либо черной шариковой (гелевой) ручкой;

    с применением печатающих и графических устройств вывода ЭВМ, согласно требованиям ГОСТ 2.004.

Каждый лист РГР оформляется рамкой (слева – 20 мм, с трех остальных сторон – 5 мм), выполненной одним из выше рекомендованных способов.

Текст РГР необходимо располагать, соблюдая следующие требования:

    расстояние от рамки формы до границ текста в начале и в конце строк должно быть не менее 3 мм;

    расстояние от верхней или нижней строки текста до верхней или нижней рамки должно быть не менее 10 мм;

    абзацы в тексте начинают отступом, равным 5 ударам пишущей машинки (15–17 мм);

    расстояние между заголовками и текстом при машинном способе оформления текстового материала должно быть равно 3 или 4 интервалам, а при оформлении рукописным способом – 15 мм;

    расстояние между заголовками раздела и подраздела (при отсутствии текста) должно быть такое же, как и между строками текста – 2 интервала, а при оформлении рукописным способом – 8 мм;

    расстояние между текстом и последующим заголовком должно равняться 3–5 интервалам (15–30 мм).

Текст пояснительной записки на ЭВМ должен выполняться шрифтом Times New Roman размером 14 pt.

Индексы, присутствующие в обозначении символов, должны выполняться шрифтом, равным 10 pt.

Опечатки, описки и графические неточности, обнаруженные в процессе выполнения документа, допускается исправлять подчисткой или закрашиванием белой краской (корректором) и нанесением на том же месте исправленного текста синими или черными чернилами, рукописным способом. Их число может быть не более 5 % от количества информации, находящейся на листе.

РГР должна включать:

    титульный лист;

    задание на выполнение работы (составляется в соответствии с шифром);

    разделы, представляющие собой задачи в соответствии с заданием;

    список используемых литературных источников;

Титульный лист является первым листом документа – пояснительной записки. Он выполняется на листах формата А4 по ГОСТ 2.301, форма которого приведена в приложении А.

Задание на РГР составляется на листе формата А4 в соответствии с полученным шифром.

При оформлении РГР нельзя забывать, что титульный лист, задание и содержание входят в общее число ее листов. На титульном листе и на листах задания номера листов не проставляются. Нумерацию начинают проставлять с листа содержания. Конечное число листов РГР проставляют в графе 5 основной надписи, расположенной на первом листе содержания, выполненной по ГОСТ 2.104-68, при этом нумерация страниц записки должна быть сквозной (нумерация титульного листа и задания подразумевается).

В список литературы включаются все использованные источники в алфавитном порядке. В соответствии с ГОСТ 7.1-84 список содержит: номер источника (арабская цифра), полное его наименование и выходные данные.

Пояснительная записка должна быть сброшюрована.

Текст работы пишут от третьего лица в изъявительном наклонении либо неопределенной форме, например «цепи рассчитывают». В пояснительной записке РГР не допускается применять:

– сокращения слов, кроме установленных правилами орфографии, соответствующими государственными стандартами, а также в данном документе;

– сокращение обозначений единиц СИ, если они употребляются без цифр, за исключением единиц СИ в строках и столбцах таблиц, и в расшифровках буквенных обозначений, входящих в формулы и рисунки.

ОФОРМЛЕНИЕ РАСЧЕТНЫХ МАТЕРИАЛОВ

При расчете электрической схемы в формулах в качестве символов следует применять обозначения, установленные соответствующими государственными стандартами и Международной системой единиц (СИ), в том числе и размерности величин. При оформлении РГР необходимо подставлять в формулы числовые значения величин. Окончательный результат приводится с указанием размерности без промежуточных вычислений.

Расчеты, следующие один за другим и не разделенные текстом, разделяют точкой с запятой. Например:

Числовые значения величин в расчетах следует указывать со степенью точности до тысячных.

ОФОРМЛЕНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Текстовая часть расчетно-графической работы дополняется достаточными для пояснения схемами. Схемы располагаются вначале каждого нового расчета электрической схемы. Построение схем выполняется при помощи чертежных принадлежностей, согласно требованиям ГОСТ.

Схемы следует нумеровать арабскими цифрами сквозной нумерацией. Например, Рисунок 1 – Расчетная схема электрической цепи.

Схемы в тексте размещают таким образом, чтобы их можно было рассматривать, не поворачивая лист или поворачивая его по часовой стрелке.

Диаграммы, строятся на миллиметровой бумаге с использованием чертежных принадлежностей.

Значения переменных величин на диаграммах показываются в виде шкал в принятом для построения произвольном масштабе и отличаются делительными штрихами на осях или координатной сетке. При этом размерность указывается между последним и предпоследним значениями величины.

Масштабы по координатным осям графиков рационально выбирать так, чтобы изображаемые на них кривые достаточно заполняли поле графика.

Надписи и обозначения на схемах, диаграммах, титульных листах расчетно-графических работ выполняются чертежным шрифтом по ГОСТ 2.304-81.

Формы основных надписей разработаны на основе ГОСТ 2.104-68 и ГОСТ 21.103-78. Убраны только те графы, которые никогда не выполняются. Несколько изменены надписи отдельных граф.

Форма основной надписи, представленная на рисунке 1 дана форма надписи для первого листа пояснительной записки, а на рисунке 2 – для второго и последующих листов записки.

В графах основных надписей указывают:

    в графе 1 – наименование изделия либо документа. В основной надписи первого листа в графе 1 следует писать название работы. Например: РГР по дисциплине «Электротехника и основы электроники» .

    в графе 2 – обозначение документа. В основной надписи первого листа в графе 2 следует писать «МВ - 21 111 РГР № 1 ». В данном обозначении заложена следующая информация: МВ - 21 – учебная группа; 111 –шифр задания студента; РГР – вид выполненной работы (РГР – расчетно-графическая работа); № 1 – номер расчетно-графической работы;

    в графе 3 – условное обозначение стадии проектирования: У – учебные работы (расчетно-графические).

    в графе 4 – порядковый номер листа;

    в графе 5 – общее количество листов (графу заполняют только на первом листе);

    в графе 6 – сокращенное наименование организации (университета и кафедры);

    в строках графы 7 указывают: выполнил, проверил;

    в строках графы 8 – фамилии лиц, подписавших документ;

    в строках графы 9 – подписи лиц, фамилии которых указаны в графе 8;

Рисунок 1 – Образец рамки на 40 мм.

Рисунок 2 – Образец рамки на 15 мм.

Рисунок 3 – Образец оформления титульного листа

Министерство образования Республики Беларусь

Учреждение образования

""БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ТРАНСПОРТА""

Кафедра «Электротехника»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине

«Электротехника и электроснабжение»

Выполнил Проверила

студент группы СП-21 ассистент

Иванов И.И. Гатальская И. А.