Определение модификационная изменчивость. Модификационная изменчивость и теории эволюции. Условная классификация модификационной изменчивости

Типы изменчивости. Модификационная изменчивость: примеры и значение

Изменчивостью называют способность живых организмов приобретать новые признаки и свойства.

Свойство изменчивости противоположно наследственности, но при этом неразрывно связано с ней. Различают наследственную, или генотипическую, и ненаследственную, или модификационную изменчивость.

Формирование организма определяется не только генами, но и разнообразными воздействиями окружающей среды, в которой развивается организм.

Исследователи давно заметили, что многие различия между организмами находятся в зависимости от условий окружающей среды. Даже обладая одинаковым набором генов, две особи могут оказаться очень несхожими по фенотипу, если они во время своего развития по-разному питались, находились при разной температуре или влажности, болели разными болезнями. Модификационную изменчивость можно наблюдать на генетически однородном материале. Многие виды растений размножаются в основном вегетативно. Так, все потомки одного клубня картофеля будут идентичны по генотипу. Но будут ли все растения, выросшие на поле из одного клубня одинаковы? Нет, многие растения будут различаться между собой по высоте, кустистости, количеству и форме клубней. Причина такой изменчивости – в различном влиянии среды, которое испытывает каждый саженец картофеля.

Разнообразие фенотипов, возникающих у организмов под влиянием условий окружающей среды, называют модификационной изменчивостью.

Модификационные изменения (модификации) не передаются по наследству. Последнее положение остро обсуждалось на протяжении истории. Важное обобщение о ненаследуемости модификаций сделал немецкий ученый Август Вейсман.

Наследственный характер модификационной изменчивости наиболее остро обсуждался на протяжении истории человечества.

В природе можно встретить множество примеров модификационной изменчивости. Известно, что подводные и надводные листья многих водных растений отличаются по форме. Строение листьев у стрелолиста зависит от среды, в которой они развиваются. Подводные листья этого растения обладают лентовидной формой, плавающие – почковидной, а надводные - стреловидной. Таким образом, у стрелолиста наследственно закреплена не определенная форма листа, а способность в некоторых пределах изменять эту форму в зависимости от условий существования. Все особи, имеющие одинаковый генотип, реагируют на внешние условия одинаково, то есть у всех стрелолистов в воде будут лентовидные листья, а над водой – стреловидные. Это обстоятельство позволило назвать модификационную изменчивость групповой, или определенной.


Важный вывод

Основные свойства модификационной изменчивости:


  • Ненаследуемость.

  1. Групповой характер изменений.
В большинстве случаев представляет собой полезную, приспособительную реакцию организма на тот или иной внешний фактор.

Пропорциональность изменений действию определенного фактора среды.

Норма реакции. Вариационный ряд

Различные признаки организма в разной степени изменяются под влиянием внешних условий. Одни из них очень пластичны и изменчивы, другие почти не подвержены воздействию условий окружающей среды, а третьи носят промежуточный характер. Так, молочная продуктивность у крупного рогатого скота в значительной степени зависит от кормления и содержания, окраска (масть) практически не меняется при любых условиях, а такой признак, как процент жира в молоке занимает промежуточное положение. Модификационная изменчивость ограничена нормой реакции. Норма реакции – это пределы модификационной изменчивости признака. Понятие нормы реакции ввел В. Иоганнсен.

На примере с молочным скотом можно отметить, что норма реакции молочности местных пород скота колеблется от 1000 до 2500 кг, а у ценных пород она значительно выше – 5000-7000 кг молока. В таких случаях, говорят, что признак молочности у коров обладает широкой нормой реакции.

Организм наследует не признак, а способность развития признака, степень выраженности которого зависит от взаимодействия генотипа и условий окружающей среды. Иными словами, наследуется норма реакции.

У человека можно назвать признаки, которые имеют узкую норму реакции (группа крови, цвет волос), и признаки, которые характеризуются широкой нормой реакции (рост, масса) Знание нормы реакции имеет большое значение в практике сельского хозяйства. Повышение продуктивности растений и животных возможно не только путем внедрения новых пород и сортов, но и за счет максимального использования возможностей каждой породы или сорта. Знание закономерностей модификационной изменчивости необходимо и в медицине, где основные усилия в данное время направлены не на изменение генетических потенций человека, а на поддержание и развитие организма человека в пределах нормы реакции.


Важный вывод

Для эволюции модификационная изменчивость не имеет существенного значения, потому что она не наследуется

Все признаки организма можно разделить на две группы: качественные и количественные .

Вариационный ряд окраски божьих коровок.

Масть животных, окраска цветов и плодов, цвет глаз, половые различия – качественные признаки. Качественными называют признаки, устанавливаемые описательным путем. При классификации качественных признаков не возникает затруднений, фенотипические классы, появившиеся при скрещивании, легко различимы: красный или черный окрас у лис, морщинистые или гладкие семена гороха. Примерами количественных признаков могут послужить: яйценоскость у кур, молочность коров, рост и масса человека. Многие признаки, важные для сельского хозяйства являются количественными. Количественные признаки определяют путем измерения и подсчета. Среда оказывает влияние на формирование как качественных, так и количественных признаков.

Наиболее ярко влияние среды выражается на проявлении количественных признаков. У крупного рогатого скота количество и качество молока во многом зависит от кормления и ухода. Но это не означает, что удой зависит только от кормления. Известно, что некоторые породы скота дают в естественных условиях в год 800-1200 кг молока. Улучшение кормления и содержания этих животных может резко повысить их продуктивность до 2500 кг молока. Ухудшение условий может привести к тому, что ценная порода, дающая 3500-4000 кг в год, снизит продуктивность до 2500 кг и даже ниже. Однако поднять продуктивность скота до 4000-5000 кг, улучшая только условия содержания, невозможно.

Длина и ширина листьев, взятых с одного дерева, варьируют в широких пределах. Это происходит из-за разницы в условиях развития листьев на ветвях дерева. Если некоторое количество листьев расположить в порядке нарастания или убывания признака, как это показано на рисунке,то образуется ряд изменчивости данного признака – вариационный ряд, состоящий из вариант. Варианта – это единичное выражение развития признака.

При подсчете числа отдельных вариант в вариационном ряду, оказывается, что частота встречаемости их неодинакова. Среднее значение признака встречается чаще всего, а значения, значительно отличающиеся от среднего, встречаются очень редко.

Вариационный ряд Вариационная кривая выражения признака

Графическое выражение изменчивости признака называют вариационной кривой. Вариационные кривые самых разнообразных признаков у растений, животных и человека имеют сходную форму.

Для примера рассмотрим изменчивость числа колосков в колосе пшеницы. Возьмем генетически однородный материал. Подсчитав число колосков в разных колосьях, выясним, что это число варьирует от 14 до 20. Взяв случайно, не выбирая, подряд 100 колосьев, определим частоту встречаемости разных вариант. Мы увидим, что чаще всего встречаются колосья со средним числом колосков (16-18). Вот результат одного из таких подсчетов:



Верхний ряд цифр – это и есть варианты. Нижний ряд – частота встречаемости каждой варианты.
Типы наследственной изменчивости

Наследственная изменчивость, в отличие от модификационной, затрагивает генотип и передается по наследству. Наследственная, или генотипическая, изменчивость - основа разнообразия живых организмов и главное условие их способности к эволюционному развитию.

Наследственная, или генотипическая, изменчивость - это изменчивость, связанная с изменением самого генетического материала.

Основной вклад в наследственную изменчивость вносят изменения ядерного генома. Существует также изменчивость цитоплазматических органелл - митохондрий и хлоропластов. Генотипическая изменчивость слагается из мутационной и комбинативной изменчивости.

Ч. Дарвин называл наследственную изменчивость неопределенной, индивидуальной изменчивостью, подчеркивая тем самым её случайный, ненаправленный характер и относительную редкость.

Мутация коротконогости ног Мутация отсутствия оперения

Мутация «ленивая» кукуруза

Брахидактилия у человека

Комбинативная изменчивость

Комбинативная изменчивость - важнейший источник бесконечно большого наследственного разнообразия, которое наблюдается у живых организмов. В основе комбинативной изменчивости лежит половое размножение живых организмов, из-за которого возникает огромное разнообразие генотипов.

Комбинативная изменчивость - это проявление новых сочетаний признаков вследствие перекомбинации генов.

Генотип потомков, как известно, представляет собой сочетание генов, полученных от родителей. Число генов у каждого организма исчисляется тысячами, поэтому комбинирование генов при половом размножении приводит к формированию нового уникального генотипа и фенотипа. У любого ребенка можно обнаружить признаки, типичные для его матери и отца. Тем не менее даже среди близких родственников не найти двух абсолютно одинаковых людей. Исключение составляют однояйцевые близнецы, степень идентичности которых очень велика. Причины этого огромного разнообразия лежат в явлении комбинативной изменчивости.

Источники комбинативной изменчивости

1. Независимое расхождение хромосом - основа третьего закона Менделя. Чему же равно число гамет различных типов, образуемых гибридом F 1 ? У моногибрида образуются два сорта гамет, или 2 1 , у дигибрида AaBb - четыре, или 2 2 , у тригибрида - 2 3 , а у полигибрида - 2 n . Цифра 2 указывает на наличие двух аллелей в данном локусе, а n - число локусов, по которым осуществляется расщепление.

2. Большой вклад в комбинативную изменчивость вносит кроссинговер , в результате которого появляются хромосомы, несущие отличные от родительских наборы аллелей. Процесс формирования кроссинговерных хромосом называют рекомбинацией. Она резко расширяет разнообразие гамет. Рекомбинантные, или кроссоверные, хромосомы, попав в зиготу, приводят к появлению комбинаций признаков, нетипичных для родителей.

3. Случайное сочетание гамет при оплодотворении. В моногибридном скрещивании возможны четыре комбинации: АА, Аа, Аа и аа , т.е. 4 1 . При дигибридном скрещивании число комбинаций возрастает до 4 2 =16, при тригибридном 4 3 =64, а в полигибридном скрещивании 4 n .
Мутационная изменчивость

Мутации - это редкие, случайно возникшие, стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, их части или отдельные гены.

Мутации возникают вследствие изменения структуры гена или хромосом и служат единственным источником генетического разнообразия внутри вида. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Понятие «мутация» было введено в биологию голландским ученым Г. Де Фризом.

Хотя механизмы возникновения генеративных и соматических мутаций могут быть подобны, их вклад в изменение признаков и, следовательно, эволюционное значение совершенно различны.

Соматические мутации проявляются мозаично, т.е. часть клеток данной ткани или органа отличается от остальных по каким-либо свойствам. Чем раньше в ходе индивидуального развития возникает соматическая мутация, тем большим оказывается участок тела, несущий мутантный признак (измененную окраску, форму или другое свойство). У растений вегетативный орган с вновь возникшей соматической мутацией можно отделить и размножить. В ряде случаев новые сорта плодовых и ягодных растений были получены на основе вегетативного размножения мутантных органов.

Геномные мутации

Геномными называют мутации, приводящие к изменению числа хромосом.
Наиболее распространенным типом геномных мутаций является полиплоидия - кратное изменение числа хромосом. У полиплоидных организмов гаплоидный (п) набор хромосом в клетках повторяется не 2 раза, как у диплоидов, а значительно больше - в 3 - 4 и более.

Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, нерасхождение гомологичных хромосом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате такого процесса могут образоваться диплоидные (2п) гаметы.

Полиплоидные виды растений довольно часто обнаруживаются в природе, у животных полиплоидия редка. Некоторые полиплоидные растения характеризуются более мощным ростом, крупными размерами и другими свойствами, что делает их ценными для генетико-селекционных работ. Растения, имеющие нечетный набор геномов - три (триплоиды), пять (пентаплоиды), характеризуются резким снижением плодовитости. Главная причина этого явления связана с нарушениями в нормальном протекании мейоза: при конъюгации гомологичных хромосом в профазе мейоза постоянно возникают «лишние» хромосомы, а, в конечном счете - гаметы с недостаточным или избыточным числом хромосом.

Среди полиплоидов различают формы, у которых несколько раз повторен один и тот же набор хромосом - автополиплоиды , а также полиплоиды, возникшие при межвидовой гибридизации и содержащие несколько разных наборов хромосом - аллополиплоиды . Примером аллополиплоида может служить мягкая пшеница (42 хромосомы) - основная продовольственная зерновая культура, которая является естественно возникшим гексаплоидом, т.е. содержит три пары геномов, каждый по семь хромосом.

Явление анеуплоидии связаны с нерасхождением одной или нескольких пар хромосом в мейозе. В результате могут возникнуть гаметы с аномальным числом хромосом, которые после оплодотворения дадут моносомию (2n-1), трисомию (2n+1), тетрасомию (2n+2) и т.д. У животных и человека такие мутации приводят к аномалиям развития, иногда к гибели организма. Трисомия у человека описана по большинству хромосом, однако только при трисомии по 21, 22 и 23 паре организмы жизнеспособны. Пример трисомии по 21 хромосоме - синдром Дауна.
Хромосомные мутации

Хромосомные мутации, или хромосомные аберрации, - это изменение структуры и размеров хромосом. Они затрагивают несколько генов. Многие из хромосомных мутаций доступны изучению под микроскопом. Пути изменения структуры хромосом разнообразны. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т.д.

Рассмотрим основные типы хромосомных мутаций:


  1. делеции - потеря участка хромомосомы в результате отрыва её части, при этом сохраняется центромера, но теряется часть генов.

  2. инверсии - поворот участка хромосомы на 180, при этом не меняется последовательность сцепления генов.

  3. транслокации - межхромосомные перестройки, связанные с переносом части хромосомы на другую негомологичную хромосому, результатом является изменение группы сцепления генов.

  4. дупликации - удвоение генов в определенном участке хромосомы, при этом один участок хромосомы может повторяться несколько раз.
Хромосомные мутации - результат отклонений в нормальном течении процессов клеточного деления. Основная причина возникновения различных хромосомных мутаций - разрывы хромосом и хроматид и воссоединения в новых сочетаниях.

Хромосомные мутации приводят к изменению функционирования генов. Так же как полиплоидия, они играют важную роль в эволюционных преобразованиях видов.


Генные мутации

Генные, или точковые, мутации - наиболее часто встречающийся класс мутационных изменений. Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Они приводят к тому, что мутантный ген перестает работать, и тогда либо не образуются соответствующие РНК и белок, либо синтезируется белок с измененными свойствами, что проявляется в изменении каких-либо признаков организма. Вследствие генных мутаций образуются новые аллели. Это имеет важное эволюционное значение.

Поскольку мутации - редкие события, обычно на 10 - 100 тыс. экземпляров какого-либо гена, например гена гемоглобина, возникает одна новая мутация. Хотя мутационные события происходят редко, благодаря постоянству естественного мутационного процесса и накапливанию мутаций в генотипах различных организмов содержится значительное количество генных мутаций.

Генные мутации следует рассматривать как результат «ошибок», возникающих в процессе удвоения молекул ДНК. У всех без исключения организмов генные мутации приводят к самым разнообразным изменениям морфологических, физиологических и биохимических признаков.

Результатом генной мутации у человека являются такие заболевания, как серповидно-клеточная анемия, фенилкетонурия, дальтонизм, гемофилия, альбинизм.

Вследствие генных мутаций возникают новые аллели генов, что имеет значение для возникновения нового признака и эволюционного процесса.

Свойства мутаций


  • Мутации возникают случайным образом. В природных условиях каждый отдельно взятый ген мутирует очень редко, и, на первый взгляд, может показаться, что изменения в генах несущественны для особи. Но в действительности у организма имеется несколько тысяч генов. Если учесть, что мутации могут происходить в любом из них, общее число возможных мутаций резко повышается.

  • Способность к мутированию - одно из свойств гена. Каждая отдельная мутация, связанная с изменением структуры ДНК имеет свою причину. Однако в большинстве случаев эти причины выяснить трудно. Известно, что некоторые факторы могут существенно повысить частоту мутаций. Впервые такие свойства были обнаружены у рентгеновских лучей. У облученных в процессе эксперимента растений и животных в 150 раз чаще наблюдались мутации.
Частота возникновения мутаций различна и связана прежде всего с продолжительностью жизненного цикла. Чем короче жизненный цикл, тем выше частота мутаций. Мутации чаще всего рецессивны и скрыты в популяциях. При этом проявляются они только в гомозиготном состоянии, а в гетерозиготном могут сохраняться длительное время, никак себя не проявляя. Поэтому определить наличие мутаций можно только при анализе нескольких поколений. Основы мутационной теории заложил Гуго Мари Де Фриз.
Важный вывод

Свойства мутаций:


  1. мутации возникают внезапно, скачкообразно;

  2. мутации - редкие события;

  3. мутации могут устойчиво передаваться из поколения в поколение;

  4. мутации возникают ненаправленно (спонтанно), и в отличие от модификаций не образуют непрерывных рядов изменчивости;

  5. мутации могут быть вредными, полезными и нейтральными.

Цитоплазматическая наследственность

Со времени переоткрытия законов Менделя, генетика не раз сталкивалась с «нарушениями». Тем не менее, анализ всех исключений, служил развитию основной тенденции - ядерной, а затем, хромосомной теории наследственности. Представления о генах вне хромосом также получили фактическое подтверждение и развились в отдельную область генетики - нехромосомное, или цитоплазматическое, наследование.

Отдельно выделяют изменчивость цитоплазматических органелл. Митохондрии и хлоропласты содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования данного типа органелл. Например, пестролистность, то есть мозаичное окрашивание листьев у ряда растений (ночной красавицы, львиного зева), наследуется только по материнской линии и не укладывается в рамки менделеевских закономерностей. В том случае, когда материнское растение сплошь окрашено, независимо от окраски листьев у отцовского растения, в F1 появляются только сплошь окрашенные растения. И наоборот, от неокрашенных материнских растений в F1 появляются только неокрашенные потомки, независимо от характеристик отцовского растения. В тех случаях, когда материнское растение пестролистно, независимо от свойств отцовского растения в F1, появляются растения с неокрашенными, пестрыми и зелеными листьями. Объясняется это тем, что пластиды бывают двух типов - окрашенные и неокрашенные. Пластиды воспроизводятся в клетке автономно и случайно распределяются между дочерними клетками. Поскольку единственный способ проникновения пластид в зиготу - через яйцеклетку, а не через спермий, наблюдается материнское наследование.

Экспериментальное получение мутаций

Частота мутаций сильно возрастает под воздействием ряда факторов окружающей среды, оказывающих мутагенное влияние - мутагенов. Выделяют три группы таких факторов: физические, химические и биологические. Самым эффективным физическим мутагеном являются ионизирующие излучения (рентгеновские лучи, гамма-лучи, ядерные частицы и другие ионизирующие излучения). Ионизирующее излучение может оказать как прямое воздействие на ДНК, так и косвенное, через ионизированные молекулы и атомы других веществ. Частота возникающих мутаций в сильной степени зависит от дозы радиации и прямо пропорциональна ей.

Впервые в 1925 году возможность экспериментального получения мутаций была показана в работах отечественных микробиологов Г.А. Надсона и Г.С. Филиппова, которые отметили, что после воздействия «лучей радия» на низшие грибы повышаются частота и спектр наследственной изменчивости. Американские генетики в 1927 г. Г. Мёллер и Л. Стадлер независимо друг от друга показали эффективность воздействия рентгеновских лучей для получения мутаций у дрозофилы и ячменя.

К физическим мутагенам относят также ультрафиолетовое излучение (УФ), что было установлено советскими генетиками в начале 20-х годов. Однако его мутагенный эффект существенно меньше, чем у ионизирующих излучений.

Еще более слабым эффектом обладает повышенная температура, которая для теплокровных животных и человека почти не имеет существенного значения вследствие постоянства температуры их тела.

Вторую группу факторов представляют химические мутагены. Известно несколько типов химических мутагенов, отличающихся по строению и механизму действия. Химические мутагены вызывают, главным образом, точковые или генные, мутации, в отличие от физических мутагенов, которые сильно повышают вероятность хромосомных мутаций. В начале 30-х годов советские генетики В.В. Сахаров, М.Е. Лобашев, С.М. Гершензон, И.А. Рапопорт открыли химический мутагенез. В 40-х годах появились такие мощные химические мутагены, как этиленимин, открытый И.А. Рапопортом в нашей стране, и азотистый иприт, открытый Ш. Ауэрбах и Дж. Робсоном в Англии.

В последние годы немало стало известно о существовании биологических мутагенов: молекул ДНК и вирусов. Установлено, что целый ряд хорошо изученных мутаций у животных, растений и человека - результат действия вирусов.

Мутагены усиливают интенсивность естественного мутационного процесса в 10 - 100 раз, а наиболее мощные химические супермутагены в тысячи раз.

Для мутагенов характерны следующие свойства:


  • универсальность, т.е. способность вызывать мутации во всех живых организмах

  • отсутствие нижнего порога мутационного действия, т.е. способность вызывать мутации при действии в любых малых дозах
В настоящее время интенсивно ведутся работы по созданию методов направленного воздействия химических и физических факторов на определенные гены. Полученные при экспериментальном воздействии мутации представляют собой ценный материал для селекции микроорганизмов, растений, в ряде случаев и животных, так как по отдельным показателям значительно превосходят исходные формы.

Закон гомологических рядов наследственной изменчивости

Изучение наследственной изменчивости у культурных растений и их предков позволило Н.И. Вавилову сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости». Н.И. Вавилов писал: «Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды, составляющие семейство».

На примере семейства злаковых, Н.И. Вавилов показал, что сходные мутации обнаруживаются у целого ряда видов этого семейства. Так, черная окраска семян встречается у ржи, пшеницы, ячменя, кукурузы и ряда других за исключением овса, проса и пырея, а удлиненная форма зерна - у всех изученных видов.

Закон гомологических рядов отражает общебиологическое явление, характерное для всех представителей живого мира. Карликовость, альбинизм и гигантизм встречаются среди разных отрядов и классов животных. Руководствуясь этим законом, можно предсказать, какие мутантные формы должны возникнуть у близкородственных видов.

Закон гомологических рядов важен для селекционной практики потому, что прогнозирует нахождение неизвестных форм у данного вида, если они уже известны у другого вида. Некоторые наследственные заболевания и уродства, встречающиеся у человека, отмечены и у некоторых животных. Животных с такими заболеваниями используют в качестве моделей для изучения дефектов человека.

Как стало известно после изучения последовательностей ДНК близкородственных видов, степень сходства, или гомологии достигает 90 - 99%. Высокий уровень гомологии соответствующих генов - основа для реализации закономерностей, выявленных
Хромосомы и генетические карты человека

Основные генетические закономерности имеют универсальное значение и характерны для человека как биологического вида. Однако человек как объект генетических исследований имеет большую специфику, которая создает значительные трудности в изучении его наследственности и изменчивости. Можно указать на некоторые из них: невозможность направленных скрещиваний, позднее половое созревание, малочисленность потомства, невозможность обеспечения одинаковых и строго контролируемых условий для развития потомков от разных браков, сравнительно большое число хромосом, невозможность проведения прямых экспериментов. Несмотря на указанные обстоятельства, за последние годы генетика человека достигла значительных успехов.

Стандартный набор хромосом человека

Хромосомы при окрашивании Хромосомы мужчины

В 1956 г. было точно определено, что диплоидное число хромосом в клетках человека равно 46. С тех пор достигнуты большие успехи в изучении кариотипа человека, т. е. стандартного набора хромосом. Исследование строения хромосом, а также развитие в конце 60-х годов метода дифференциального окрашивания хромосом позволило осуществить точную идентификацию каждой пары хромосом. Это означает, что для каждой пары хромосом установлены соотношения размеров плеч хромосом и особенности расположения темно- и светлоокрашенных полос, которые позволяют безошибочно определить кариотип. Каждая хромосома имеет порядковый номер в кариотипе. Согласно классификации все хромосомы располагаются попарно в порядке убывания их величины. Исключение составляют лишь половые хромосомы. Хромосомные пары пронумерованы от 1 до 22 в соответствии с их длиной. Половые хромосомы не имеют номеров и обозначаются как Х и У.

Нормальный кариотип человека состоит из 22 пар аутосом и одной пары половых хромосом - ХУ у мужчин и ХХ у женщин. На стадии метафазы митоза любая хромосома состоит из двух сестринских хроматид, которые в анафазе расходятся, причем каждая хроматида становится одной из 46 хромосом дочерней клетки. Сестринские хроматиды соединены друг с другом в районе центромеры. После детального изучения строения хромосом была составлена идиограмма (от греч. idios - своеобразный, gramma - запись) кариотипа человека, представляющая собой схемы хромосом, основанные на их длине.

Детальные сведения о строении хромосом необходимы для ученых-генетиков, изучающих человека, а также для выяснения природы заболеваний, связанных с мутациями хромосомного аппарата. Все наследственные болезни человека делят на 3 группы: генные болезни, болезни с наследственной предрасположенностью и хромосомные.
Генные болезни

Генные болезни связаны с мутациями отдельных генов. (Подробнее этот вопрос рассматривается в уроке 25 на стр. 6.) При этом изменяется структура ДНК, что в свою очередь изменяет образующуюся на ДНК молекулу РНК, в результате синтезируется новый нетипичный белок, что приводит к появлению аномальных признаков. В результате генной мутации повреждается один ген, поэтому такие наследственные заболевания называют моногенными. К ним относится большинство наследственных аномалий обмена веществ, таких как фенилкетонурия (нарушение обмена аминокислоты фенилаланина, приводящее впоследствии к развитию слабоумия), галактоземия (нарушение обмена молочного сахара лактозы, что приводит к отставанию в физическом и психическом развитии) и т.д. К генным мутациям относятся также гемофилия, дальтонизм, серповидно-клеточная анемия, полидактилия и др.

Все моногенные болезни наследуются в соответствии с законами Менделя и по типу наследования делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х-хромосомой.

Болезни с наследственной предрасположенностью

Болезни с наследственной предрасположенностью относятся к полигенным, так как чаще всего вызываются изменением нескольких генов и для проявления требуется воздействие определенных факторов внешней среды. Эти заболевания составляют 92% от общего числа наследственных заболеваний. К ним относятся такие заболевания, как ревматизм, ишемическая болезнь сердца, сахарный диабет, бронхиальная астма, язвенная болезнь, эпилепсия и др. В этом случае по наследству передаются лишь предрасположенность к заболеванию, а само оно может и не проявиться у потомков. Такие заболевания наследуются не по законам Менделя, имеют возрастные и половые отличия, могут клинически отличаться у разных людей. Кроме того, для них характерна высокая частота встречаемости в популяции человека. Например, сахарным диабетом больны 5% населения промышленно развитых стран, аллергическими заболеваниями - более 10%, а гипертонией - около 30 %.

Наследование и степень проявления таких заболеваний зависят от степени выраженности болезни у родителей. Например, если бронхиальной астмой страдают оба родителя, то возрастает риск заболевания в более тяжелой степени у детей, а также вероятность передачи по наследству патологических генов. Большое значение имеет и степень родства. У детей больше вероятность проявления таких заболеваний, чем у родственников 2-й и 3-ей степени.


Хромосомные болезни

Хромосомные болезни связаны с изменениями или структуры хромосом, или их количества.

Структурные перестройки хромосом (хромосомные мутации) у человека могут привести к болезни синдром «кошачьего крика». Он обусловлен разрывом короткого плеча 5-й хромосомы. Это вызывает аномальное развитие гортани, поэтому больные дети до определенного возраста издают характерный «кошачий» крик. Для этого заболевания также характерны умственная отсталость, задержка роста, мышечная гипотония, слабая выраженность вторичных половых признаков, сращение пальцев, нарушение деятельности центральной нервной системы. Большинство детей умирают в раннем возрасте. Изменение строения 21-й пары хромосом (одна хромосома имеет нормальный размер, а у второй потеряна значительная часть вещества) приводит к возникновению злокачественной (миэлоидной) лейкемии.

Геномные мутации связаны с изменением числа хромосом в геноме человека. Они сводятся к появлению лишних хромосом (трисомия) или утрате хромосом (моносомия). Впервые связь между аномальным набором хромосом и резкими отклонениями от нормального развития была обнаружена в случае синдрома Дауна. Люди, страдающие этим заболеванием, имеют характерный разрез глаз, низкий рост, короткие и короткопалые руки и ноги, аномалии многих внутренних органов, специфическое выражение лица, для них характерна умственная отсталость. Изучение кариотипа таких больных показало наличие дополнительной, т. е. третьей, хромосомы в 21 паре (так называемая трисомия). Причина трисомии связана с не расхождением хромосом в ходе мейоза у женщин. Важнее отметить, что существует сильная зависимость между частотой рождения детей с синдромом Дауна и возрастом матери. После 35-40 лет частота появления больных детей резко возрастает. Дети с синдромом Дауна появляются довольно часто - один на 500 - 600 новорожденных. Трисомии по другим аутосомам встречаются очень редко, так как приводят к гибели эмбрионов на ранних этапах развития.


Синдром Дауна

Изменение числа половых хромосом вызывает серьезные отклонения в развитии. Среди них синдром Клейнфельтера, который встречается у одного из 400 - 600 новорожденных мальчиков и проявляется в недоразвитии первичных и вторичных половых признаков, искажении пропорции тела. У таких больных в соматических клетках обнаружены тельца Барра, которые никогда не обнаруживаются у здоровых мужчин. Изучение кариотипа мужчин, страдающих синдромом Клейнфельтера, позволило установить, что их половые хромосомы представлены набором ХХУ.

Другая аномалия, встречающаяся у новорожденных девочек с частотой один на 5000, так называемый синдром Тернера развивается при моносомии по половым хромосомам. У больных обнаружено 45 хромосом, поскольку в кариотипе имеется только одна Х-хромосома (Х0), в соматических клетках нет телец Бара. Больные отличаются многочисленными аномалиями в строении организма: задержка роста и полового развития, недоразвитие внутренних органов. Существуют и другие болезни, причинами которых являются различные хромосомные нарушения.

Причины хромосомных мутаций установить практически невозможно: это могут быть физические, химические и биологические факторы.
Генетические карты человека

Построение генетических карт - неотъемлемая часть детального генетического изучения любого вида. Успехи в построении генетических карт человека до середины 70-х годов были весьма скромными в связи с ограниченной возможностью применения классического метода. Ситуация резко изменилась в последующие годы, когда для создания генетических карт человека стали применять новые методы. В настоящее время установлена локализация многих сотен генов на соответствующих хромосомах. Чрезвычайно интенсивно изучается молекулярная структура хромосом. По оценкам специалистов, за ближайшие 25 - 30 лет следует ожидать прочтения полной последовательности ДНК. Эта гигантская по масштабам и чрезвычайно сложная задача решается одновременно в десятках стран. В нашей стране тоже создана государственная научная программа «Геном человека» Знания, полученные в ходе этой работы, не только будут иметь важное познавательное значение, но и окажутся очень полезными для медицины.


Методы изучения наследственности человека

Генеалогический метод

Изучение родословных - важный метод изучения закономерностей наследования признаков у человека. Благодаря генеалогическому методу удается проследить менделевское расщепление и независимое комбинирование признаков в потомстве, получить сведения по аллелизму, выяснить другие важные вопросы.

Исследование включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется по одному или нескольким признакам. Генеалогическое изучение какой-либо семьи, как правило, начинается с обнаружения носителя необычного признака - пробанда. Данный метод применим, если известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. В случае патологического проявления признака пробанд является исходным пациентом. При составлении родословных принято пользоваться обозначениями. Потомки одного поколения располагаются в одном ряду в порядке рождения. Второй этап - анализ родословной с целью установления характера наследования признака. В первую очередь устанавливают, как проявляется признак у представителей разного пола, т.е. сцепленность признака с полом. Далее определяют, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей, не во всех поколениях и может отсутствовать у родителей. При доминантном наследовании признак встречается часто, практически во всех поколениях. Известно наследование по аутосомно-доминантному типу и аутосомно-рецессивному. Как доминантные аутосомные признаки наследуются короткопалость (отсутствие двух конечных фаланг в пальцах), катаракта глаз, хрупкость костей и т.д. К числу признаков, наследующихся по аутосомно-рецессивному типу, относятся рыжие волосы, альбинизм, подверженность полиомиелиту и др.

Признаки, определяемые генами Х-хромосомы, так же как гены, расположенные в аутосомах, могут быть доминантными либо рецессивными. Разница состоит в том, что женщина может быть гомо- или гетерозиготной по данному мутантному гену, а мужчина, у которого только одна Х-хромосома, может быть только гемизиготен, т.е. иметь только один изучаемый ген, и независимо от доминантности и рецессивности у мужчин ген всегда проявится.

Наиболее характерная черта наследования, сцепленного с Х-хромосомой, - отсутствие передачи гена по мужской линии. Х-хромосома от отца никогда не передается никому из его сыновей, однако она передается каждой дочери.

Построив родословную, восходящую к английской королеве Виктории, удалось установить, что ген гемофилии рецессивен и наследуется сцепленно с Х-хромосомой. Гемофилия (нарушение свертываемости крови) - тяжелое заболевание, встречающееся почти исключительно у мужского пола. Королева Виктория и ее муж были здоровы. Никто из предков королевы Виктории не страдал гемофилией. Вероятно, мутация возникла у одного из ее родителей и была передана через гамету. Вследствие этого она стала носительницей Х-хромосомы с геном гемофилии и передала ее нескольким детям. У всех потомков мужского пола, которые получили Х-хромосому с геном гемофилии, наблюдалось нарушение свертываемости крови. Проявление гена гемофилии у женщины возможно в случае ее гомозиготности по данному рецессивному гену, т.е. при получении гена гемофилии от обоих родителей. Такие случаи действительно наблюдались, когда больной гемофилией мужчина женился на носительнице гена гемофилии. Вероятность такого сочетания повышается при родственных браках. У человека найдено более 100 сцепленных с полом рецессивных признаков. Интересно, что около половины из них связано с заболеванием глаз.

Наследование гемофилии потомков королевы Виктории
При помощи генеалогического метода установлено, что развитие некоторых способностей человека (например, музыкальности, склонности к математическому мышлению и т.п.) определяется наследственными факторами. Примером может служить семья Бахов, где в течение ряда поколений было много музыкантов, в их числе знаменитый композитор начала XYIII века Иоганн Себастьян Бах. Разумеется, проявление тех или иных генотипически обусловленных психических особенностей человека, в том числе и одаренности, определяется социальной средой, под влиянием которой и формируется личность в обществе.

С помощью генеалогического метода доказано наследование у человека сахарного диабета, глухоты, шизофрении, слепоты. Этот метод используется для диагностики наследственных заболеваний и медико-генетического консультирования: по характеру проявления признака у родственников определяется вероятность рождения ребенка с генетическими аномалиями.

Близнецы и близнецовый метод исследования в генетике человека

У человека рождение близнецов - довольно распространённое явление. Так, одна двойня приходится на 80 - 85 одноплодных родов, одна тройня - на 6 - 8 тыс., четверни и пятерни встречаются очень редко. Частота рождений близнецов в странах с умеренным климатом выше, чем в жарких. Однояйцевые близнецы составляют 15% от всех многоплодных родов. Женщина, однажды родившая близнецов, может иметь тенденцию к повторным многоплодным родам. Многоплодная беременность чаще, чем одноплодная, осложняется поздними токсикозами беременности (отеки, нефропатия) и нередко кончается преждевременными родами.

Дизиготные, или разнояйцевые, близнецы развиваются из двух различных яйцеклеток, одновременно оплодотворенных различными сперматозоидами. Таким образом, главная причина появления дизиготных близнецов одновременная овуляция у их матери двух яйцеклеток. Дизиготные близнецы могут быть как одного, так и разного пола, а их соотношение выглядит так: 1(♀+♀) : 2(♀+♂) : 1(♂+♂). Разнояйцевые близнецы генетически сходны не больше, чем обычные братья и сестры. Частота рождения разнояйцевых близнецов зависит от возраста матери, ее генотипа и факторов внешней среды.

Иногда одна оплодотворенная яйцеклетка дает начало не одному, а двум (или нескольким) эмбрионам. Из них и развиваются монозиготные, или однояйцевые, близнецы. Они всегда одного пола, либо мальчики, либо девочки. Сходство монозиготных близнецов очень велико, так как они имеют один и тот же генотип. Идентичные близнецы представляют интерес для изучения взаимодействия генотипа и факторов среды, поскольку различия между ними главным образом связаны с влиянием условий развития, т.е. внешней среды. Доля однояйцевых близнецов у человека составляет около 35 - 38% от общего числа близнецов. Установить тип близнецов не всегда просто. Исключить монозиготность можно точно, но доказать ее гораздо сложнее и не всегда возможно. Для этого используются такие признаки, как группы крови, различные белки сыворотки крови и ферменты. Надежным, хотя трудно применимым, приемом в решении этого вопроса является трансплантация кожи. У монозиготных близнецов взаимные пересадки кожи завершаются успешно, а у дизиготных - пересаженные участки кожи отторгаются. Иногда при развитии зародышей однояйцевых близнецов происходит неполное разделение на два организма: некоторые части тела остаются «общими». Таких уникальных близнецов называют сиамскими.

В 1876 г. английский исследователь Ф. Гальтон предложил использовать метод анализа близнецов с целью разграничения влияния наследственности и среды на развитие различных признаков у человека. Сущность этого метода состоит в двух вариантах сравнений: сопоставление пар однояйцевых близнецов с однополыми двуяйцевыми близнецами, а также сравнение пар однояйцевых близнецов, воспитанных вместе и раздельно. Если изучаемый признак проявляется у обоих близнецов, это называется конкордантностью, если только у одного из них, то дискордантностью. Степень конкордантности определяется как отношение числа конкордантных пар к общему числу всех изученных пар близнецов - как конкордантных, так и дискордантных. Для получения точной оценки степени конкордантности необходимо изучить большие выборки пар близнецов, состоящие из многих сотен пар.

Степень конкордантности для качественных признаков у монозиготных близнецов обычно высока и стремится к 100%. Это означает, что на формирование признаков групп крови, формы бровей, цвета глаз и волос среда почти не оказывает влияния, а решающее воздействие имеет генотип. Значительна роль наследственных факторов в развитии у детей рахита и туберкулеза. Напротив, доля наследственности в возникновении косолапости очень невелика.

Таким образом, признаки, отличающиеся высоким уровнем конкордантности, в значительной или преобладающей степени детерминируются генетическими факторами и мало подвержены влиянию условий среды. Признаки, характеризующиеся высокой дискордантностью, напротив, в основном определяются влиянием среды.

Не следует думать, что монозиготные близнецы всегда должны быть абсолютно подобны друг другу по качественным признакам. Причиной отличий могут быть мутации соматических клеток и вариации в экспрессии генов на всех этапах развития, включая самые ранние.


Важный вывод

Использование близнецового метода подтверждает важный вывод, что любой признак человеческого организма есть результат действия генов и условий среды.

Цитогенетический метод

Цитогенетический метод основывается на микроскопическом исследовании структуры хромосом у здоровых и больных людей. Исследования показали, что многие врожденные уродства и ненормальности связаны с изменением числа хромосом или изменением морфологии отдельных хромосом. У человека известно очень много различных аномалий, связанных с изменением числа или формы хромосом. При помощи цитогенетического метода были установлены причины возникновения таких заболеваний, как болезни Клайнфельтера, синдрома Дауна и других. Чаще всего этот метод применяют на культуре ткани. Он позволяет учитывать крупные аномалии хромосом, возникающие как в половых, так и в соматических клетках. С помощью цитогенетического метода определяют мутагенное действие факторов внешней среды на возникновение различных хромосомных аномалий, изучают процессы, происходящие при старении клеток.

Биохимический метод

Биохимический метод основан на изучении характера биохимических реакций и обмена веществ в организме. Это позволяет установить наличие аномального гена и уточнить диагноз. Наследственно обусловленных отклонений от нормального хода обмена известно несколько десятков. К их числу относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и др.

В таких случаях знание биохимических механизмов развития заболевания позволяет облегчить страдания больного. Обычно больному вводят несинтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут перевариваться из-за отсутствия в организме необходимых для этого ферментов.

Например, сахарный диабет. Это заболевание характеризуется повышением концентрации сахара в крови вследствие нарушения синтеза инсулина - гормона поджелудочной железы. Развитие этого заболевания обусловливается рецессивным геном. Для его лечения в организм вводится инсулин, который получают синтетическим путем, используя генно-инженерные методы. Однако следует помнить, что при этом исчезает только фенотипическое проявление «вредного» гена, и вылеченный человек продолжает оставаться носителем гена, определяющего развитие болезни, и может передавать этот ген своим потомкам.

Биохимический метод позволяет установить болезнь на ранней стадии и лечить ее.

Онтогенетический метод

Известно, что некоторые наследственные болезни проявляются не только у гомозигот, но и в стертой форме у гетерозигот. Определение гетерозиготных носителей наследственных аномалий крайне важно, и методы выявления таких гетерозигот в настоящее время усиленно разрабатываются. Так, гетерозиготный носитель гена фенилкетонурии (ФКУ) может быть определен введением в кровь фенилаланина и последующем определением его уровня в плазме крови. В норме, т.е. у гомозигот по доминантной аллели, уровень фенилаланина при этом не изменяется. У гетерозигот по данной аллели, внешне здоровых людей, обнаруживается повышенное содержание в крови фенилаланина.

Очень часто гетерозиготы занимают промежуточное положение по активности ферментов. Сейчас разработаны тесты для определения гетерозиготного носительства более, чем для 40 наследственных болезней, определяемых рецессивными аллелями. Диагностика гетерозиготного носительства в онтогенезе важна для своевременного проведения медикаментозного лечения, а также для определения вероятного риска иметь больного ребенка при наследственном неблагополучии семей.

Онтогенетический метод

Используется также для выяснения механизма развития наследственных заболеваний в онтогенезе, что очень важно для их лечения и профилактики.

Популяционный метод

Популяционный метод позволяет изучать распространение отдельных генов или хромосомных аномалий в человеческих популяциях. Он дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот - носителей аномальных генов. Популяционный метод основывается главным образом на данных демографической статистики, которая занимается исследованием наследственной структуры населения.

Исследование частоты распространения генов имеет большое значение для анализа распространения наследственных болезней человека, для оценки последствий родственных браков, которые особенно часты в изолированных группах людей. Частота распространения в популяциях разных аномалий оказывается различной, при этом подавляющее число рецессивных аллелей представлено в гетерозиготном состоянии. Так, примерно каждый сотый житель Европы гетерозиготен по гену амавротического слабоумия, тогда как заболевают этой болезнью из 1 млн. только 25 человек, у которых этот ген проявляется в гомозиготном состоянии. Альбиносы в европейских странах встречаются с частотой 1 на 20 000, хотя гетерозиготное состояние этой аллели присуще каждому семидесятому жителю. Популяционный анализ интересен тем, что он помогает понять динамику генетической структуры различных популяций и способствует выявлению связей между ними. Разные популяции могут существенно различаться по своей генетической структуре, например по генам группы крови.

Генетика и медицина

Интерес, проявляемый учеными всего мира к наследственности человека, не случаен. В последние десятилетия человечество тесно соприкасается с чуждыми для него химическими веществами. Число таких веществ, применяемых в быту, сельском хозяйстве, пищевой, фармакологической, косметической промышленности и в других областях деятельности людей, в настоящее время огромно. Среди этих веществ есть и такие, которые вызывают мутации.

Благодаря развитию медицины человек научился лечить очень многие заболевания. Он успешно защищает себя от большинства возбудителей очень опасных инфекционных заболеваний: оспы, чумы, холеры, малярии и др. Врачи-генетики считают, что в недалеком будущем при необходимости в организм будут вводить здоровые гены вместо больных. Уже сейчас ученые разработали методы такой генотерапии для некоторых тяжелых наследственных болезней.

Изучение генома человека важно не только для сохранения здоровья и разработки новых эффективных методов лечения, но для понимания генетической составляющей понимания поведения, характера и интеллектуальных способностей, для восстановления истории возникновения и расселения человека (Homo sapiens).


Наследственные и врожденные заболевания

В генетике и медицине наряду с термином наследственные болезни существует термин врожденные заболевания. К наследственным относят заболевания, которые связаны с нарушением генетического (наследственного) аппарата половых клеток родителей.

Врожденные заболевания также проявляются сразу при рождении, но причины их могут быть различны. Они бывают наследственными (например, полидактилия) или возникают в процессе эмбрионального развития. В последнем случае эти болезни не передаются по наследству. Известно, что если женщина в раннем периоде беременности перенесла какое-либо вирусное заболевание, например краснуху, то у детей могут возникнуть пороки сердца, почек, легких, мозга и т.д. Однако не у всех беременных женщин, перенесших сходную вирусную инфекцию, рождаются дети с врожденными пороками.

Вредными факторами для беременной женщины являются вирусные и бактериальные инфекции, употребление некоторых лекарственных препаратов, алкоголь, наркотики, отравляющие вещества, а также различные виды облучения и др. К особенно тяжелым последствиям приводят эти повреждающие факторы на ранних стадиях беременности (от 2 до 20 недель), когда закладывается нервная система, все органы и ткани эмбриона.

Разграничение врожденных и наследственных заболеваний имеет большое значение при прогнозировании потомства в семье.

Характеристика мутационного процесса у человека

Частота хромосомных мутаций у человека велика и является причиной нарушений (до 40%) у новорожденных. Кроме упоминавшихся хромосомных болезней, существует множество других болезней, обычно приводящих к тяжелым последствиям, а чаще к гибели эмбриона. В большинстве случаев хромосомные мутации возникают в гаметах родителей заново, реже они существуют у одного из родителей и передаются потомкам.

Существенное повышение концентраций мутагенов и ионизирующего излучения приводят к возрастанию частоты хромосомных мутаций. Спонтанные генные мутации происходят гораздо реже. Вероятность мутации в конкретном гене может колебаться около 10 -5 . В среднем на диплоидный геном приходится около двух новых мутаций. Однако далеко не все вредные мутации в гетерозиготном состоянии проявляются, они могут накапливаться в популяциях человека. Позднее, переходя в гомозиготное состояние, многие мутантные гены приводят к возникновению тяжелых наследственных болезней.
Предупреждение и лечение некоторых наследственных болезней человека

Диагностика, лечение и предупреждение наследственных заболеваний

Наследственные заболевания определяются особенностями генотипа, но со многими из них медицина успешно борется. В случае ранней диагностики многих заболеваний их можно лечить и предотвратить последствия развития аномалий. В настоящее время в роддомах проводится массовая проверка детей для выявления фенилкетонурии и врожденного недостатка гормона щитовидной железы. Начатое на ранних стадиях лечение и специальная диета помогают избежать пороков умственного и физического развития у таких детей.

Сейчас известны сотни заболеваний, для которых механизмы биохимических нарушений изучены достаточно подробно. В некоторых случаях современные методы микроанализов позволяют обнаружить биохимические нарушения даже в отдельных клетках. В настоящее время широко применяется метод амниоцентеза, позволяющий анализировать клетки эмбриона из околоплодной жидкости. Благодаря этому методу женщина на раннем этапе беременности может получить важную информацию о возможных хромосомных или генных мутациях плода и избежать рождения больного ребенка.

Необходимо помнить, что немаловажным фактором для проявления некоторых наследственных заболеваний являются и условия среды. Так, при наличии у ближайших родственников язвенной болезни человеку необходимо следить за режимом питания, диетой, избегать нервных перегрузок, чтобы предотвратить возникновение у себя этого же заболевания.


Резус-фактор

К числу хорошо изученных признаков человека относится резус-фактор. Он может проявляться в двух состояниях: одно из них называют «резус+» (Rh+), а другое - «резус-» (Rh-). В браках резус-отрицательных женщин с резус-положительными мужчинами вследствие доминирования гена резус-положительности плод приобретает этот признак. Он выделяет в кровь антиген, против которого в организме матери начинают вырабатываться антитела, разрушающие кроветворную систему плода. Возникает так называемая гемолитическая болезнь новорожденных. В результате иммунологической реакции в ходе беременности развивается отравление, как материнского организма, так и плода. Это может стать причиной гибели эмбриона. Выяснение характера наследования резус фактора биохимической природы позволяет разрабатывать медицинские приемы, снижающие иммунологическую несовместимость матери и плода, а также вредные последствия проявления этого гена.

Нежелательность родственных браков

В современном обществе родственные браки (браки между двоюродными братьями и сестрами) сравнительно редки. Однако есть области, где вследствие географических, социальных, экономических или других причин небольшие контингенты населения в течение многих поколений живут изолированно. В таких изолированных популяциях (изолятах) частота родственных браков бывает значительно выше, чем в обычных «открытых» популяциях. Статистика свидетельствует, что у родителей, состоящих в родстве, вероятность рождения детей с наследственными недугами или частота ранней детской смертности в десятки, а иногда даже в сотни раз выше, чем в неродственных браках. Родственные браки особенно нежелательны, когда имеется вероятность гетерозиготности супругов по одному и тому же рецессивному вредному гену.


Медико-генетическое консультирование

Знание генетики человека позволяет прогнозировать вероятность рождения детей, страдающих наследственными недугами, в случаях, когда один или оба супруга больны или оба родителя здоровы, но наследственное заболевание встречалось у предков супругов. В ряде случаев можно определить вероятность рождения второго здорового ребенка, если первый имел наследственное заболевание. Так, генеалогическим методом доказано наследование многих заболеваний. Существует врожденная (рецессивная) глухота. Некоторые формы тяжелого психического заболевания - шизофрения - тоже наследственны (рецессивны). Известны наследственные заболевания, определяемые не рецессивными, а доминантными генами, например, ведущая к слепоте наследственная дегенерация роговицы. Предрасположенность к заболеванию туберкулезом носит наследственный характер.

По мере повышения биологической образованности широких масс населения супружеские пары, еще не имеющие детей, все чаще обращаются к врачам-генетикам с вопросом о риске иметь ребенка, пораженного наследственной аномалией. Основная цель консультирования - предупреждение рождения детей с генетическими аномалиями.

Консультирование начинается с составления генеалогической карты и уточнения диагноза. Затем проводится дополнительное биохимическое и цитологическое исследование. Далее врач-генетик проводит анализ родословной и прогнозирует вероятность рождения больного ребенка. При составлении прогноза учитывается характер наследственного заболевания, его повторяемость среди родственников. В случае единичной патологии, когда заболевание не носит семейного характера, выясняются возможные причины возникновения аномалии. Это могут быть геномные или хромосомные мутации, возникшие в гаметах родителей или на ранних этапах развития плода. После этого врач оценивает генетический риск и дает рекомендации. Степень риска выражается в процентах. Считается, что 0 - 10% - низкая степень риска, 11 - 20% - средняя степень, более 20% - высокая степень. В этом случае деторождение в данной семье не рекомендуется.

Основными задачами таких консультаций являются:


  • перспективное консультирование семей с наследственной и врожденной патологией;

  • объяснение пациенту и его семье степени риска рождения больного ребенка;

  • предупреждение родственных браков, в результате которых вероятность рождения больного ребенка резко возрастает;

  • выявление носителя аномального гена;

  • дородовая диагностика, позволяющая выявить ряд заболеваний генной природы и хромосомные аномалии.
Кроме того, существует общая цель медико-генетического консультирования - снижение груза патологической наследственности в популяции человека.

Широкое использование медико-генетических консультаций сыграет немаловажную роль в снижении частоты наследственных недугов и избавит многие семьи от несчастья иметь нездоровых детей. Следует отметить, что курение, употребление алкоголя и особенно наркотиков матерью или отцом будущего ребенка резко повышает вероятность рождения младенца, пораженного тяжелыми наследственными недугами.

Забота о чистоте среды обитания людей, непримиримая борьба с загрязнением воды, воздуха, пищевых продуктов веществами, обладающими мутагенным и канцерогенным действием (т.е. вызывающими возникновение мутаций или злокачественное перерождение клеток), тщательная проверка на «генетическую» безвредность всех косметических и лекарственных средств и препаратов бытовой химии - это важные условия для снижения частоты появления у людей наследственных недугов

Важный вывод

Забота о чистоте среды обитания людей, непримиримая борьба с загрязнением воды, воздуха, пищевых продуктов веществами, обладающими мутагенным и канцерогенным действием (т.е. вызывающими возникновение мутаций или злокачественное перерождение клеток). Тщательная проверка на «генетическую» безвредность всех косметических и лекарственных средств и препаратов бытовой химии - это важные условия для снижения частоты появления у людей наследственных недугов.

Изменчивость – это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

ТАБЛИЦА Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Формы изменчивости Причины появления Значение Примеры
Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация – приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми

Мутационная
Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов – микроэволюции
Наследственная (генотипическая)
Комбинатнвная
Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Наследственная (генотипическая)
Соотносительная (коррелятивная)
Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак – жирность молока – слабо подвержен изменениям условий среды, а масть животного – еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.

Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции – жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.

Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.

Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Классификация мутаций. Мутации можно объединять, в группы – классифицировать по характеру проявления, по месту или, по уровню их возникновения.

Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью – летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом).. Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды пблучают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

Гетероплоидия – изменение числа Хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с синдромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом У людей с синдромом Шерешевского – Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т. д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот, так и. у гетерозигот, вторые – только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций:

1. Мутации возникают внезапно, скачкообразно.
2. Мутации наследственны, т. е. стойко передаются из поколения в поколение.
3. Мутации ненаправденны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.
4. Одни и те же мутации могут возникать повторно.
5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: 1) при кроссинговере, во время профазы первого мейотического деления; 2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления; 3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления и 4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

В селекции важное значение имеет закон гомблогических рядов наследственной изменчивости, сформулированный советским ученым Н. И. Вавиловым. Он гласит: внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих – у грызунов, хищных, приматов; малорослые темнокожие люди – пигмеи – встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия – у мыши и кошки, диабет – у крысы; врожденная глухота – у морской свинки, мыши, собаки; заячья губа – у мыши, собаки, свиньи и т. д. Эти наследственные дефекты – убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.

Таблица. Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Характеристика Модификационная изменчивость Мутационная изменчивость
Объект изменения Фенотип в пределах нормы реакции Генотип
Отбирающий фактор Изменение условий окружающей
среды
Изменение условий окружающей среды
Наследование при
знаков
Не наследуются Наследуются
Подверженность изменениям хромосом Не подвергаются Подвергаются при хромосомной мутации
Подверженность изменениям молекул ДНК Не подвергаются Подвергаются в случае
генной мутации
Значение для особи Повышает или
понижает жизнеспособность. продуктивность, адаптацию
Полезные изменения
приводят к победе в борьбе за существование,
вредные – к гибели
Значение для вида Способствует
выживанию
Приводит к образованию новых популяций, видов и т. д. в результате дивергенции
Роль в эволюции Приспособление
организмов к условиям среды
Материал для естественного отбора
Форма изменчивости Определенная
(групповая)
Неопределенная (индивидуальная), комбинативная
Подчиненность закономерности Статистическая
закономерность
вариационных рядов
Закон гомологических
рядов наследственной изменчивости

1. Какова роль генотипа и условий среды в формировании фенотипа? Приведите примеры.

Некоторые признаки формируются только под влиянием генотипа и их проявление не зависит от условий среды, в которых развивается организм. Например, у человека, имеющего в генотипе гены I A и I B , независимо от условий жизни формируется IV группа крови. В то же время рост, масса тела, количество эритроцитов в крови и многие другие признаки зависят не только от генотипа, но и от условий окружающей среды. Поэтому организмы, имеющие одинаковые генотипы (например, монозиготные близнецы), могут отличаться друг от друга по фенотипу.

В 1895 г. французский ботаник Г. Бонье провел следующий опыт: разделил молодое растение одуванчика на две части и стал выращивать их в разных условиях – на равнине и высоко в горах. Первое растение достигло нормальной высоты, а второе оказалось карликовым. Этот опыт показывает, что на формирование фенотипа (т.е. признаков) оказывает влияние не только генотип, но и условия окружающей среды.

Ещё одним примером, иллюстрирующим влияние внешней среды на проявление признаков, служит изменение окраски шерсти у гималайских кроликов. Обычно при 20°С шерсть у них на всём теле белая, за исключением чёрных ушей, лап, хвоста и мордочки. При 30°С кролики вырастают полностью белыми. Если же у гималайского кролика сбрить шерсть на боку или спине и содержать его при температуре воздуха ниже 2°С, то вместо белой шерсти вырастет чёрная.

2. Что представляет собой модификационная изменчивость? Приведите примеры.

Модификационная изменчивость – это изменение фенотипа под действием факторов окружающей среды, происходящее без изменения генотипа в пределах нормы реакции.

Например, у одуванчика длина листьев и их форма существенно различаются даже в пределах одного растения. Замечено, чем при более низкой температуре шло формирование листьев, тем они мельче и тем бóльшие вырезы имеет листовая пластинка. Напротив, при более высокой температуре формируются более крупные листья с небольшими вырезами листовой пластинки.

У взрослого человека в зависимости от питания и образа жизни изменяется масса тела, у коров могут изменяться удои, у кур – яйценоскость. У человека, оказавшегося высоко в горах, со временем увеличивается содержание эритроцитов в крови, чтобы обеспечить клетки тела кислородом.

3. Что такое норма реакции? Докажите на конкретных примерах справедливость утверждения о том, что наследуется не сам признак, а его норма реакции.

Норма реакции – это пределы модификационной изменчивости признака. Одни признаки, например длина листьев, высота растений, масса тела животных, удойность крупного рогатого скота, яйценоскость кур, обладают широкой нормой реакции. Другие, например величина цветков и их форма, окраска семян, цветков и плодов, масть животных, жирность молока – более узкой нормой реакции.

Норма реакции определяется генотипом и передаётся по наследству. Например, чем больше времени человек проводит под прямыми солнечными лучами, тем больше меланина синтезируется в открытых участках кожи и, соответственно, темнее её цвет. Как известно, интенсивность загара не передаётся по наследству, а определяется конкретными условиями жизни того или иного человека. Кроме того, даже у постоянно пребывающего под прямым солнечным светом человека европеоидной расы, кожа не может синтезировать то количество меланина, которое характерно, например, для представителей негроидной расы. Этот пример свидетельствует о том, что диапазон изменчивости признака (норма реакции) предопределён генотипом и наследуется не собственно признак, а способность организма под действием условий окружающей среды формировать определённый фенотип.

4. Охарактеризуйте основные свойства модификаций. Почему ненаследственную изменчивость также называют групповой? Определённой?

Модификации обладают следующими основными свойствами:

● Обратимость – со сменой внешних условий у особей меняется степень выраженности тех или иных признаков.

● В большинстве случаев носят адекватный характер, т.е. степень выраженности признака находится в прямой зависимости от интенсивности и продолжительности действия того или иного фактора.

● Имеют адаптивный (приспособительный) характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют её выживанию.

● Массовость – один и тот же фактор вызывает примерно одинаковые изменения у особей, сходных генотипически.

● Модификации не наследуются, т.к. модификационная изменчивость не сопровождается изменением генотипа.

Ненаследственную (модификационную) изменчивость называют групповой, поскольку определённые изменения условий среды вызывают сходные изменения у всех особей того или иного вида (свойство массовости). Модификационную изменчивость также называют определённой, т.к. модификации носят адекватный характер, являются предсказуемыми и сопровождаются изменением фенотипа особей в определённом направлении.

5. Какие статистические методы применяются для анализа изменчивости количественных признаков?

Для характеристики степени изменчивости количественных признаков чаще всего применяют такие статистические методы как построение вариационного ряда и вариационной кривой.

Например, количество колосков в сложных колосьях пшеницы одного сорта варьирует в довольно широких пределах. Если расположить колосья по возрастанию количества колосков, то получится вариационный ряд изменчивости данного признака, состоящий из отдельных вариант. Частота встречаемости отдельной варианты в вариационном ряду неодинакова: наиболее часто встречаются колосья со средним числом колосков и реже – с бóльшим и меньшим.

Распределение вариант в этом ряду можно изобразить графически. Для этого на оси абсцисс откладывают значения вариант (v) в порядке их увеличения, на оси ординат – частоту встречаемости каждой варианты (р). Графическое выражение изменчивости признака, отражающее как размах вариаций, так и частоты встречаемости отдельных вариант, называют вариационной кривой.

6. Насколько важно на практике знать норму реакции признаков у растений, животных и человека?

Знание закономерностей модификационной изменчивости и нормы реакции имеет большое практическое значение, так как позволяет предвидеть и заранее планировать многие показатели. В частности, создание оптимальных условий для реализации генотипа даёт возможность добиться высокой продуктивности животных и урожайности растений. Знание нормы реакции различных признаков человека необходимо в медицине (важно знать, насколько те или иные физиологические показатели соответствуют норме), педагогике (воспитание и обучение с учётом способностей и возможностей ребёнка), лёгкой промышленности (размеры одежды, обуви) и многих других сферах деятельности человека.

7*. Если примулу, которая в обычных условиях имеет красные цветки, перенести в оранжерею с температурой 30–35ºС и повышенной влажностью, новые цветки на этом растении будут уже белыми. Если это растение вернуть в условия относительно низкой температуры (15–20ºC), оно вновь начинает цвести красными цветками. Чем это можно объяснить?

Это типичный пример модификационной изменчивости. Вероятнее всего, повышение температуры вызывает снижение активности ферментов, обеспечивающих синтез красного пигмента в лепестках, вплоть до их полной инактивации (при 30–35ºС).

8*. Почему на птицефабриках световой день у кур-несушек искусственно продлевают до 20 ч, а у петушков-бройлеров - сокращают до 6 ч в сутки?

Длина светового дня – важный фактор, влияющий на половое поведение птиц. Увеличение продолжительности светового дня активизирует выработку половых гормонов – таким образом кур-несушек стимулируют на увеличение яйценоскости. Короткий световой день вызывает снижение половой активности, поэтому петушки-бройлеры меньше двигаются, не дерутся друг с другом, а все ресурсы организма направляют на увеличение массы тела.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.


Ненаследственная (фенотипическая) изменчивость не связана с изменением генетического материала. Она является ответной реакцией организма на конкретные изменения окружающей среды. Изучение влияния новых условий на человека показало, что такие признаки, как тип обмена веществ, предрасположенность к некоторым заболеваниям, группа крови, узоры кожи на пальцах и другие, определяются генотипом и их выражение мало зависит от факторов окружающей среды. Другие признаки, такие как уровень интеллекта, вес, рост и т.п., обладают широким диапазоном изменений, и их проявление в значительной степени определяется окружающей средой. Те внешние различия, которые обусловлены средой, получили название модификаций. Модификации не связаны с изменением генетических структур особи, а являются лишь частной реакцией генотипа на конкретные изменения окружающей среды (температуры, содержания кислорода во вдыхаемом воздухе, характера питания, воспитания, обучения и т.д.). Однако пределы этих изменений признака в ответ на воздействие окружающей среды определяются генотипом. Конкретные изменения не наследуются, они формируются в процессе жизнедеятельности особи. Наследуется генотип с его специфическим нормой реакции на изменение среды. Таким образом, совокупность признаков особи (ее фенотип) является результатом реализации генетической информации в конкретных условиях окружающей среды. Формируется фенотип в процессе индивидуального развития, начиная с момента оплодотворения. Физическое, психическое и умственное здоровье человека – это результат взаимодействия унаследованных человеком особенностей с факторами окружающей среды, воздействующими на него на протяжении всей жизни. Ни наследственность, ни окружающая человека среда не являются неизменными. Этот важный принцип лежит в основе современного понимания процессов Изменчивости и наследственности. В мире нельзя найти двух людей, за исключением однояйцовых близнецов (развившихся из одной оплодотворенной яйцеклетки), обладающих одинаковым набором генов. Нельзя также найти двух людей, проживших жизнь в одинаковых условиях. Наследственность и среда не противопоставляются друг другу: они едины и немыслимы одна без другой.

Модификационная изменчивость

Среди различных типов изменчивости, рассмотренных выше, была выделена ненаследственная изменчивость, которую называют также модификационной. Общие закономерности изменчивости известны значительно хуже, чем законы наследования.

Модификационная изменчивость – это фенотипические различия у генетически одинаковых особей.

Внешние воздействия могут вызывать у особи или группы особей изменения, которые бывают для них вредными, безразличными или полезными, т.е. приспособленными.

Как известно, эволюционная теория, разработанная Ж.Б. Ламарком (1744-1829), основывалась на ошибочном постулате о наследовании изменений, приобретаемых в течение жизни, т.е. о наследовании модификации. Само по себе представление Ж.Б. Ламарка об эволюции органических форм было, несомненно, прогрессивным для своего времени, но его объяснение механизма эволюционного прогресса было неверным и отражало распространенное заблуждение, характерное для биологов XVIII столетия.

Ч. Дарвин (1809-1882) в своем «Происхождении видов…» разделил изменчивость на определенную и неопределенную . Эта классификация в общем соответствует нынешнему делению изменчивости на ненаследственную и наследственную.

Одним из первых исследователей, изучавших модификационную изменчивость, был К. Нэгели (1865), который сообщил, что если альпийские формы растений, например ястребинки, перенести на богатую почву Мюнхенского ботанического сада, то у них обнаруживается увеличением мощности, обильное цветение, а некоторые растения изменяются до неузнаваемости. Если же формы вновь перенести на бедные каменистые почвы, то они возвращаются к исходной форме. Несмотря на полученные результаты, К. Нэгели оставался сторонником наследования приобретенных свойств.

Впервые строгий количественный подход к исследованию модификационной изменчивости с позиций генетики применил В. Иогансен. Он изучал наследование массы и размера семян фасоли – признаков, в значительной степени меняющихся как под влиянием генетических факторов, так и условий выращивания растений.

Убежденным противником наследования свойств, приобретенных в онтогенезе, был А. Вейсман (1833-1914). Последовательно отстаивая дарвиновский принцип естественного отбора как движущуюся силу эволюции, он предложил разделить понятия соматогенных и бластогенных изменений , т.е. изменения свойств соматических клеток и органов, с одной стороны, и изменения свойств генеративных клеток – с другой. А. Вейсман указал на невозможность существования механизма, который передавал бы изменения соматических клеток половым таким образом, чтобы в следующем поколении организмы изменялись адекватно тем модификациям, которые претерпели родители во время своего онтогенеза.

Иллюстрируя это положение, А. Вейсман поставил следующий эксперимент, доказывавший ненаследование приобретенных признаков. На протяжении 22 поколений он отрубал белым мышам хвосты и скрещивал их между собой. В общей сложности он обследовал 1592 особи и ни разу не обнаружил укорочения хвоста у новорожденных мышат.

Типы модификационной изменчивости

Различают возрастные, сезонные и экологические модификации. Они сводятся к изменению лишь степени выраженности признака; нарушения структуры генотипа при них не происходит. Следует отметить, что четкой границы между возрастными, сезонными и экологическими модификациями провести невозможно.

Возрастные , или онтогенетические, модификации выражаются в виде постоянной смены признаков в процессе развития особи. Это наглядно демонстрируется на примере онтогенеза земноводных (головастики, сеголетки, взрослые особи), насекомых (личинка, куколка, имаго) и других животных, а также растений. У человека в процессе развития наблюдаются модификации морфофизиологических и психических признаков. Например, ребенок не сможет правильно развиваться и физически и интеллектуально, если в раннем детстве на него не будут оказывать влияние нормальные внешние, в том числе социальные, факторы. Например, долгое пребывание ребенка в социально неблагополучной среде может вызвать необратимый дефект его интеллекта.

Онтогенетическая изменчивость, как и сам онтогенез, детерминируется генотипом, где закодирована программа развития особи. Однако особенности формирования фенотипа в онтогенезе обусловлены взаимодействием генотипа и среды. Под влиянием необычных внешних факторов могут происходить отклонения в формировании нормального фенотипа.

Сезонные модификации , особей или целых популяций проявляются в виде генетически детерминированной смены признаков (например, изменение окраски шерсти, появление подпушка у животных), происходящей в результате сезонных изменений климатических условий [Каминская Э.А.].

Ярким примером такой изменчивости является опыт с горностаевым кроликом. У горностаевого кролика на спине выбривают наголо определенный участок (спина горностаевого кролика нормально покрыта белой шерстью) и затем кролика помещают на холод. Оказывается, что в таком случае на оголенном месте, подвергшимся влиянию низкой температуры, появляется темнопигментированный волос и в результате на спине – темное пятно. Очевидно, что развитие того или иного признака кролика – его фенотип , в данном случае горностаевая окраска, зависит не только от его генотипа, но и от всей совокупности условий, в которых происходит это развитие.

Советский биолог Ильин показал, что температура окружающей среды имеет больше значение в развитии пигмента у горностаевого кролика, причем для каждой области тела есть свой порог температуры, выше которого вырастает белая шерсть, а ниже – черная (рис. 1).

Рис 1. Карта температурных порогов пигментации шерсти у горностаевого кролика (из Ильина по С.М. Гершензону, 1983)

Сезонные модификации можно отнести к группе экологических модификаций . Последние представляют собой адаптивные изменения фенотипа в ответ на изменения условий среды. Экологические модификации фенотипически проявляются в изменении степени выраженности признака. Они могут возникать на ранних стадиях развития и сохраняться в течении всей жизни. Примером может служить различные формы листа у стрелолиста, обусловленные влиянием среды: стреловидные надводные, широкие плавающие, лентовидные подводные.

Растение стрелолиста, образующее три типа листьев: подводные, плавающие и надводные. Фото: Udo Schmidt

Экологические модификации затрагивают количественные (количество лепестков в цветке, потомства у животных, масса животных, высота растений, размер листа и т.д.) и качественные (окраска цветков у медуницы, чины лесной, примулы; цвет кожи у человека под влиянием ультрафиолетовых лучей и др.) признаки. Так, например, Леваковский при выращивании в воде ветки ежевики вплоть до ее распускания обнаружил существенные изменения в анатомическом строении ее ткани. В аналогичном эксперименте Константен выявил фенотипические различия в строении надводной и подводной частей листа у лютика.

Рис. Листья водяного лютика и лягушка:) Фото: Radio Tonreg

В 1895 г. французский ботаник Г. Боннье провел опыт, ставший классическим примером экологической модификации. Он разделил одно растение одуванчика на две части и выращивал их в разных условиях: на равнине и высоко в горах. Первое растение достигло нормальной высоты, а второе оказалось карликовым. Такого рода изменения бывают и у животных. Например, Р. Вольтерк в 1909 г. наблюдал изменения высоты шлема у дафний в зависимости от условий питания.

Экологические модификации, как правило, обратимы им со сменой поколений при условии изменения внешней среды могут проявиться. Например, потомство низкорослых растений на хорошо удобренных почвах будет нормальной высоты; определенное количество лепестков в цветке какого-либо растения в потомстве может не повториться; у человека с кривыми ногами вследствие рахита бывает вполне нормальное потомство. Если же на ряду поколений условия не меняются, степень выраженности признака в потомстве сохраняются, ее нередко принимают за стойкий наследственный признак (длительные модификации).

При интенсивном действии многих агентов наблюдается ненаследуемые изменения, случайные (по своему проявлению) по отношению к воздействию. Такие изменения называют морфозами . Очень часто они напоминают фенотипическое проявление известных мутаций. Тогда их называют фенокопиями этих мутаций. В конце 30-х – начале 40-х годов И.А. Рапопорт исследовал действия на дрозофилу многих химических соединений, показав, что, например, соединения сурьмы – brown (коричневые глаза); мышьяковистая кислота и некоторые другие соединения – изменения крыльев, пигментации тела; соединения бора – eyeless (безглазие), aristopredia (превращение арист в ноги), соединения серебра – yellow (желтое тело) и т.д. При этом некоторые морфозы при воздействии на определенную стадию развития индуцировались с высокой частотой (до 100%).

Характеристики модификационной изменчивости:

1. Адаптивные изменения (пример, стрелолист).

2. Приспособительный характер. Это означает, что в ответ на изменившиеся условия среды у особи проявляются такие фенотипические изменения, которые способствуют их выживанию. Примером служит изменение содержания влаги в листьях растений в засушливых и влажных районах, окраски у хамелеона, формы листа у стрелолиста в зависимости от условий среды.

3. Обратимость в пределах одного поколения, т.е. со сменой внешних условий у взрослых особей меняется степень выраженности тех или иных признаков. Например , у крупного рогатого скота в зависимости от условий содержания может колебаться удой и жирность молока, у кур – яйценоскость).

4. Модификации адекватны, т.е. степень выраженности признака находится в прямой зависимости от вида и продолжительности действия того или иного фактора. Так, улучшение содержания скота способствует увеличению живой массы животных, плодовитости, удоя и жирности молока; на удобренных почвах при оптимальных климатических условиях повышается урожайность зерновых культур и т.д.

5. Массовый характер. Массовость обуславливается тем, что один и тот же фактор вызывает примерно одинаковое изменение у особей, сходных генотипически.

6. Длительные модификации. Впервые были описаны в 1913 г. нашим соотечественником В. Иоллосом. Путем раздражения инфузорий туфелек, он вызвал у них появление ряда морфологических особенностей, которые сохранялись в течение большого числа поколений, до тех пор, пока размножение было бесполым. При изменении условий развития длительные модификации не наследуются. Поэтому ошибочно мнение, что воспитанием и внешним воздействием можно закрепить в потомстве новый признак. Например, предполагалось, что от хорошо дрессированных животных потомство получается с лучшими «актерскими» данными, чем от недрессированных. Потомство дрессированных животных действительно легче поддается воспитанию, но объясняется это тем, что оно наследует не приобретенные родительскими особями навыки, а способность к дрессировке, обусловленную наследуемым типом нервной деятельности.

7. Норма реакций (предел модификации). Именно норма реакции, а не сами модификации, наследуются, т.е. наследуется способность к развитию того или иного признака, а форма его проявления зависит от условий внешней среды. Норма реакции – это конкретная количественная и качественная характеристикам генотипа, т.е. определенное сочетание генов в генотипе и характер их взаимодействия.

Таблица. Сравнительная характеристика наследственной и ненаследственной изменчивости

Свойство Ненаследственная (адаптивные модификации) Наследственная
Объект изменений Фенотип в пределе нормы реакции Генотип
Фактор возникновения Изменения условий окружающей среды Рекомбинация генов вследствие слияния гамет, кроссинговер, мутации
Наследование свойств Не наследуется Наследуется
Значения для особи Повышает жизнеспособность, приспособленность к условиям окружающей среды Полезные изменения приводят к выживанию, вредные – к гибели организма
Значение для вида Способствует выживанию Приводит к появлению новых популя-ций, видов в результате дивергенции
Роль в эволюции Адаптация организмов к условиям окружающей среды Материал для естественного отбора
Форма изменчивости Групповая Индивидуальная
Закономерность Статистическая закономерность вариационных рядов Закон гомологических рядов наследственной изменчивости

Примеры модификационной изменчивости

У человека:

Увеличение уровня эритроцитов при подъеме в горы

Увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей.

Развитие костно-мышечной системы в результате тренировок

Шрамы (пример морфоза).

У насекомых и других животных:

Изменение окраски у колорадского жука вследствие длительного влияния на их куколки высоких или низких температур.

Смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца).

Различная окраска бабочек-нимфалид (например, Araschnia levana), развивавшихся при разной температуре.

У растений:

Различное строение подводных и надводных листьев у водяного лютика, стрелолиста и др.

Развитие низкорослых форм из семян равнинных растений, выращенных в горах.

У бактерий:

Работа генов лактозного оперона кишечной палочки (при отсутствии глюкозы и при присутствии лактозы они синтезируют ферменты для переработки этого углевода).



Модификационная изменчивость - изменения в фенотипе организма, что в большинстве случаев носят приспособительный характер и образуются в результате взаимодействиягенотипа с окружающей средой. Изменения в организме, или модификации, не наследуются. В целом понятие "модификационная изменчивость" соответствует понятию "определена изменчивость", которое ввел Дарвин.

Условная классификация модификационной изменчивости

  • По характеру изменений в организме
    • Морфологические изменения
    • Физиологические и биохимические адаптации - гомеостаз
  • По спектру нормы реакции
    • Узкие
    • Широкие
  • По значению
    • Приспособительные модификации
    • Морфозы
    • Фенокопии
  • По продолжительности
    • Наблюдаются лишь у особей, подвергшихся воздействию определенных факторов окружающей среды (однотерминови)
    • Наблюдаются у потомков этих особей (длительные модификации) в течение определенного количества поколений

Механизм модификационной изменчивости

Ген → белок → изменение в фенотипе организма Окружающая среда

Модификайна изменчивость - результат не изменений генотипа, а его реакции на условия окружающей среды. То есть структура генов не изменяется, - меняется экспрессия генов.

Вследствие этого под действием факторов окружающей среды на организм меняется интенсивность ферментативных реакций, что обуславливается изменением интенсивности их биосинтеза. Некоторые ферменты, например, МАР-киназа, обусловливают регуляцию транскипции генов, которая зависит от факторов окружающей среды. Таким образом, факторы окружающей среды способны регулировать активность генов и выработку ими специфического белка, функции которого наиболее соответствуют среде.

Как пример приспособительных модификаций, рассмотрим механизм образования пигмента меланина. По его выработки соответствуют четыре гена, которые находятся в разных хромосомах. Наибольшее количество аллелей этих генов - 8 - имеющаяся у людей с темным окрасом покровов тела. Если на покровы интенсивно действует фактор среды, ультрафиолетовое излучение, то при проникновении его в мижних слоев эпидермиса клетки последнего разрушаются. Происходит высвобождение эндотелина-1 и эйкозаноидов(продуктов распада жирных кислот), что обуславливает активацию и усиленный биосинтез фермента тирозиназы. Тирозиназа, в свою очередь, катализирует окисление аминокислоты тирозина. Дальнейшее формирование меланина происходит без участия тирозиназы, но усиление биосинтеза тирозиназы и ее активация обусловливает образование загара, соответствующий факторам среды.

Другой пример - сезонная смена окраски меха у животных (линька). Линьки и последующая окраска обусловлены действием температурных показателей на гипофиз, который стимулирует выработку тиреотропного гормона. Это обусловливает действие на щитовидную железу, под действием гормонов которой наступает линька.

Норма реакции

Норма реакции - спектр экспрессии генов при неизменном генотипе, из которого выбирается наиболее соответствующий условиям среды уровень активности генетического аппарата, и формирует специфический фенотип. Например, есть аллель гена X a, обуславливающей продуцирования большего количества колосья пшеницы, и аллель гена Y b, которая производит малое количество колосьев пшеницы. Экспрессия аллелей этих генов взаимосвязана. Весь спектр экспрессии размещается между максимальной экспрессией аллеля а и максимальной экспрессией аллеля b, и интенсивность проявления этих аллелей зависит от условий окружающей среды. При благоприятных условиях (при достаточном количестве влаги, питательных веществ) происходит "доминирования" аллели а при неблагоприятных преобладает проявление аллеля b.

Норма реакции имеет предел проявления для каждого вида - например, усиленное кормление животных обусловит рост ее массы, однако она будет находиться в пределах спектра выявления этого признака для данного вида. Норма реакции генетически детерминирована и наследуется. Для различных изменений есть разные грани проявления нормы реакции.Например, сильно варьирует величина удоя, производительность злаков (количественные изменения), слабо - интенсивность окраски животных и т.п. (качественные изменения). В соответствии с этим, норма реакции может быть узкой (качественные изменения - окраска куколок и имаго некоторых бабочек) и широкой (количественные изменения - размеры листьев растений, размеры тела насекомых в зависимости от питания их куколок. Однако для некоторых количественных изменений характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свиней), а для некоторых качественных изменений широкая (сезонные изменения окраски у животных северных широт). В общем, норма реакции и интенсивность экспрессии генов на основе нее предопределяют непохожесть внутривидовых единиц.

Характеристика модификационной изменчивости

  • Оборачиваемость - изменения исчезают при исчезновении специфических условий среды, которые привели к появлению модификации;
  • Групповой характер;
  • Изменения в фенотипе не наследуются - наследуется норма реакции генотипа;
  • Статистическая закономерность вариационных рядов;
  • Модификации дифференцируют фенотип, не изменяя генотип.

Анализ и закономерности модификационной изменчивости

Ранжированы отображения проявления модификационной изменчивости - вариационный ряд - ряд модификационной изменчивости свойства организма, состоящий из отдельных связанных между собой свойств фенотипа организма, расположенных в порядке возрастания или убывания количественного выражения свойства (размеры листа, изменения интенсивности окраски меха и др.). Единичный показатель соотношения двух факторов в вариационном ряду (например, длина меха и интенсивность ее пигментации) называетсяварианта. Например, пшеница, растущая на одном поле, может сильно варьировать по количеству колосков и колосья в силу различных показателей почвы. Сопоставив число колосков в одном колоске и количество колосьев, можно получить такой вариационный ряд:

Вариационная кривая

Графическое отображение проявления модификационной изменчивости - вариационная кривая - отражает как диапазон вариации властивоств, так и частоту встречаемости отдельных вариант.

После построения кривой видно, что наиболее часто встречаются средние варианты проявления свойства (закон Кетле). Причиной этого является действие факторов окружающей среды на ход онтогенеза. Некоторые факторы подавляют экспрессию генов, другие усиливают. Почти всегда эти факторы, равно действуя на онтогенез, нейтрализуют друг друга, т.е. крайние проявления признака минимизируются по частоте встречаемости. Это и является причиной большей встречаемости особей со средним проявлением признака. Например, средний рост мужчины - 175 см - встречается наиболее часто.

При построении вариационной кривой можно рассчитать величину среднеквадратического отклонения и, на основе этого, построить график среднеквадратичного отклонения от медианы - проявления признака, который встречается наиболее часто.

График среднеквадратичного отклонения, построенный на основе вариационной кривой "модификационная изменчивость пшеницы"

Формы модификационной изменчивости

Фенокопии

Фенокопии - изменения фенотипа под действием неблагоприятных факторов окружающей среды, похожие на мутации. Генотип при этом не меняется. Их причинами являются тератогены - определенные физические, химические (лекарства и т.п.) и биологические агенты (вирусы) с возникновением морфологических аномалий и пороков развития. Фенокопии часто похожи на наследственные болезни. Иногда фенокопии берут свое начало из эмбрионального развития. Но чаще примерами фенокопий являются изменения в онтогенезе - спектр фенокопий зависит от стадии развития организма.

Морфозы

Морфозы - это изменения в фенотипе под действием экстремальных факторов окружающей среды. Впервые морфозы проявляются именно в фенотипе и могут приводить к адаптационных мутаций, берется эпигенетической теории эволюции как основа движения естественного отбора на основе модификационной изменчивости. Морфозы имеют неадаптивных и необратимый характер, то есть, как и мутации, лабильные.Примерами морфоз есть шрамы, определенные травмы, ожоги и т.п.

Длительная модификационная изменчивость

Большинство модификаций не наследуются и является лишь реакцией генотипа на условия окружающей среды. Конечно, потомки особи, которая подверглась воздействию определенных факторов, сформировавших более широкую норму реакции, также могут иметь такие же широкие изменения, однако они будут проявляться лишь при воздействии определенных факторов, что, воздействуя на гены, обусловливающие более интенсивные ферментативные реакции. Однако в некоторых простейших, бактерий и даже эукариот является так называемая длительная модификационная изменчивость, обусловленная цитоплазматической наследственностью. Для выяснения механизма длительной модификационной изменчивости рассмотрим сначала регуляцию триггера факторами окружающей среды.

Регуляция триггеру модификациями

Как пример долговременной модификационной изменчивости рассмотрим оперон бактерий. Оперон - это способ организации генетического материала, при котором гены, кодирующие совместно или последовательно работающие белки, объединяются под одним промотором. В оперона бактерий содержатся, кроме генных структур, два участка - промотор и оператор. Оператор находится между промотором (участок, с которой начинается транскрипция) и структурными генами. Если оператор связан с определенными белками-репрессор, то вместе они не дают двигаться РНК-полимеразе по цепи ДНК, начинается с промотора. Если оперона два и если они взаимосвязаны (структурный ген первого оперона кодирует белок-репрессор для второго оперона и наоборот), то они образуют систему, которая называется триггер. При активном состоянии первой составляющей триггеру другая составляющая пассивна. Но, при воздействии определенных факторов окружающей среды, может произойти переключение триггера на второй оперон вследствие прерывания кодирования белка-репрессор для него.

Эффект переключения триггеров можно наблюдать в некоторых неклеточных форм жизни, например, в бактериофагов, и у прокариот, таких как кишкивна палочка. Рассмотрим оба случая.

Кишкивна палочка - совокупность видов бактерий, взаимодействующих с определенными организмами с получением общей выгоды (мутуализм). Они имеют высокую ферментативную активность в отношении сахаров (лактозы, глюкозы), при чем, они не могут одновременно расщеплять глюкозу и лактозу. Регуляцию возможности расщепления лактозы выполняет лактозной оперон, состоящий из промотора, оператора и терминатора, а также - с гена, кодирующего белок-репрессор для промотора. При отсутствии лактозы в окружающей среде происходит соединение белка-репрессор с оператором и прекращение транскрипции. Если лактоза попадает в клетку бактерии, происходит ее соединение с белком-репрессор, изменение его конформации и диссоциация белка-репрессор от оператора.

Бактериофаги - вирусы, поражающие бактерии. При попадании в клетку бактерии, при неблагоприятных условиях окружающей среды, бактериофаги остаются неактивными, проникая в генетический материал и передаваясь в дочерние клетки при бинарном разделении материнской клетки. При появлении благоприятных условий в клетке бактерии происходит переключение триггера в бактериофага результате попадания питательных веществ-индукторов, и бактериофаги размножаются и вырываются из бактерии.

Такое явление часто наблюдается у вирусов и прокариот, однако у многоклеточных организмов оно почти никогда не встречается.

Цитоплазматическое наследования

Цитоплазматическая наследственность - это наследственность, которая заключается в попадании в цитоплазму вещества-индуктора, которое запускает экспрессию генов (активирует оперон) или в ауторепродукуванни частей цитоплазмы.

Например, при почкования бактерии происходит наследования бактериофага, который находится в цитоплазме и играет роль плазмиды. При благоприятных условиях уже происходит репликация ДНК и генетический аппарат клетки замещается генетическим аппаратом вируса. Похожим примером изменчивости в кишкивнои палочки является работа лактозного оперона E. Coli - при отсутствии глюкозы и наличия лактозы эти бактерии производят фермент для расщепления лактозы вследствие переключения лактозного оперона. Это переключение оперона может наследоваться при почкования путем попадания лактозы к дочерней бактерии в процессе ее формирования, и дочерние бактерии также вырабатывают фермент (лактазу) для расщепления лактозы даже при отсутствии этого дисахарида в окружающей среде.

Также цитоплазматическую наследственность, связанную с длительным модификационной изменчивостью, встречающихся в таких представителей эукариот, как колорадский картофельный жук и наездники Habrobracon. При действии интенсивных термических показателей в куколки колорадского жука окраски жуков менялось. При обязательном условии того, что действия интенсивных термических показателей испытывала и самка жука, у потомков таких жуков настоящее проявление признака держался в течение нескольких поколений, а затем предыдущая норма признаки возвращалась. Данная продолжалась модификационная изменчивость также является примером цитоплазматической наследственности. Причиной наследования является ауторепродукування тех частей цитоплазмы, которые претерпевали изменения. Рассмотрим механизм ауторепродукування как причину цитоплазматической наследственности детально. В цитоплазме ауторепродукуватись могут такие органеллы, имеющие собственные ДНК и РНК, и другие плазмогены.Органеллами, которые способны ауторепродукуватись, есть митохондрии и пластиды, которые способны к самоудвоения и биосинтеза белка путем репликации и этапов транскрипции, процессинга и трансляции. Таким образом обеспечивается непрерывность ауторепродукування этих органелл. Плазмогены также способны ауторепродукуватись. Если под действием окружающей среды плазмоген претерпел изменений, которые обусловили активность этого гена, например, при диссоциации белка-репрессор или ассоциации кодирующие белка, то он начинает продуцировать белок, который формирует определенную признак. Поскольку плазмогены способны транспортироваться через мембрану женских яйцеклеток и, таким образом наследоваться при, то специфический их состояние также наследуется. При этом, сохраняются также модификации, которые вызвал ген активацией собственной экспрессии. Если фактор, вызвавший активацию экспрессии гена и биосинтеза белка ним сохраняется за онтогенеза потомству особи, то признак будет передаваться следующему потомству . Таким образом, длительная модификация сохраняется до тех пор, пока существует фактор, обуславливающий эту модификацию. При исчезновении фактора модификация медленно угасает на протяжении нескольких поколений. Именно этим длительные модификации отличаются от обычных модификаций.

Модификационная изменчивость и теории эволюции

Естественный отбор и его влияние на модификационную изменчивость

Естественный отбор - это выживание наиболее приспособленных особей и появление потомства с закрепленными удачными изменениями. Четыре типа естественного отбора:

Стабилизирующий отбор . Эта форма отбора приводит: а) обезвреживания мутаций путем отбора, нейтрализует их противоположно направленное действие, б) совершенствование генотипа и процесса индивидуального развития при постоянном фенотипе и в) образование резерва обезвреженных мутаций. Как результат этого отбора организмы со средней нормой реакции доминируют в малозминних условиях существования.

Движущий отбор . Эта форма отбора приводит: а) раскрытие мобилизационных резервов, состоящие из обезвреженных мутаций, б) осуществление отбора обезвреженных мутаций и их соединений и в) формирование новых фенотипа и генотипа. Как результат этого отбора доминируют организмы с новой средней нормой реакции, что больше соответствует меняющимся условиям окружающей среды, в которых они живут.

Дизруптивного отбор . Эта форма отбора приводит те же процессы, что и при движущего отбора, но она направлена не на формирование новой средней нормы реакции, а на выживание организмов с крайними нормами реакции.

Половой отбор . Эта форма отбора приводит облегчения встречи между полами, ограничивая участие в репродукции вида особей с менее развитыми половыми признаками.

В общем, большинство ученых считает субстрат естественного отбора, вкупе с другими постоянными факторами (дрейф генов, борьба за существование), наследственную изменчивость. Эти взгляды реализовались в консервативном дарвинизм и в неодарвинизм (синтетическая теория эволюции). Однако в последнее время часть ученых стала придерживаться другого взгляда, согласно которому субстратом до естественного отбора является морфоз - отдельный тип модификационной изменчивости. Этот взгляд сформировался в эпигенетические теорию эволюции.

Дарвинизм и неодарвинизм

С точки зрения дарвинизма, одним из основных факторов естественного отбора, который определяет приспособленность организмов, является наследственная изменчивость. Это приводит к доминированию лиц с удачными мутациями, как следствие этого - к естественному отбору, и, если изменения сильно выражены, в видообразования. Модификационная изменчивость зависит от генотипа. Такого же взгляда относительно модификационной изменчивости придерживается синтетическая теория эволюции, созданная в XX в. М. Воронцовым. Как видно из вышеприведенного текста, основой для естественного отбора эти две теории считают именно генотип, который изменяется под действием мутаций, которые являются одной из форм наследственной изменчивости. Изменения генотипа обусловливают изменение нормы реакции, поскольку именно генотип обуславливает ее. Норма реакции обусловливает изменение фенотипа, и таким образом мутации проявляются в фенотипе, что обусловливает большую его соответствие условиям окружающей среды в случае целесообразности мутаций. Этапы естественного отбора согласно дарвинизмом и неодарвинизмом состоят из следующих стадий:

1) Сначала появляется особь с новыми свойствами (которые обусловлены мутациями);

2) Затем она оказывается способной или неспособной оставить потомков;

3) Если особь оставляет потомков, то изменения ее генотипа закрепляются в поколениях, и это, наконец, приводит естественный отбор.

Эпигенетическая теория эволюции

Эпигенетическая теория эволюции рассматривает фенотип как субстрат естественного отбора, причем отбор не только фиксирует полезные изменения, но и принимает участие в их создании. Основное влияние на наследственность имеет не геном, а Эпигенетическая система - совокупность факторов, действующих на онтогенез. При морфоз, который является одним из типов модификационной изменчивости, в особи формируется устойчивая траектория развития (креод) - Эпигенетическая система, которая адаптируется к морфоз. Эта система развития основана на генетической ассимиляции организмов, заключающееся в соответствии модификации определенной мутации - модификационной генокопиюванни, обусловленное эпигенетической изменением структуры хроматина. Это означает, что изменение активности гена может быть результатом как мутаций, так и факторов окружающей среды. Т.е. на основе определенной модификации при интенсивном воздействии окружающей среды происходит отбор мутаций, которые адаптируют организм к новым переменам.Так формируется новый генотип, который формирует новый фенотип. Естественный отбор, согласно ете, состоит из следующих стадий:

1) Экстремальные факторы окружающей среды приводят к морфоз;

2) морфоз приводят к дестабилизации онтогенеза;

3) Дестабилизация онтогенеза приводит к появлению аномального фенотипа, который наиболее соответствует морфоз;

4) При удачной соответствия нового фенотипа происходит генокопиювання модификаций, которое приводит к стабилизации - образуется новая норма реакции;

Сравнительная характеристика наследственной и ненаследственной изменчивости

Сравнительная характеристика форм изменчивости
Свойство Ненаследственная (модификационная) Наследственная
Объект изменений Фенотип в пределах нормы реакции Генотип
Фактор возникновения Изменения условий окружающей среды Рекомбинация генов результате слияния гамет, кроссинговера и мутаций
Наследования признаков Не наследуется (только норма реакции) Наследуется
Значение для особи Адаптация к условиям окружающей среды, повышения жизнеспособности Полезные изменения приводят к выживанию, вредные - к гибели
Значение для вида Способствует выживанию Приводит к появлению новых популяций, видов в результате дивергенции
Роль в эволюции Адаптация организмов Материал к естественному отбору
Форма изменчивости Групповая Индивидуальная, комбинированная
Закономерность Статистическая (вариационный ряд) Закон гомологических рядов наследственной изменчивости

Модификационная изменчивость в жизни человека

Человек, в общем, издавна использовала знания модификационной изменчивости, например, в хозяйстве. При знании определенных индивидуальных особенностей каждого растения (например, потребность в свете, воде, температурные условия) можно спланировать максимальный уровень использования (в пределах нормы реакции) этого растения - достичь наивысшего плодоносности. Поэтому разные виды растений люди размещают для их формирования в разных условиях - в разных сезонах т.д. Похожая ситуация и с животными - знание о необходимости, например, коров обуславливает усиленное создание молока и, как следствие, повышение удоя.

Поскольку у функциональная асимметрия полушарий головного мозга формируется с достижением определенного возраста и у неграмотных необразованных людей она меньше, можно допустить, что асимметрия является следствием модификационной изменчивости. Поэтому на этапах обучения очень целесообразно выявить способности ребенка, чтобы наиболее полно реализовать ее фенотип.

Примеры модификационной изменчивости

  • У насекомых и животных
  • Увеличение уровня эритроцитов при подъеме в горы у животных (гомеостаз)
    • Увеличение пигментации кожи при иненсивний воздействию ультрафиолетового излучения
    • Развитие двигательного аппарата в результате тренировок
    • Шрамы (морфоз)
    • Изменение окраски колорадских жуков при длительном воздействии на их куколки высоких или низких температур
    • Изменение окраски меха у некоторых животных при изменении погодных условий
    • Способность бабочек из рода Ванесса (Vanessa) изменять свою окраску при изменениях температуры
  • У растений
    • Различное строение подводного и надводного листья у растений водяного лютики
    • Развитие низкорослих форм из семян равнинных растений, выращенных в горах
  • У бактерий
    • работа генов лактозного оперона кишечной палочки