Основные свойства пыли и их определение. Физико-химические свойства производственной пыли

Гигиеническая оценка производственной пыли

Пыль - понятие, характеризующее физическое состояние вещества, а именно раздробленность его на мельчайшие частицы. Взвешенные в воздухе твердые частицы представляют собой дисперсную систему, в которой, дисперсной фазой являются твердые частицы, а дисперсионной средой - воздух.

По характеру веществ, из которых пыль образовалась, существует следующая ее классификация:

I) Органическая пыль:

а) растительная пыль (древесная, хлопковая и др.);

б) животная (шерстяная, костяная и др.);

в) искусственная органическая пыль (пластмассовая и др.).

II) Неорганическая пыль:

а) минеральная (кварцевая, силикатная и др.);

б) металлическая (железная, алюминиевая и др.).

III) Смешанная пыль (пыль при шлифовке металла, при зачистке литья и др.).

Классификация пыли по ее дисперсности и способу образования различают аэрозоли дезинтеграции и аэрозоли конденсации.

Аэрозоли дезинтеграции образуются при добавлении какого-либо твердого вещества, например в дезинтеграторах, дробилках, мельницах, при бурении и других процессах. При этом чем тверже тело, тем меньше размеры образующихся частиц.

Аэрозоли конденсации образуются из паров металлов, металлоидов и их соединений, которые при охлаждении превращаются в твердые частицы. Например, в воздухе конденсируются пары цинка и алюминия при их плавлении, пары металлов при электросварке. При этом размеры пылевых частиц значительно меньше, чем при образовании аэрозолей дезинтеграции.

Частицы аэрозолей дезинтеграции и конденсации различаются также тем, что первые имеют всегда неправильную форму, представляются в виде обломков, а вторые - вид рыхлых агрегатов, состоящих из отдельных частиц правильной кристаллической или шарообразной формы.

Для гигиенической оценки пыли важным признаком является степень дисперсности ее, или размеры пылевых частиц, так как с этим связана как длительность пребывания взвешенной пылевой частицы в воздушной среде, так и глубина проникновения в дыхательные пути, патогенность и физико-химическая активность, электрозаряд частиц и другие свойства.

Физические и химические свойства пыли

Дисперсность и поведение пылевых частиц в воздухе. Микроскопические частицы размером от 200 до 0,1 мк, как и все прочие тела, подчиняются закону тяготения. Но вследствие относительно большой поверхности на единицу массы они испытывают большое сопротивление воздуха и поэтому не оседают с постоянной скоростью по закону Стокса. В начале падения сила тяжести уравновешивает сопротивление воздуха, дальнейшее увеличение скорости падения вследствие этого прекращается и микроскопическая частица оседает с постоянной незначительной скоростью, измеряемой сантиметрами или миллиметрами в час. Сопротивление воздуха при движении в нем частицы изменяется в зависимости от ее размеров и формы, скорости ее оседания и подвижности воздуха.

В неподвижном воздухе кварцевые частицы диаметром 10 мк оседают медленно, а частицы менее 0,1 мк практически не оседают и находятся в постоянном броуновском движении. Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути.

Форма и консистенция пылевых частиц. Как уже указывалось выше, аэрозоли дезинтеграции имеют неправильную форму и представляют по существу обломки в виде пластинок, глыбок, многогранников, вытянутых волокон с острыми зазубренными, иногда сглаженными краями.

Аэрозоли конденсации представляют собой чаще всего рыхлые агрегаты, состоящие из кристаллов или частиц шарообразной формы. От формы пылевой частицы зависит скорость ее оседания. Частица неправильной формы оседает медленно, так как она падает всегда в положении наибольшей своей поверхности, встречающей наибольшее сопротивление воздуха.

Электрические свойства пыли. Пылевые частицы, взвешенные в воздухе, несут как положительный, так и отрицательный заряд независимо от химических свойств первичного вещества.

Химический состав пыли. Для гигиенической оценки пыли важно знать ее химический состав, от которого зависит биологическая активность, в частности фиброгенное, аллергенное, токсическое и раздражающее действие. Фиброгенность пыли зависит главным образом от содержания в ней свободной двуокиси кремния (SiO 2). Чем больше содержание в пыли свободной двуокиси кремния, тем она более агрессивна.

Растворимость пыли. Растворимость пыли в воде и тканевых жидкостях может иметь положительное и отрицательное значение. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, хорошая растворимость такой пыли является фактором благоприятным, способствующим быстрому удалению ее из легких. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Пыль и микрофлора. Известны случаи заболевания легочной формой сибирской язвы, среди рабочих по сортировке тряпок и шерсти. Зерновая пыль может содержать споры различных грибов, в том числе и лучистого гриба, являющегося возбудителем актиномикоза. Воздух рабочих помещений нередко загрязняется различного вида микробам. Некоторые виды пыли могут служить питательной средой для бактерий. Обнаружено, например, огромное количество микробов в мучной пыли, взятой на мельнице. Пыль может быть носителем не только бактерий, но и клещей и яиц глистов.

Судьба пыли в организме. Не вся пыль, попадающая в дыхательные пути, достигает легких: часть ее задерживается в верхних дыхательных путях, в первую очередь в полости носа. Волоски слизистой оболочки носа, извилистые ходы, липкая слизь, покрывающая оболочку, мерцательный эпителий слизистой носа являются отличными механизмами, задерживающими пылевые частицы. Значительная часть задержанной пыли - выделяется обратно при чихании и кашле. 50% пыли достигает легких и там задерживается.

В легких происходит процесс фагоцитоза пылевых частиц, в первую очередь клетками легочного эпителия. Фагоцитоз, является защитной функцией организма и способствует очищению легких от пыли. Клетки, поглотившие пылевые частицы, так называемые пылевые клетки, стремятся удалить пыль из легких различными путями. Один из путей - удаление пыли вместе с мокротой, другой - удаление пыли по лимфатическим путям легкого в бронхиальные железы и по направлению к плевре, где, скапливаясь, пыль вызывает пролиферативную реакцию. Активность фагоцитоза различных видов пыли неодинакова.

Хорошо фагоцитирующаяся пыль, как, например, угольная, сравнительно легко удаляется из легких, в то время как кварцевая пыль, несмотря на высокую активность фагоцитоза, вследствие быстрой гибели фагоцитов удаляется медленно и накапливается в легких. Пыль, транспортируемая пылевыми клетками по лимфатическим путям, может задерживаться в местах бифуркации и изгибов лимфатических сосудов, закупоривать их, вызывать лимфостаз, способствующий в дальнейшем развитию соединительной ткани. Часть пылевых клеток под влиянием токсического действия пыли (кварца) разрушается, пылевые частицы в этом случае задерживаются в альвеолах, внедряются в ткань межальвеолярных перегородок и вызывают пролиферативную клеточную реакцию.

В дальнейшем в зависимости от агрессивности пыли процессы могут протекать в двух направлениях: развитие специфических процессов- образование патологической соединительной ткани, т. е. фиброза легких и развитие неспецифических патологических процессов, например воспаление легких, туберкулез легких, рак легких и др.

Производственная пыль. В производственных условиях источники и причины пылевыделения весьма многочисленны и разнообразны. Запыленность атмосферы и воздуха закрытых помещений может действовать вредно чисто механически, раздражая слизистые оболочки верхних ды­хательных путей и создавая благоприятную почву для инфекции. На производстве дело усложняется тем, что часть пыли, попадая в легкие, задерживается и может вызывать в зависимости от специфики качественного состава различные формы легочного фиброза.

Крупнодисперсные пылевые частицы вызывают травматические повреждения эмали зубов, обусловливая развитие некариозных поражений их твердых тканей. При действии индифферентной пыли возможно развитие катаральных форм гингивита вследствие механического воздействия. В результате растворения в слюне полости рта химические соединения цинка, меди через кровеносную систему депонируются в твердых тканях зубов, приводя к их окрашиванию, хрупкости эмали, ведущей к повышению частоты хронической травмы зубов. Токсическое действие на пульпу зуба ведет к быстрому развитию пульпита и периодонтита вплоть до развития этих па­тологических изменений в интактных зубах.

Пневмокониозы. Одно из первых мест в пылевой патологии принадлежит заболеваниям легких, возникающим в результате отложения в них различного рода пыли. Они объединены под общим названием пневмокониозы (от греч. pneumon - легкое, conia - пыль), которые прежде всего характеризуются разрастанием соединительной ткани в местах отложения пыли, т.е. фиброзом легочной ткани. В результате бронхи и сосуды сдавливаются и суживаются, альвеолярная ткань запустевает и за­твердевает в одних местах (индурация, цирроз легкого) и компенсаторно расширяется в других, что ведет к эмфиземе и бронхоэктазам. Таким образом нарушаются функции легкого и сердца. Пыль, попадая в организм, может ухудшить течение пневмонии, туберкулеза и создавать благоприятную почву для развития некоторых других патологических процессов.

Одной из наиболее распространенных разновидностей пневмокониоза является силикоз, который развивается при длительном вдыхании пыли, содержащей свободную двуокись кремния SiO 2 . Силикоз встречается у рабочих горнорудной, угольной и металлургической промышленности. Пыль, содержащая двуокись кремния в свободном состоянии, отличается наибольшей агрессивностью. Главную опасность для человека представляют пылевые частицы размером менее 5 мкм.

Двуокись кремния, находящаяся в связанном состоянии с другими элементами, вызывает силикатозы. К ним относятся асбестоз, развиваю-щийся от вдыхания асбестовой пыли, талькоз - от вдыхания талька и др.

Клиника, диагностика. Пневмокониоз характеризуется тяжелыми склеротическими изменениями в органах дыхания. Одновременно значительные нарушения происходят в нервной, сердечно-сосудистой и лимфатической системах, в желудочно-кишечном тракте. Следовательно, пневмокониоз, особенно силикоз, является заболеванием всего организма.

По клинико-рентгеноморфологической картине различают три стадии силикоза и других видов узелкового пневмокониоза.

Для I стадии характерно усиление легочного рисунка, деформирование сосудисто-бронхиального рисунка, утолщение стромы легких и появление силикотических узелков диаметром менее 1 мм, плохо различимых невооруженным глазом.

Во II стадии происходят более выраженные изменения легких. Можно наблюдать усиление диффузного процесса в паренхиме легких и в области корней. Деформация сосудисто-бронхиального рисунка значительно более выражена. Отчетливо видны многочисленные диффузные узелки диаметром 2-4 мм. Для этой стадии характерно наличие распространенной мелкобуллезной эмфиземы легких.

В III стадии количество и размер узелков резко увеличиваются. Наблюдается слияние мелких узелков в крупные узлы, в дальнейшем приобретающие опухолевидную форму, дающую на рентгенограмме массивные тени. Мелкобуллезная эмфизема постепенно заменяется крупнобуллезной.

В I стадии больные обычно жалуются на боль и чувство стеснения в груди, одышку, появляющуюся при физическом напряжении, кашель без мокроты. Объективно нередко выявляется краевая эмфизема легких, бронхит, а иногда при пробе с нагрузкой - слабо выраженная функциональная недостаточность дыхательной и сердечно-сосудистой систем. Жизненная емкость легких чаще остается нормальной, но может быть повышенной или пониженной.

Гигиеническое значение промышленных аэрозолей с твердой фазой обусловливается их физическими и химическими свойствами, из которых наиболее важными являются дисперсность, форма частиц, их консистенция, электрический заряд, растворимость, химический состав. С некоторыми из указанных свойств связана взрывчатость пыли.

Для гигиенической оценки пыли важным признаком является степень дисперсности ее, или размеры пылевых частиц, так как с этим связана как длительность пребывания взвешенной пылевой частицы в воздушной среде, так и глубина проникновения в дыхательные пути, патогенность и физико-химическая активность, электрозаряд частиц и другие свойства .

Физико-химические свойства пыли в основном зависят от ее природы, то есть от того материала или вещества, из которого образовалась эта пыль, и механизма ее образования - каким образом она получена: размельчением, конденсацией, сгоранием и т. п. По природе образования пыли делятся на две группы:

  • · органическую
  • · неорганическую.

К органической относятся: пыли растительного происхождения (древесины, хлопка, льна, различных видов муки и др.), животного (шерсти, волоса, размолотых костей и др.), химического (пластмасс, химических волокон и других органических продуктов химических реакций). В группу неорганических пылей входят пыль металлов и их окислов, различных минералов, неорганических солей и других химических соединений. Однако выделяют ещё один тип: смешанная , т.е.содержащая пыли первой и второй групп например, пыль, получающаяся при заточке инструментов и состоящая из минеральных и металлических частиц. В зависимости от происхождения пыли она может быть растворимой и нерастворимой в воде и в других жидкостях, включая и биосреды (кровь, лимфу, желудочный сок и т. п.). От происхождения пыли зависит также ее химический состав, удельный вес и ряд других свойств .

Однако наиболее важные физические и химические свойства пылей обуславливаются их дисперсностью, формой частиц, способностью к растворению и химическим составом. Структура пыли, то есть форма пылинок, зависит и от природы и от механизма образования пыли. По структуре пыль может быть аморфной (пылинки округлой формы), кристаллической (пылинки с острыми гранями), волокнистой (пылинки удлиненной формы), пластинчатой (пылинки в виде слоистых пластинок) и др.

Для гигиенической оценки пыли наиболее важным признаком является ее дисперсность . С размерами пылевых частиц связаны длительность пребывания их во взвешенном состоянии в воздухе, глубина проникновения в дыхательные пути, физико-химическая активность и другие свойства.

Дисперсность и поведение пылевых частиц в воздухе

При измельчении твердого вещества образующиеся пылинки получают то или иное количество электричества вследствие частичного перехода механической энергии в электрическую, кроме того, пылинки получают электрический заряд, адсорбируя на себе ионы из воздушной среды. Таким образом, пыль, находящаяся в воздухе, в той или иной степени несет на себе электрический заряд. Степень электрозаряженности оказывает существенное влияние на поведение пыли в воздухе. Электрозаряженные пылинки с противоположным знаком соединяются между собой (схлапливаются), образуя более крупные частицы, за счет чего быстрее осаждаются; пылинки с одинаковым зарядом, наоборот, отталкиваются друг от друга, что усиливает их движение в воздухе и замедляет осаждение. Исследования показывают, что высокодисперсная пыль в большей степени подвержена электрическим зарядам. Электрозаряженности способствует также нагревание пыли. Повышенная влажность воздуха или самой пыли снижает ее электрозаряженность.

Высокодисперсная пыль вследствие электрозаряженности обладает активной поверхностью, поэтому на ней сарбируются газы и другие мелкие частицы, находящиеся в воздухе. Чем меньше пылевые частицы, тем больше их активность. Газы, обволакивая пылевую частицу, способствуют более длительному витанию ее в воздухе, то есть сорбирование на пылевых частицах газов замедляет осаждение пыли.

При значительной запыленности воздуха высокодисперсной пылью электрические заряды пылевых частиц могут суммироваться и, достигнув определенного потенциала, образовывать электрические разряды -- взрывы. Чаще всего такие взрывы пыли возникают при наличии огня или сильно нагретого предмета в чрезмерно запыленной атмосфере, так как при повышении температуры резко увеличивается заряженность пылевых частиц, быстрее и с большей силой происходит электрический разряд .

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Только что образовавшиеся аэрозоли конденсации (дымы) имеют размеры меньше 1 мкм. С течением времени они агрегируются и в виде хлопьев выпадают из воздуха. Размеры аэрозолей дезинтеграции (пыли) зависят от вещества, из которого они получены, и интенсивности его размельчения. Чем тверже вещество и чем интенсивнее его размельчение, тем выше степень дисперсности пылевых частиц.

Благодаря сравнительно быстрому оседанию крупных пылевых частиц от 10 мкм и более, обычно в воздухе производственных помещений преобладают пылевые частицы до 10 мкм, причем 70--90% из них составляют частицы размером до 5 мкм.

Микроскопические частицы размером от 200 до 0,1 мк, как и все прочие тела, подчиняются закону тяготения. Но вследствие относительно большой поверхности на единицу массы они испытывают большое сопротивление воздуха и поэтому не оседают с постоянной скоростью по закону Стокса. В начале падения сила тяжести уравновешивает сопротивление воздуха, дальнейшее увеличение скорости падения вследствие этого прекращается и микроскопическая частица оседает с постоянной незначительной скоростью, измеряемой сантиметрами или миллиметрами в час. Сопротивление воздуха при движении в нем частицы изменяется в зависимости от ее размеров и формы, скорости ее оседания и подвижности воздуха.

В неподвижном воздухе кварцевые частицы диаметром 10 мк оседают медленно, а частицы менее 0,1 мк практически не оседают и находятся в постоянном броуновском движении. Таким образом, чем меньше размер пылевых частиц, тем дольше они задерживаются взвешенными в воздухе, следовательно, тем больше возможность попадания их в дыхательные пути.Некоторые изменения скорости оседания пылевых частиц возникают в связи с процессом флоккуляции. Это имеет значение в основном для аэрозолей конденсации, которые даже в неподвижном воздухе благодаря энергичному броуновскому движению часто сталкиваются друг с другом, агрегируются и в виде хлопьев выпадают из воздуха. Аэрозоли дезинтеграции не поддаются агрегированию главным образом вследствие относительно больших размеров-частиц; более того, пылевые частицы в них могут приобретать меньшие размеры.

Аэрозоли конденсации окиси магния минимальных размеров с течением времени превращаются в хлопья, а аэрозоли дезинтеграции мела в виде хлопьев -- в мельчайшие пылевые частицы. Влияние движения воздуха на флокуляцию незначительно. Увлажнение воздуха оказывает эффективное влияние на флокуляцию лишь в том случае, если оно интенсивное. Исследования показали, что аэрозоли дезинтеграции малого диаметра могут флокулироваться при наличии в воздухе водяных аэрозолей размером 0,55--0,4 мк в количестве, значительно превышающем количество твердых аэрозолей.

Степень дисперсности промышленных аэрозолей зависит прежде всего от способа их образования. Свежеполученные аэрозоли конденсации (дымы) имеют размеры частиц меньше 1 мк. Величина частиц аэрозолей дезинтеграции (пыль) зависит от вещества, из которого они получены, интенсивности дезинтеграции и возраста аэрозолей. Чем тверже вещество, чем интенсивнее дезинтеграция и чем больше возраст аэрозолей, тем больше пыли и тем выше степень дисперсности ее частиц .

Химический состав пыли.

Для гигиенической оценки пыли важно знать ее химический состав, от которого зависит биологическая активность, в частности фиброгенное (перерождение легочной ткани в соединительную), аллергенное, токсическое и раздражающее действие. Фиброгенность пыли зависит главным образом от содержания в ней свободной двуокиси кремния. Пыль, образующаяся при производстве огнеупорного кирпича, содержит 98% свободной двуокиси кремния; формовочная земля в чугунолитейных цехах - 60-80%; железная руда - до 30%, вмещающие ее породы - кварцит - до 70%; почти все породы угольных пластов Донбасса содержат более 10% свободной двуокиси кремния. Чем больше содержание в пыли двуокиси кремния, тем она более агрессивна.

Химическая активность пыли увеличивается с повышением ее дисперсности, т. е. с увеличением удельной поверхности размельчаемых веществ.

Большое значение имеет растворимость пыли. Если пыль не токсична и действие ее на ткань сводится к механическому раздражению, то хорошая растворимость такой пыли в тканевых жидкостях является благоприятным фактором. В случае токсичной пыли хорошая растворимость является отрицательным фактором.

Пыль оказывает вредное действие главным образом на дыхательные пути, вызывая заболевания как их верхних отделов, так и легких, а также действует на кожу и глаза.

При вдыхании пылевых частиц размером 5 мкм и более они всецело задерживаются в верхних дыхательных путях, в первую очередь в полости носа. Это вызывает травмирование и раздражение слизистой, которое при дальнейшем развитии процесса переходит в катар, вначале гипертрофический (т. е. с разрастанием ткани), а затем атрофический с заменой мерцательного эпителия плоским и гибелью железистого аппарата. Фильтрующая способность носовой полости поэтому сильно снижается, а в далеко зашедших случаях вовсе исчезает. Постепенно под влиянием длительного воздействия различных видов пылей развиваются хронические воспалительные процессы и на других участках дыхательных путей (риниты, фарингиты, трахеиты, бронхиты). Некоторые виды пыли, обладающие большой химической активностью (хром, мышьяк), могут при длительном воздействии вызвать изъязвление и прободение носовой перегородки.

Вне зависимости от физико-химических свойств все виды пылевых частиц вначале оказывают на легочную ткань механическое действие. При этом легочная ткань реагирует на них, как на инородное тело, стремясь удалить его. Защитная функция организма, способствующая очищению легких от пыли, носит название фагоцитоза и состоит в следующем.

Пыль, попавшая в легкие, поглощается так называемыми пылевыми клетками (клетками легочного эпителия), которые затем стремятся удалить пыль из легких различными путями. Один из путей -- удаление пыли вместе с мокротой. Другой путь -- удаление пыли по лимфатическим путям. Частицы пыли размером менее 1 мкм фагоцитируются легче; более крупные пылинки, а также кварцевая пыль удаляются медленно и накапливаются в легких и в лимфатических, узлах, приводя их к поражению.

Пыль, проникшая глубоко в дыхательные пути, может привести к развитию в них специфического заболевания -- пневмокониоза, сущность которого заключается в развитии фиброза, т. е. замещения легочной ткани соединительной тканью. В зависимости от характера вдыхаемой пыли различают следующие виды пневмокониозов:

  • · силикатоз , вызываемый воздействием пыли, содержащей двуокись кремния в связанном состоянии (силикаты -- пыль асбеста, талька);
  • · антракоз -- пневмокониоз, вызываемый воздействием угольной пыли;
  • · сидероз -- пневмокониоз, вызываемый, например, пылью железа.

Силикоз -- наиболее тяжелый и наиболее распространенный вид пневмокониоза. Это медленно протекающий хронический процесс, который, как правило, развивается только у лиц, проработавших несколько лет в условиях значительного загрязнения воздуха кремниевой пылью. Силикоз развивается обычно через 5--10 или 15 лет работы, связанной с вдыханием кварцсодержащей пыли при очень высоком содержании свободной SiO 2 во вдыхаемой пыли, однако в отдельных случаях возможно более быстрое возникновение и течение этого заболевания, когда за сравнительно короткий срок (2~4 года) процесс достигает конечной, терминальной, стадии.

Силикоз следует рассматривать как тяжелое заболевание организма в целом, при котором происходят значительные изменения в различных органах и системах (нервной, сердечно-сосудистой, лимфатической и др.). Нередко он осложняется туберкулезом.

Кроме пневмокониоза, вдыхание пыли может быть причиной повышенной заболеваемости воспалением легких. Особенно это относится к томасовой пыли, образующейся в сталеплавильном производстве и содержащей в своем составе фосфорные соединения.

Пыли, оказывающие раздражающее действие на кожу (пыли синтетических смол, извести, карбида кальция), могут вызвать различные воспалительные процессы вплоть до язвенных поражений (дерматиты, экземы). При большой запыленности воздуха попадающие на кожу пылевые частицы могут проникнуть в отверстия сальных и потовых желез, вызвать их закупорку, а следовательно, нарушить нормальную деятельность кожи, чем будет снижена ее сопротивляемость к проникновению микробов .

Основные свойства промышленных пылей.

Для выбора аппаратов с целью эффективной очистки газа необходимо знать следующие основные свойства пыли, со­держащейся в технологических и вентиляционных газах: химический состав, плотность, угол естественного откоса, смачиваемость, удельное электрическое сопротивление, фор­му и структуру частиц, дисперсность, токсичность, воспла­меняемость и взрываемость, способность коагулировать.

Химический состав пыли. Он всегда характерен для данного производства или технологического процесса.

По химическому составу пыли судят о ее токсичности. Зная химический состав пыли, можно обоснованно выбрать мокрый или сухой способ очистки газа. Если пыль содер­жит компоненты, способные образовывать с водой или дру­гой жидкостью, подаваемой на орошение аппаратов, сое­динения, которые при оседании на стенках аппаратов и га­зоходов трудно удалять, применять мокрый способ очист­ки газов нельзя. При наличии в руде серы во время металлургических процессов в газ переходят ее оксиды, которые при мокром способе очистки образуют кислоты. В этом случае следует принимать меры по защите аппаратов и газоходов от коррозии и обеспечивать нейтрализацию шламовых вод. Поэтому для очистки таких газов целесооб­разнее применять сухой способ. При наличии в составе пы­ли оксидов кремния и аналогичных им соединений прини-мают меры по защите аппаратов и газоходов от механичес­кого истирания.

Воспламеняемость и взрывоопасность. Чем меньше раз­меры и пористее структура частиц, тем больше их удель­ная поверхность и выше физическая и химическая актив­ность пыли. Высокая химическая активность некоторых видов пыли является причиной ее взаимодействия с кисло­родом воздуха. Окисление частиц пыли сопровождается повышением температуры. Поэтому в местах скопления пыли возможны ее самовоспламенение и взрыв. Ввиду большой удельной поверхности возгонов и наличия в ряде случаев в их составе неокисленных металлов, углерода и серы возгоны более склонны к самовозгоранию. Взрыво­опасность пыли увеличивается с уменьшением ее зольности и влажности.

По степени пожаро- и взрывоопасности пыли делят на две группы и четыре класса. К группе А относят взрыво­опасные пыли с нижним концентрационным пределом взрываемости до 65 г/м 3 . Из них пыль с нижним пределом взрываемости до 15 г/м 3 относится к I классу, а остальные - ко II классу.

В группу Б входят пыли, имеющие нижний концентра­ционный предел выше 65 г/м 3 . Из них пыли, температура воспламенения которых до 250°С, относятся к III классу, а пыли, воспламеняющиеся при температуре выше 250 °С,- к IV классу.

Горючая пыль вследствие сильно развитой поверхности контакта частиц с кислородом воздуха способна к само­возгоранию и образованию врывчатых смесей с воздухом. Взрыв взвешенной в воздухе пыли - это резкое увеличение давления в результате очень быстрого сгорания ее частиц. Минимальные взрывоопасные концентрации взвешенной в воздухе пыли: 20 - 500 г/м 3 , максимальные - около 700 -8000 г/м 3 . Чем больше содержание кислорода в газо­вой смеси, тем вероятнее взрыв и больше его сила. При содержании ≤ 16% О 2 пылевое облако невзрываемо (на­пример, в смеси с СО 2 , водяными парами и т.д.).

Взрывоопасность пыли различных видов топлива зави­сит от содержания летучих, влажности, зольности, тонкос­ти помола, концентрации пыли в воздухе, температуры воздуха и пыли. Угли с содержанием компонентов менее 10 % невзрывоопасны. Пыль угля с выходом летучих более 30 % взрывоопасна при 65-70°С. Наиболее опасны кон­центрации угольной пыли в пределах от 300 до 600 г/м 3 .

Нижним и верхним пределами взрываемости пыли на­зывается соответственно наименьшая и наибольшая кон­центрации взвешенной в газах или воздухе пыли, при кото­рой возможен взрыв смеси. Нижние пределы взрываемос­ти для большинства пылей составляют 2,5-35 г/м 3 . Такие концентрации соответствуют весьма высокой запыленности воздуха, при которой трудно различать предметы на рас­стоянии нескольких метров.

Смачиваемость пыли. Характеризует ее способность смачиваться водой. Обычно ее выражают в процентах. Чем меньше размер частиц пыли, тем меньше их способность смачиваться. В частности, возгоны плохо смачиваются во­дой. Смачиванию препятствует газовая оболочка, образую­щаяся вокруг мелких частиц пыли. Чем крупнее частицы пыли и чем округлее их форма, тем слабее силы, удерживающие газовую оболочку вокруг поверхности частиц и, следовательно, тем больше их способность смачиваться. Смачиваемость пыли зависит и от ее химического состава. Смоченные частицы лучше отделяются от газа в аппаратах газоочистки. Смачиваемость определяется путем измерения доли смоченного и погрузившегося на дно сосуда порошка, насыпанного тонким слоем на поверхность воды.

Пыли по смачиваемости разделяют на три группы: гидрофобная (плохо смачиваемая, менее 30 %), умеренно смачиваемая (30-80 %), гидрофильная (хорошо смачиваемая, 80-100 %). В зависимости от химического состава некото­рые пыли при смачивании водой схватываются (цементиру­ются, затвердевают). Такие пыли при оседании на стенки аппаратов и газоходов, образуют трудно удаляемые отло­жения, которые уменьшают сечение для прохода газа и ухудшают условия газоочистки.

Плотность пыли. Различают истинную плотность на­сыпной массы. Истинная плотность пыли обусловлена хи­мическим составом материала, из которого она образована, и измеряется отношением массы пыли к занимаемому ею объему. В некоторых случаях внутри частиц пыли могут быть поры и пустоты. Величина пор и пустот зависит от формы и размера частиц. Плотность такой пыли называют кажущейся. Она будет несколько меньше истинной плот­ности, так как газ, находящийся в порах, весит мень­ше, чем пыль. На практике эти поры, как правило, не учитывают и считают кажущуюся плотность равной ис­тинной.

В процессе очистки уловленная пыль собирается в оп­ределенную емкость и образует насыпную массу. Плотность насыпной массы в отличие от истинной плотности учитыва­ет наличие воздушных зазоров между отдельными частица­ми пыли и изменяется в зависимости от способа заполнения (уплотнения) пыли в заданном объеме. Величиной насып­ной плотности пользуются для определения объема, кото­рый занимает пыль в бункерах. Чем меньше размеры час­тиц пыли, тем меньше поверхность их соприкосновения и больше количество пустот между отдельными пылинками в насыпной массе, а следовательно, меньше насыпная плот­ность по сравнению с истинной. Для крупной пыли насып­ная плотность примерно в 2,5 раза меньше истинной плот­ности, а для мелкой пыли - в 20 раз.



Угол естественного откоса пыли представляет собой угол обрушения пыли в процессе или после наполнения пылью бункеров аппаратов газоочистки или других емкостей. Его отсчитывают между горизонтальной плоскостью и образующей конуса, получаемого при насыпании пробы пыли на плоскость. По углу естественного откоса пыли делают угол наклона бункеров пылеуловителей.

Удельное электрическое сопротивление (УЭС) представляет собой сопротивление образца пыли в форме куба с гранями 1 м прохождению электрического тока (Ом·м). Величина УЭС слоя пыли на электродах электро­фильтра является одним из важных факторов, влияющих на эффективность работы сухих электрофильтров.

Все пыли по УЭС разде­ляют на три группы.

Частицы пыли, имеющие УЭС меньше 10 4 Ом-м (1-я группа), легко разряжаются и, приобретая одноименный с осадительными электродами заряд, отрываются от по­верхности и попадают в газовый поток, способствуя увели­чению вторичного уноса. Примером такой пыли могут слу­жить частицы недогоревшего топлива (недожог) в дымо­вых газах котельных агрегатов, плохо улавливаемые в электрофильтрах. Такие пыли предпочтительнее улавливать в рукавных фильтрах.

Частицы пыли с удельным сопротивлением 10 4 - 10 10 Ом-м (2-я группа) удовлетворительно улавливают­ся в электрофильтрах. При осаждении на электроде эти пыли разряжаются не сразу, а через некоторое время, до­статочное для накопления слоя и формирования из мелких осажденных частиц агломератов под действием электричес­ких и аутогезионных сил. Размер агломератов обычно та­ков, что основная часть пыли при встряхивании электродов: попадает в бункер электрофильтра и только небольшое количество уносится газовым потоком, образуя вторичный унос. К таким пылям можно отнести огарковую (при про­изводстве серной кислоты в печах с кипящим слоем) и це­ментную пыль (при производстве цемента мокрым спо­собом).

При УЭС пыли выше 10 10 Ом-м (3-я группа) возника­ют наибольшие трудности, нарушающие протекание процесса электрической фильтрации. Возникает обратная ко­рона.

Обратная корона на осадительном электроде возникает в результате того, что разность потенциалов (напряжений) между поверхностью слоя и поверхностью осадительного электрода превышает пробивное напряжение слоя, и в его порах возникает тлеющий разряд, внешне напоминающий коронный, направленный от острых кромок, расположенных у трещин в пылевом слое, к коронирующему электроду.

В условиях обратного коронного разряда уменьшается пробивное (рабочее) напряжение, вследствие чего резко снижается эффективность работы электрофильтра, в ре­зультате чего увеличивается пылевынос.

Дисперсность пыли. Размер частиц пыли является од­ной из основных характеристик, определяющих выбор типа аппарата или системы аппаратов для очистки газа. Круп­ная пыль лучше, чем мелкая, оседает из газового потока и может быть уловлена в аппарате простейшего типа. Для очистки газа от мелкой пыли зачастую требуется не один, а несколько аппаратов, установленных последовательно по ходу газа. Под дисперсностью пыли понимают совокуп­ность размеров всех составляющих ее частиц.

Одной из классификаций пыли по размерам служит ее разделение на крупную пыль (размером более 10 мкм) и мелкую (размером менее 10 мкм). Возгоны содержат ча­стицы в основном размером менее 1 мкм. Пыль, образован­ная в результате механических операций (дробления, транспортировки и т.п.), обычно имеет размеры более 5- 50 мкм. В любых технологических газах металлургическо­го производства в зависимости от его физико-химических характеристик содержится пыль самого разнообразного дисперсного состава.

Токсичность пыли. Глубина проникновения частиц пы­ли в органы дыхания человека зависит от величины частиц. Особенно опасны в этом отношении туманы. Токсичность пыли зависит от их материала, из которого она образована (например, свинца, мышьяка, ртути и др.).

Главную опасность для человека представляет пребы­вание в сильно запыленной среде, при котором значитель­ное количество пыли попадает в организм. При этом созда­ются условия для длительного контакта относительно большой массы пыли со слизистой поверхностью дыхатель­ных путей, которая наиболее восприимчива к ее действию. Большое значение имеет размер пылинок, так как, чем мельче частицы пыли, тем глубже они проникают в дыха­тельную систему. Если относительно крупные пылинки при вдыхании в большой степени задерживаются в верхних дыхательных путях и постепенно удаляются оттуда со сли­зью, то мелкая пыль, как правило, проходит в легкие и осе­дает там на длительный срок, вызывая поражение легоч­ной ткани. Следовательно, высокодисперсная пыль представ­ляет большую опасность, чем крупная. Пылинки могут проникнуть в поры потовых и сальных желез, закупоривая их и затрудняя функции этих желез. Попавшие вместе с пылью микробы в закупоренных про­токах сальных желез могут развиваться, вызывая гнойнич­ковые заболевания кожи - пиодермию. Закупорка потовых желез пылью в условиях горячего цеха вызывает уменьше­ние потоотделения, что затрудняет терморегуляцию.

Нетоксичные пыли, находясь в легких длительное вре­мя постепенно вызывают разрастание вокруг каждой пы­линки соединительной ткани, которая не способна воспри­нимать кислород из вдыхаемого воздуха, насыщаться кро­вью и выделять углекислоту, как это делает легочная ткань. Этот процесс разрастания соединительной ткани протекает медленно, как правило, годами. При длительной работе в условиях высокой запыленности, разрастаясь, соедини­тельная ткань постепенно замещает легочную, снижая та­ким образом основную функцию легких - усвоение кисло­рода и выделение углекислоты.

Методы и аппаратура для определения дисперсного состава пылей (аэрозолей)

Свойства аэрозолей и способы их улавливания определяются, главным образом, концентрацией и размерами частиц дисперсной фазы.

Фотоэлектрический счетчик аэрозольных частиц типа АЗ – 5 выпускается в системе радиоэлектронной промышленности.

Действие прибора основано на том, что каждая аэрозольная частица в оптическом датчике генерирует электрический импульс, амплитуда которого пропорциональна диаметру фиксируемой частицы. Прибор позволяет определить счетную концентрацию аэрозолей в пределах от 1 до 300 тыс. частиц в 1 л исследуемого воздуха.

Продолжительность единичного измерения не превышает 1 мни. Объемная скорость просасывания воздуха 1,2 л/мин. Прибор позволяет также судить о дисперсном составе частиц и пределах 0,4-10 мкм. Погрешность определения счетной концентрации аэрозоля не превышает ±20% по отношению к эталонному прибору, на пре­деле 0,7 мкм. Прибор включают в сеть переменного тока напряже­нием 220±10 В или к источнику постоянного тока напряжением 12 В. Масса прибора-не более 8,5 кг.

В практике пылеулавливания дисперсный состав пылен в долях от массы определяют методом воздушной сепарации или седиментационным способом, пользуясь приборами собственной конструкция и изготовления. Методы определения дисперсного состава аэрозолей основаны на законе Стокса - наиболее универсальном законе дви­жения тел в вязкой среде.

Плотность вещества аэрозольных частиц, как правило, колеб­лется в пределах 1-4 г/см 3 , что в несколько тысяч раз превосходит плотность воздуха. Несмотря на такое различие в плотностях среды и частицы, высокодисперсные аэрозоли отличаются сравнительной устойчивостью в поле тяготения, обусловленной большой удельной поверхностью частиц.

К группе прямых методов определения гранулометрического со­става порошкообразных материалов относится ситовой анализ. Ме­рилом крупности частиц в этом случае является размер ячейки сита. Сито представляет собой обечайку с днищем из металлической сет­ки. Обечайки могут плотно вставляться одна в другую, образуя набор сит с уменьшающимися сверху вниз размерами ячеек. Набор заканчивается поддоном а сверху плотно закрывается крышкой.

Ситовой анализ сводится к просеиванию определенной навески порошкообразного материала через набор сит и раздельному взве­шиванию остатка на каждом сите, а также взвешиванию фракции на поддоне. Относя навеску к весу исходной пробы, определяют про­центное содержание каждой фракции.

Для комплектования набора сит используют металлические сет­ки, изготовленные согласно ГОСТ 3584-73 (сетки проволочные, тканые, с квадратными ячейками и высокой точности).

Для выполнения ситового анализа применяют различные встряхивающие устройства, действующие по заданному режиму. Продол­жительность просеивания устанавливают опытным путем приме­нительно ккаждому виду исследуемого порошкообразного мате­риала.

При определении дисперсного состава пылей в широком диапа­зоне исследуют фракцию пыли, прошедшую через сито с наимень­шими размерами ячеек (т. е. собранную на поддоне), и анализируют, применяя более тонкие методы фракционирования. При иссле­довании промышленных пылей наибольшее распространение полу­чили седиментометрическнй метод в жидких средах и способ воз­душной сепарации.

Седиментометрический анализ в жидкой среде основан на зако­не Стокса и позволяет разделять фракции от 2 - 3 до 63 мкм (при объемных весах вещества 2-3 г/см 3). Из многочисленных вариантов аппаратуры для седиментометрического анализа получил практичес­кое применение прибор с подъемной пипеткой, изготавливаемый экс­периментальными мастерскими Ленинградского института охраны труда ВЦСПС.

Для выполнения на приборе двух параллельных определений дисперсного состава требуется 5-10 г пыли. Продолжительность седиментации при анализе относительно высокодисперсных пылей достигает 5 - 6 ч, не считая затрат времени на многочисленные под­готовительные операции. Недостатком седпментометрического спо­соба является то, что для каждого ранее не изученного вида пыли необходимо подбирать подходящую жидкую среду, инертную по отношению к исследуемой дисперсной фазе

Широкое распространение нашел также метод центробежной воздушной сепарации . Этот принцип положен в основу конструкции воздушной центрифуги «Бако», выпускаемой фирмой “NEU” (Франция) и позволяющей разделять навеску исследуемой пыли около 10 г на восемь фракций в пределах от 1-2 до 60 мкм в те­чение примерно 2 ч.

Для устранения погрешностей, связанных с возможным изме­нением дисперсного состава пыли при накоплении навески и при повторном ее диспергировании в жидкой пли газовой фазах, пред­ложены методы и аппаратура для разделения пыли на фракции не­посредственно в процессе отбора пробы.

К этой группе приборов относятся: ротационный анализатор дисперсности пыли РАД-1; импактор конструкции физико-химиче­ского института им. Карпова; струйный сепаратор (импактор) НИИОГАЗ.

Наиболее важные физические и химические свойства пылей обуславливаются их дисперсностью, формой частиц, способностью к растворению и химическим составом.

Для гигиенической оценки пыли наиболее важным признаком является ее дисперсность . С размерами пылевых частиц связаны длительность пребывания их во взвешенном состоянии в воздухе, глубина проникновения в дыхательные пути, физико-химическая активность и другие свойства.

Наиболее важные свойства пыли обуславливаются непосредственно их дисперсностью, формой частиц, хорошоей способностью к растворению и уникальным химическим составом. Для оценки пыли с гигиенической стороны наиболее важным признаком является ни что иное как дисперсность. С небольшими размерами пылевых частиц связана высокая длительность пребывания их в воздухе во взвешенном состоянии.

Химический состав пыли

В зависимости от состава пыль может оказывать на организм фиборгенное, раздражающее, токсическое, аллергенное действие. Первостепенное значение для развития пылевых заболеваний легких имеет минералогический состав пыли, особенно содержание в пыли диоксида кремния.

Фиброгенные свойства кремния зависят от структуры кристаллической решетки: наиболее агрессивными являются получаемые в результате нагрева, конденсации и перекристаллизации двуокиси кремния - тридимит, кристобалит. Меньшей, но достаточно высокой фиброгенностью обладает кристаллический кремнезем. Аморфный диоксид кремния с разрушенной кристаллической решеткой менее фиброгенен.

Химическая активность зависит от общей площади поверхности пылинок. Обожженные продукты - керамзит, вермикулит, перлит и др. благодаря увеличенной общей поверхности обладают более выраженным фиброгенным действием на легочную ткань, чем сырые, идущие на их изготовление. Иногда незначительная примесь какого-либо химического агрессивного соединения изменяет направленность и силу действия пыли. Например, наличие шестивалентного хрома в цементах до 0,001% усиливает аллергенные свойства пыли .

Растворимость пыли, зависящая от ее химического состава, имеет определенное гигиеническое значение. Некоторые пыли, например сахарная, быстро растворяясь в организме, не оказывают на него вредного действия. Нерастворимая, в частности, волокнистая пыль надолго задерживается в воздухоносных путях, нередко приводя к развитию патологического состояния. Хорошая растворимость токсических пылей способствует быстрому развитию явлений отравления.

Вредное действие пыли зависит от степени отклонения ее рН реакции от рН слизистой оболочки дыхательных путей, которая колеблется от 6,8 до 7,4. Изменения реакции в ту или другую сторону оказывает неблагоприятное действие на работу мерцательного эпителия, затрудняя процессы элиминации.

Дисперсность пыли

Как система, состоящая из частиц, взвешенных в газе, аэрозоли характеризуются степенью дисперсности, т. е. размером частиц дисперсной фазы. Дисперсность производственной пыли имеет большое гигиеническое значение, так как от размера пылевых частиц, их удельного веса и формы зависит длительность пребывания пыли в воздухе и характер воздействия на органы дыхания.

В зависимости от дисперсности различают видимую, пыль размером более 10 мкм, микроскопическую - размером от 0,25 до 10 мкм, ультрамикроскопическую - менее 0,25 мкм.

Дисперсность аэрозолей определяет скорость оседания частиц во внешней среде. Мельчайшие частицы размером 0,01 - 0,1 мкм могут находиться в воздухе длительное время в состоянии броуновского движения. Более крупные оседают из воздуха со скоростью, обусловленной их размером и удельным весом. Скорость оседания крупных частиц определяется законом Ньютона (с ускорением силы тяжести.), мелких - от 0,1 до 100 мкм законом Стокса (с ускорением свободного падения).

В производственных условиях вследствие конвекционных токов, работы машин, вентиляционных установок воздух находится в подвижном состоянии, что мешает выпадению мельчайших частиц.

Размеры аэрозолей дезинтеграции зависят от твердости исходного вещества. Чем тверже вещество, подлежащее дезинтеграции, тем выше степень дисперсности и больше частиц в единице объема аэрозолей. Аэрозоли дезинтеграции малого диаметра и пылинки волокнистой формы быстрее укрупняются при наличии в воздухе водяных аэрозолей.

Аэрозоли конденсации образующиеся при металлургических процессах, при выплавке ферросплавов, конверторном переделе чугуна, выплавке стали легче подвергаются флоккуляции и оседанию конгломератов, чем аэрозоли дезинтеграции. Почти все частицы пыли окиси магния состоят из конгломератов, в то время как частицы кварцевой пыли даже мельчайших размеров конгломератов почти не образуют. Увлажнение воздуха путем распыления влаги способствует флоккуляции. В закрытых помещениях со временем происходит полное выпадение частиц.

Производственная пыль, как правило, полидисперсная, т. е. в воздухе встречаются одновременно пылевые частицы различных размеров. В любом образце пыли обычно число мелких пылевых частиц больше, чем крупных. В большинстве случаев до 60 - 80% частиц пыли имеют диаметр до 2 мкм, 10 - 20% - от 2 до 5 мкм и до 10% - свыше 10 мкм. Однако общий вес пылевых частиц от 2 мкм весьма незначителен и, как правило, не превышает 1 - 3% веса всего образца пыли. От степени дисперсности зависит общий процент задержки пылевых частиц в органах дыхания, а также уровень, на котором они оседают в дыхательных путях.

В легкие при дыхании проникает пыль, размером от 0,2 до 5 мкм. Более крупные частицы задерживаются в верхних дыхательных путях.

По мере уменьшения размеров частиц возрастает степень задержки их в глубоких отделах легких. Выведение пыли также зависит от размеров частиц. Крупные частицы удаляются из организма под влиянием мерцательных движений ресничек и слизи.

Дисперсность частиц имеет значение не только для элиминации пыли из легких. От величины частиц зависит, степень фиброгенного действия пыли. С повышением дисперсности степень биологической агрессивности пыли увеличивается до определенного проделала, а затем уменьшается. Наибольшей фиброгенной активностью обладают аэрозоли дезинтеграции с размером пылинок от 1 – 2 до 5 мкм и аэрозоли конденсации с частицами менее 0,3 – 0,4 мкм. В этиологии пылевых бронхитов наименее активны пылевые частицы свыше 5 мкм. Уменьшение фиброгенности аэрозоля конденсации двуокиси кремния с размером частиц 0,05 мкм и менее объясняется тем, что скорость выведения его из легких опережает темпы проявления цитотоксичности.

Исследованиями Е. В. Хухриной показано, что степень фиброгенной опасности пыли зависит от ее массы, поступившей в организм, и от дисперсности. При неодинаковой массе пыли и различной дисперсности наиболее опасна пыль с преобладанием пылевых частиц размером 1 – 2 мкм.

По-видимому, большая площадь соприкосновения мелких пылевых частиц с тканью легкого и большие их количества обусловливают более выраженную ответную реакцию организма.

С повышением дисперсности пыли увеличивается поверхность частиц (отношение поверхности частиц к их массе), повышается ее химическая активность и сорбционная способность. Пылевые частицы сорбируют своей поверхностью газы, пары, радиоактивные вещества, ионы, свободные радикалы и др. Так, пыль доменного газа сорбирует оксид углерода, угольная пыль – молекулы газов СО2, СО, метана. Вдыxaниe с пылью токсических веществ усиливает вредное действие пыли. Действие пыли на организм усиливается благодаря адсорбции на ней свободных радикалов, обладающих способностью к цепным реакциям и весьма высокой химической активностью. Свободные радикалы образуются при процессах горения, под действием радиоактивных излучений и в результате фотохимического действия света. Пылинки сорбируют из воздуха ионы, что уменьшает отрицательную ионизацию воздуха.

Важным свойством пылей является их воспламеняемость и взрывоопасность. Пылевые частицы, сорбируя кислород воздуха, становятся легко воспламеняющимися при наличии источников огня. Известны взрывы каменноугольной, пробковой, сахарной, мучной пыли. Способностью взрываться и воспламеняться при наличии открытого огня обладают также крахмальная, сажевая, алюминиевая, цинковая и некоторые другие виды пылей. Для того чтобы произошел взрыв и воспламенение, требуется образование пылевого облака достаточной концентрации и наличие открытого источника огня. Образование пылевого облака может происходить постепенно в результате накопления пыли в воздухе из источника образования пыли и поднятия осевшей пыли. В связи с этим на объектах, где возможно образование взрывоопасной и воспламеняющейся пыли, необходимо следить за своевременным удалением ее с оборудования, ограждений, пола, перекрытий и т. д. Для различных пылей взрывоопасная концентрация вещества неодинакова. Для пыли крахмальной, алюминиевой и серной минимальной взрывоопасной концентрацией является 7 г/м3 воздуха, для сахарной - 10,3 г/м3.

Значительные концентрации пыли снижают видимость вследствие поглощения светового потока плотными частицами и рассеяния света.

Форма пылинок влияет на поведение в воздухе, при этом частицы неправильной формы (аэрозоли дезинтеграции) способны более длительное время сохраняться в воздухе.

Аэрозоли конденсации металлов со значительным удельным весом, имеющие форму, близкую к шару или кубу, легко оседают из воздуха, если размер их (по диаметру или стороне) превышает 5 – 10 мкм. Частицы круглой формы не только быстрее оседают, но и легче проникают в легочную ткань. От размеров формы частиц зависит реакция организма, например возникновение литейной лихорадки в производстве цинка. Частицы пыли угля продолговатой формы дольше удерживаются в воздухе, даже если размер их равен 20 мкм. Пылевые частицы слюды, имеющие пластинчатую форму, и пыль стеклянного волокна, имеющая игольчатую форму, могут длительно витать в воздухе, даже если размер их равен 50 мкм и более. Нитевидные частицы асбеста, хлопка, пеньки и др. практически не оседают из воздуха, даже если длина их превышает сотни и тысячи микрон. Пыль хлопка, льна, асбеста, слюды, угля раздражает слизистые оболочки верхних дыхательных путей; волокнистые пыли плохо фагоцитируются. Игольчатая пыль стекловолокна раздражает кожу, вызывает зуд. Форма и консистенция теряют свое значение при высокой дисперсности пыли.

В статье рассматриваются физико-химическая характеристика пыли, вред, который она несет организму человека, рассказывается о противопылевых мероприятиях, которые необходимы для защиты от промышленной пыли.

Пылью (аэрозолем) называются измельченные или полученные иным путем мелкие частицы твердых веществ, витающие (находящиеся в движении) некоторое время в воздухе. Такое витание происходит вследствие малых размеров этих частиц (пылинок) под действием движения самого воздуха.
Воздух всех производственных помещений в той или иной степени загрязнен пылью; даже в тех помещениях, которые обычно принято считать чистыми, не запыленными, в небольших количествах пыль все же есть (иногда она даже видна невооруженным глазом в проходящем солнечном луче). Однако во многих производствах в силу особенностей технологического процесса, применяемых способов производства, характера сырьевых материалов, промежуточных и готовых продуктов и многих других причин происходит интенсивное образование пыли, которая загрязняет воздух этих помещений в большой степени. Это может представлять определенную опасность для работающих. В подобных случаях находящаяся в воздухе пыль становится одним из факторов производственной среды, определяющих условия труда работающих; она получила название промышленной пыли.
Пыли образуются вследствие дробления или истирания (аэрозоль дезинтеграции), испарения с последующей конденсацией в твердые частицы, (аэрозоль конденсации), сгорания с образованием в, воздухе твердых частиц - продуктов горения (дымы), ряда химических реакций и т. д.
В производственных условиях с образованием пыли чаще всего связаны процессы дробления, размола, просева, обточки, распиловки, пересыпки и других перемещений сыпучих материалов, сгорания, плавления и др.


Физико-химическая характеристика пыли


Физико-химические свойства пыли в основном зависят от ее природы, то есть от того материала или вещества, из которого образовалась эта пыль, и механизма ее образования - каким образом она получена: размельчением, конденсацией, сгоранием и т. п.

По природе образования пыли делятся на две группы: органическую и неорганическую. К первой относятся: пыли растительного происхождения (древесины, хлопка, льна, различных видов муки и др.), животного (шерсти, волоса, размолотых костей и др.), химического (пластмасс, химических волокон и других органических продуктов химических реакций). В группу неорганических пылей входят пыль металлов и их окислов, различных минералов, неорганических солей и других химических соединений. В зависимости от происхождения пыли она может быть растворимой и нерастворимой в воде и в других жидкостях, включая и биосреды (кровь, лимфу, желудочный сок и т. п.). От происхождения пыли зависит также ее химический состав, удельный вес и ряд других свойств.
Механизм образования пыли определяет в основном ее дисперсный состав, то есть размерность пылинок. Структура пыли, то есть форма пылинок, зависит и от природы и от механизма образования пыли. По структуре пыль может быть аморфной (пылинки округлой формы), кристаллической (пылинки с острыми гранями), волокнистой (пылинки удлиненной формы), пластинчатой (пылинки в виде слоистых пластинок) и др.
При измельчении твердого вещества образующиеся пылинки получают то или иное количество электричества вследствие частичного перехода механической энергии в электрическую, кроме того, пылинки получают электрический заряд, адсорбируя на себе ионы из воздушной среды. Таким образом, пыль, находящаяся в воздухе, в той или иной степени несет на себе электрический заряд. Степень электрозаряженности оказывает существенное влияние на поведение пыли в воздухе. Электрозаряженные пылинки с противоположным знаком соединяются между собой (схлапливаются), образуя более крупные частицы, за счет чего быстрее осаждаются; пылинки с одинаковым зарядом, наоборот, отталкиваются друг от друга, что усиливает их движение в воздухе и замедляет осаждение. Исследования показывают, что высокодисперсная пыль в большей степени подвержена электрическим зарядам. Электрозаряженности способствует также нагревание пыли. Повышенная влажность воздуха или самой пыли снижает ее электрозаряженность.
Высокодисперсная пыль вследствие электрозаряженности обладает активной поверхностью, поэтому на ней сорбируются газы и другие мелкие частицы, находящиеся в воздухе. Чем меньше пылевые частицы, тем больше их активность. Газы, обволакивая пылевую частицу, способствуют более длительному витанию ее в воздухе, то есть сорбирование на пылевых частицах газов замедляет осаждение пыли.
При значительной запыленности воздуха высокодисперсной пылью электрические заряды пылевых частиц могут суммироваться и, достигнув определенного потенциала, образовывать электрические разряды - взрывы. Чаще всего такие взрывы пыли возникают при наличии огня или сильно нагретого предмета в чрезмерно запыленной атмосфере, так как при повышении температуры резко увеличивается заряженность пылевых частиц, быстрее и с большей силой происходит электрический разряд.


Действие пыли на организм человека


Действие пыли на кожный покров сводится в основном к механическому раздражению. Вследствие такого раздражения возникает небольшой зуд, неприятное ощущение, а при расчесах может появиться покраснение и некоторая припухлость кожного покрова, что свидетельствует о воспалительном процессе.
Пылинки могут проникать в поры потовых и сальных желез, закупоривая их и тем самым затрудняя их функции. Это приводит к сухости кожного покрова, иногда появляются трещины, сыпи. Попавшие вместе с пылью микробы в закупоренных протоках сальных желез могут развиваться, вызывая гнойничковые заболевания кожи пиодермию. Закупорка потовых желез пылью в условиях горячего цеха способствует уменьшению потоотделения и тем самым затрудняет терморегуляцию.
Некоторые токсические пыли при попадании на кожный покров вызывают его химическое раздражение, выражающееся в появлении зуда, красноты, припухлости, а иногда и язвочек. Чаще всего такими свойствами обладают пыли химических веществ (хромовые соли, известь, сода, мышьяк, карбид кальция и др.).
При попадании пыли на слизистые оболочки глаз и верхних дыхательных путей ее раздражающее действие, как механическое, так и химическое, проявляется наиболее ярко. Слизистые оболочки по сравнению с кожным покровом более тонки и нежны, их раздражают все виды пыли, не только химических веществ или с острыми гранями, но и аморфные, волокнистые и др.
Пыль, попавшая в глаза, вызывает воспалительный процесс их слизистых оболочек - конъюнктивит, который выражается в покраснении, слезотечении, иногда припухлости и нагноении.
Такие виды пыли, как пековая, оказывают фотосенсибилизирующее действие на кожные покровы, и особенно на глаза, то есть повышают их чувствительность к солнечному свету. На ярком солнечном свете быстро развиваются выраженные симптомы воспаления: зуд, покраснение и припухлость открытых частей кожного покрова, слизистых глаз, слезотечение, светобоязнь. В пасмурную погоду, когда нет прямого солнечного света, эти явления выражены слабее, а при искусственном освещении вообще отсутствуют; связано это с тем, что пековая пыль повышает чувствительность только к ультрафиолетовым лучам, которые в большом количестве входят в состав солнечного спектра и отсутствуют в обычном искусственном освещении.
На органы пищеварения могут оказывать действие лишь некоторые токсические пыли, которые, попав туда даже в относительно небольшом количестве, всасываются и вызывают интоксикацию (отравление). Нетоксические пыли какого-либо заметного неблагоприятного действия на органы пищеварения не оказывают.
Действие пыли на верхние дыхательные пути сводится к их раздражению, а при длительном воздействии - к воспалению. В начальных стадиях оно проявляется в виде першения в горле, кашля, отхаркивания грязной мокротой. Затем появляется сухость слизистых, сокращение отделения мокроты, сухой кашель, хрипота; в некоторых случаях при воздействии пыли химических веществ могут появиться изъязвления слизистой оболочки носа.
Наибольшую опасность представляют токсические пыли при попадании их в более глубокие участки органов дыхания, то есть в легкие, где, задерживаясь на длительный период и имея разветвленную поверхность соприкосновения с тканью легкого (в бронхиолах и альвеолах), они могут быстро всасываться в большом количестве и оказывать раздражающее и обще токсическое действие, вызывая интоксикацию организма.
Нетоксические пыли, задерживаясь в легких длительное время, постепенно вызывают разрастание вокруг каждой пылинки соединительной ткани, которая не способна воспринимать кислород из вдыхаемого воздуха, насыщать им кровь и выделять при выдохе углекислоту, как это делает нормальная легочная ткань. Процесс разрастания соединительной ткани протекает медленно, как правило, годами. Однако при длительном стаже работы в условиях высокой запыленности разросшаяся соединительная ткань постепенно замещает легочную, снижая, таким образом, основную функцию легких - усвоение кислорода и отдачу углекислоты. Длительная недостаточность кислорода приводит к одышке при быстрой ходьбе или работе, ослаблению организма, понижению работоспособности, снижению сопротивляемости организма инфекционным и другим заболеваниям, изменениям функционального состояния других органов и систем. Вследствие воздействия нетоксической пыли на органы дыхания развиваются специфические заболевания, называемые пневмокониозами.
Пневмокониозы - собирательное название, включающее в себя пылевые заболевания легких от воздействия всех видов пыли. Однако по времени развития этих заболеваний, характеру их течения и другим особенностям они различны и определяются характером воздействующей пыли. Названия этих разновидностей пневмокониозов, как правило, происходят от русского или чаще латинского названия воздействующей пыли.
Существуют различные разновидности пневмокониозов:
Сидероз.
Тяжелая разновидность пневмокониоза, которым заболевают сварщики, работающие в атмосфере, содержащей SiO 2 . Сидероз возникает от совместного действия паров расплавленных металлов и SiO 2 , и клиника этого заболевания аналогична клинике силикатоза.
Металлокониозы.
Пневмокониозы этого типа возникают при вдыхании пыли соединений ряда металлов. К таким пневмокониозам относятся:
- сидероз, развивающийся у лиц, работающих с соединениями железа;
- алюминоз ("алюминиевое легкое") - у работающих в производстве алюминия;
- станоз - заболевание плавильщиков олова;
- баритоз, наблюдающийся у рабочих баритовых карьеров и рудников, а также обрабатывающих и применяющих соединения бария;
- бериллиоз - у работающих в производстве рентгеновских трубок и люминесцентных ламп, в керамической, атомной и других отраслях промышленности; - пневмокониозы
от пыли соединений других металлов: марганца (манганокониоз), кобальта, никеля, редкоземельных (лантана, цезия) и др.
Пневмокониозы от смешанной пыли.
Пневмокониозы этого типа развиваются при комбинированном воздействии различных пылей. Клинико-клинические проявления каждого типа пневмокониоза зависят от конкретного состава пыли. Чем выше содержание в ней свободной двуокиси кремния (SiO 2), тем ближе по своим проявлениям вызванный данной пылью пневмокониоз к силикозу. К пневмокониозам, обусловленным высоким содержанием в пыли двуокиси кремния, относятся антракосиликоз, сидеросиликоз (или гематитоз), силико-силикоз.
К пневмокониозам от смешанных пылей с незначительной примесью двуокиси кремния относятся пневмокониоз электросварщиков, сталеваров, газорезчиков, шлифовальщиков (в частности, "легкое полировщиков серебра"), наждачников, когда имеет место отложение в легких, в основном пыли металлов. Заболевание обычно развивается через 10-15 лет после начала работы с профессионально вредным агентом и, как правило, проявляется явлениями хронического бронхита и эмфиземы легких. В некоторых случаях, особенно при пневмокониозе электросварщиков, возможно возникновение бронхиальной астмы, что значительно утяжеляет течение и прогноз болезни.
Силикоз.
Это наиболее частое пылевое заболевание легких, обусловленное вдыханием пыли, содержащей SiO 2 . Встречается у рабочих горнорудной, угольной, металлургической, машиностроительной промышленности, в производстве огнеупорных материалов. Время контакта с пылью, необходимое для развития силикоза, колеблется в широких пределах: у обрубщиков литья, например, через 10-30 лет. Частота возникновения, темп развития силикоза, степень поражения легких зависят от условий труда, дисперсности и концентрации кварцевой пыли, индивидуальной реакции организма.
Наиболее типичным признаком силикоза является различной степени интенсивности склеротический процесс в легких. Наряду с образованием узелков обнаруживается также разрастание соединительной ткани вдоль бронхов, сосудов, в окружности долек и альвеол. Соединительная ткань сдавливает и перетягивает бронхи, вследствие чего в одних участках легкого возникают дольковые ателектазы, в других - эмфиземы. Нарушение питания легочной ткани приводит к некротизации ее отдельных участков с образованием мелких силикотических каверн.
Пневмокониозы от пыли пластических масс.
Вызываются в основном пылью полихлорвинила (ПВХ) в производстве пластических пленок, волокон, электроизолирующих материалов, труб, линолеума и прочих изделий. Клинически определяется пневмофиброз, преимущественно в средней и нижней долях правого легкого.
Из всех перечисленных наибольшей агрессивностью обладает кварцевая пыль, вызывающая силикоз, который характеризуется относительно быстрым развитием и наиболее выраженными формами течения. Если другие виды пневмокониозов даже при значительной запыленности развиваются через 15 - 20 и более лет работы в данных условиях, то начальные формы силикоза при высокой запыленности нередко появляются через 5 - 10 лет работы, а иногда и ранее (2 - 3 года - при чрезмерно высокой запыленности). Вследствие особой агрессивности кварцевой пыли процентное содержание ее положено в основу оценки потенциальной опасности различных производственных пылей: чем выше содержание SiO 2 в пыли, тем выше опасность последней.
В развитии заболевания силикозом условно различают три стадии. В первой стадии силикоза больные жалуются на небольшую одышку при значительном физическом напряжении (тяжелая работа быстрая ходьба или бег и т. п.), легкий сухой кашель, иногда боли в груди. Часто больные не обращают внимания на эти явления и длительное время не идут к врачу и не получают необходимого лечения, а также не принимают своевременных профилактических мер (перевод на другую работу, динамическое медицинское наблюдение и др.), что способствует более быстрому развитию заболевания. Однако при обследовании уже в этой начальной стадии силикоза выявляются некоторые рентгенологическое и другие изменения в легких (рассеянные небольшие узелки на рентгенограмме, выслушиваются шумы и др.).
Вторая стадия силикоза характеризуется заметной одышкой даже при умеренной физической нагрузке, кашлем с выделением мокроты, бронхитом. Более выраженные изменения в легких отмечаются при медицинском обследовании.
В третьей стадии силикоза у больных появляется резко выраженная одышка при легкой работе и даже в покое, сильный кашель с обильным отделением мокроты, исхудание. В этой стадии иногда появляется кровохарканье, поднимается температура тела, наступает общая слабость. Это, как правило, связано с общей интоксикацией организма. Медицинское обследование в этой стадии выявляет резкие не только рентгенологические, но и другие изменения в легких, свидетельствующие об их массивном поражении.
При силикозе пораженная легочная ткань становится более восприимчивой к инфекциям, вследствие чего у силикозных больных нередки случаи пневмонии и других инфекционных заболеваний легких. Наиболее частой смешанной формой заболевания является силикотуберкулез. Силикотуберкулез, как правило, прогрессирует быстрее, чем не осложненный силикоз.
Силикоз и силикотуберкулез - прогрессирующие заболевания; развитие их иногда продолжается, несмотря на прекращение работы в условиях запыленного воздуха и дальнейшего поступления кварцевой пыли в организм. Чем раньше будут выявлены начальные формы заболевания силикозом и приняты необходимые лечебно-профилактические меры, тем легче задержать его дальнейшее развитие.


Противопылевые мероприятия


Основным направлением в комплексе мероприятий по борьбе с пылью является предупреждение ее образования или поступления в воздух рабочих помещений. Важнейшее значение в этом направлении имеют мероприятия технологического характера. Технологические процессы по возможности проводятся таким образом, чтобы образование пыли было полностью исключено или, по крайней мере, сведено до минимума. С этой целью нужно максимально заменять сухие пылящие материалы влажными, пастообразными, растворами и обработку их вести влажным способом. Если по технологическим условиям необходимо иметь материал в сухом виде, целесообразно вместо порошкообразного использовать его в виде брикетов, таблеток и т. п., которые пылят значительно меньше. Это в равной степени относится как к сырьевым материалам, так и к готовой продукции, побочным продуктам и отходам производства. Подобные меры предупреждения пылеобразования уже нашли широкое применение в промышленности. К ним относятся мокрое бурение в горнорудной промышленности, нагнетание воды в толщу пласта, гидравлическая добыча угля (гидромониторы), гидравлическая и гидропескоструйная очистка литья, влажный помол и шлифовка, выпуск пастообразных красителей, таблеток белой сажи и т. д.
При невозможности полного исключения пылеобразования необходимо путем соответствующей организации технологического процесса и использования соответствующего технологического оборудования не допускать выделения пыли в воздух рабочих помещений. Это достигается главным образом путем организации непрерывного технологического процесса в полностью герметичной или, по крайней мере, максимально закрытой аппаратуре и коммуникациях. Непрерывность процесса к тому же позволяет полностью механизировать его, а нередко и автоматизировать, что, в свою очередь, дает возможность удалить рабочих от источников пылеобразования и предупредить воздействие на них пыли. Для удаления пыли с поверхностей вместо сдувки целесообразно использовать ее отсос - аспирацию.
Хороший гигиенический эффект дает использование беспыльных видов транспорта сыпучих материалов. К ним относятся гидро- и пневмотранспорт, вибротрубы, герметично закрытые шнеки.
Если по условиям технологии неизбежно свободное падение пылящих материалов, при котором образование пыли происходит наиболее интенсивно вследствие воздействия на падающий материал ударной силы, то рекомендуется спускать пылящий материал не вертикально, а по наклонной плоскости наклонному лотку или спирали). Такое “сползание” пылящего материала по наклонной плоскости резко уменьшает ударную силу падения и значительно снижает пылеобразование. Чем больше угол наклона от вертикальной оси, тем медленнее ссыпается материал и меньше пылеобразование.
В некоторых случаях целесообразно заменять материалы, образующие агрессивные пыли, содержащие значительное количество кварца, другими материалами - с меньшим содержанием кварца или, еще лучше, совершенно без него. Именно поэтому в литейных цехах, например, вместо пескоструйной очистки литья нередко используют дробеметные установки, работающие на чугунной дроби (вместо песка). В металлургической промышленности замена динасовых и шамотных огнеупоров хромомагнезитовыми и другими снизила до ничтожных величин содержание кварца в образующейся пыли при ремонте печей, футеровке ковшей и в производстве этих огнеупоров.
В местах возможного выделения пыли, у источников ее образования или у мест выделения применяются меры пылеподавления. Наиболее распространенным мероприятием этого типа является водяное орошение, при котором пыль смачивается, за счет чего утяжеляются, слипаются пылинки и быстро оседают. Водяное орошение чаще всего применяется в местах пересыпки пылящих материалов (загрузка в бункер, перепад с одной транспортерной ленты на другую, выгрузка из бункеров и аппаратов и т. п.). Иногда мелкое водораспыление производят по всей площади рабочих помещений, там, где имеются рассеянные источники пылевыделения (при перегрузке пылящих материалов грейферным краном, приготовлении форм в грунте, очистке рассеянного литья и т. п.).
Некоторые виды пылей, как каменноугольная, слюдяная и др., плохо смачиваются водой, поэтому при применении водяного орошения должный эффект не достигается. В подобных случаях к воде, подаваемой для орошения, добавляются специальные вещества, способствующие смачиванию пылинок. Эти вещества носят общее название смачивателей. В качестве смачивателей используются мылонафт, сульфонал, контакт Петрова, сульфитно-спиртовая барда, сложные органические соединения под условными названиями ДБ, ОП-7, ОП-10 и др.
Как одно из средств пылеподавления иногда применяют водяной пар, который также смачивает пылинки, способствуя быстрому их осаждению. В отличие от водораспыления водяной пар хорошо смачивает взвешенную пыль, но гораздо меньше увлажняет сам пылящий материал, что иногда весьма важно для технологии. Однако, учитывая, что насыщение воздуха рабочих помещений водяными парами является небезразличным для людей и может стать дополнительным неблагоприятным фактором, применение этого способа можно рекомендовать лишь для пылеподавления в закрытых емкостях (аппаратах, коммуникациях и т. п.) с отсосом пыле- паро-воздушной смеси из этих емкостей.
Если по техническим причинам полного предупреждения образования и выделения пыли достигнуть невозможно, для пылеподавления используется вытяжная вентиляция. Последняя, как правило, устраивается по типу местной вытяжки от мест и источников пылевыделения, причем наиболее целесообразно источники пылеобразования максимально укрыть и производить вытяжка из-под этих укрытий.
Обще обменная вытяжная вентиляция в помещениях применяется лишь при рассеянных источниках пылевыделения, когда невозможно полностью обеспечить их местной вытяжкой. Эффективность обще обменной вытяжной вентиляции в производствах с пылевыделениями всегда ниже, чем эффективность местной вытяжки, так как малое количество отсасываемого воздуха не обеспечивает должного удаления пыли из помещения, а увеличение его ведет к созданию вихревых потоков воздуха, которые взмучивают осевшую пыль и способствуют некоторому повышению ее концентрации в воздухе. Для предупреждения последнего приточный воздух в помещения с пылеобразованием следует подавать с малыми скоростями в верхнюю зону.
Внутренние поверхности стен, полы и другие ограждения рабочих помещений, где возможно выделение пыли, должны облицовываться гладким строительным материалом, позволяющим легко удалять, а иногда и смывать осевшую пыль. Удалять пыль следует либо влажным способом, либо аспирацией (промышленными пылесосами или отсосом в вакуумную линию). Снижение запыленности воздуха до предельно допустимых концентраций и ниже путем использования вышеописанного комплекса противопылевых мероприятий является основным критерием их эффективности.
При проведении кратковременных работ в условиях значительной запыленности (ремонт, наладка пылящего оборудования) рабочие должны пользоваться индивидуальными защитными средствами, главным образом респираторами и противопылевыми очками. Для защиты кожного покрова от раздражающего действия пыли с острыми гранями пользуются спецодеждой из плотной ткани (лучше комбинезон), с плотным прилеганием ворота, рукавов и брюк (на завязках или резинках).
Все мероприятия по обеспыливанию являются одновременно и мерами предупреждения взрывов пыли, так как устранение возможности концентрирования пыли в воздухе снижает одно из основных и обязательных условий образования ее взрыва.
Кроме того, следует строго следить, чтобы в условиях значительно запыленного воздуха не было открытого огня или даже искр. Запрещается курение, зажигание, пользование вольтовой дугой (электросварка), а также искрение электропроводов, выключателей, моторов и других электроустройств и оборудования на участках со значительной запыленностью воздуха или внутри аппаратов, воздуховодов и другого оборудования, содержащего высокодисперсную пыль.
Рабочие, занятые на работах в условиях запыленного воздуха, подвергаются периодическим медицинским осмотрам с обязательной рентгенографией грудной клетки. На работу в этих условиях не принимаются лица, страдающие легочными и другими заболеваниями. От воздействия пыли эти заболевания могут прогрессировать или осложняться. Поэтому все вновь поступающие проходят предварительный медицинский осмотр.

Теги: Охрана труда, работник, промышленная пыль, пневмокониоз, силикоз, сидероз, профилактика, пыль, респиратор