Состав название и характеристика свойств солей. Соли: классификация и химические свойства. Соли, их классификация, номенклатура, получение, химические свойства

Поваренная соль — это хлорид натрия, применяемый в качестве добавки к пище, консерванта продуктов питания. Используется также в химической промышленности, медицине. Служит важнейшим сырьем для получения едкого натра, соды и других веществ. Формула соли поваренной — NaCl.

Образование ионной связи между натрием и хлором

Химический состав хлорида натрия отражает условная формула NaCl, которая дает представление о равном количестве атомов натрия и хлора. Но вещество образовано не двухатомными молекулами, а состоит из кристаллов. При взаимодействии щелочного металла с сильным неметаллом каждый атом натрия отдает более электроотрицательному хлору. Возникают катионы натрия Na + и анионы кислотного остатка соляной кислоты Cl - . Разноименно заряженные частицы притягиваются, образуя вещество с ионной кристаллической решеткой. Маленькие катионы натрия расположены между крупными анионами хлора. Число положительных частиц в составе хлорида натрия равно количеству отрицательных, вещество в целом является нейтральным.

Химическая формула. Поваренная соль и галит

Соли — это сложные вещества ионного строения, названия которых начинаются с наименования кислотного остатка. Формула соли поваренной — NaCl. Геологи минерал такого состава называют «галит», а осадочную породу — «каменная соль». Устаревшей химический термин, который часто употребляется на производстве, — «хлористый натрий». Это вещество известно людям с глубокой древности, когда-то его считали «белым золотом». Современные ученики школ и студенты при чтении уравнений реакций с участием хлорида натрия называют химические знаки («натрий хлор»).

Проведем несложные расчеты по формуле вещества:

1) Mr (NaCl) = Ar (Na) + Ar (Cl) = 22,99 + 35,45 = 58,44.

Относительная составляет 58,44 (в а.е.м.).

2) Численно равна молекулярному весу молярная масса, но эта величина имеет единицы измерения г/моль: М (NaCl) = 58,44 г/моль.

3) Образец соли массой 100 г содержит 60,663 г атомов хлора и 39,337 г натрия.

Физические свойства поваренной соли

Хрупкие кристаллы галита — бесцветные или белые. В природе также встречаются месторождения каменной соли, окрашенной в серый, желтый либо голубой цвет. Иногда минеральное вещество обладает красным оттенком, что обусловлено видами и количеством примесей. Твердость галита по составляет всего 2-2,5, стекло оставляет на его поверхности черту.

Другие физические параметры хлорида натрия:

  • запах — отсутствует;
  • вкус — соленый;
  • плотность — 2,165 г/ см3 (20 °C);
  • температура плавления — 801 °C;
  • точка кипения — 1413 °C;
  • растворимость в воде — 359 г/л (25 °C);

Получение хлорида натрия в лаборатории

При взаимодействии металлического натрия с газообразным хлором в пробирке образуется вещество белого цвета — хлорид натрия NaCl (формула поваренной соли).

Химия дает представление о различных способах получения одного и того же соединения. Вот некоторые примеры:

NaOH (водн.) + HCl = NaCl + H 2 O.

Окислительно-восстановительная реакция между металлом и кислотой:

2Na + 2HCl = 2NaCl + Н 2 .

Действие кислоты на оксид металла: Na 2 O + 2HCl (водн.) = 2NaCl + H 2 O

Вытеснение слабой кислоты из раствора ее соли более сильной:

Na 2 CO 3 + 2HCl (водн.) = 2NaCl + H 2 O + CO 2 (газ).

Для применения в промышленных масштабах все эти методы слишком дорогие и сложные.

Производство поваренной соли

Еще на заре цивилизации люди знали, что после засолки мясо и рыба сохраняются дольше. Прозрачные, правильной формы кристаллы галита использовались в некоторых древних странах вместо денег и были на вес золота. Поиск и разработка месторождений галита позволили удовлетворить растущие потребности населения и промышленности. Важнейшие природные источники поваренной соли:

  • залежи минерала галита в разных странах;
  • вода морей, океанов и соленых озер;
  • прослойки и корки каменной соли на берегах соленых водоемов;
  • кристаллы галита на стенках вулканических кратеров;
  • солончаки.

В промышленности используются четыре основных способа получения поваренной соли:

  • выщелачивание галита из подземного слоя, испарение полученного рассола;
  • добыча в ;
  • выпаривание или рассола соленых озер (77% от массы сухого остатка приходится на хлорид натрия);
  • использование побочного продукта опреснения соленых вод.

Химические свойства хлорида натрия

По своему составу NaCl — это средняя соль, образованная щелочью и растворимой кислотой. Хлорид натрия — сильный электролит. Притяжение между ионами настолько велико, что его могут разрушить только сильно полярные растворители. В воде вещества распадается, освобождаются катионы и анионы (Na + , Cl -). Их присутствием обусловлена электропроводность, которой обладает раствор поваренной соли. Формула в этом случае записывается так же, как для сухого вещества — NaCl. Одна из качественных реакций на катион натрия — окрашивание в желтый цвет пламени горелки. Для получения результата опыта нужно набрать на чистую проволочную петлю немного твердой соли и внести в среднюю часть пламени. Свойства поваренной соли также связаны с особенностью аниона, которая заключается в качественной реакции на хлорид-ион. При взаимодействии с нитратом серебра в растворе выпадает белый осадок хлорида серебра (фото). Хлороводород вытесняется из соли более сильными кислотами, чем соляная: 2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl. При обычных условиях хлорид натрия не подвергается гидролизу.

Сферы применения каменной соли

Хлорид натрия снижает температуру плавления льда, поэтому зимой на дорогах и тротуарах используется смесь соли с песком. Она впитывает в себя большое количество примесей, при таянии загрязняет реки и ручьи. Дорожная соль также ускоряет процесс коррозии автомобильных кузовов, повреждает деревья, посаженные рядом с дорогами. В химической промышленности хлорид натрия используется как сырье для получения большой группы химических веществ:

  • соляной кислоты;
  • металлического натрия;
  • газообразного хлора;
  • каустической соды и других соединений.

Кроме того, поваренная соль применяется в производстве мыла, красителей. Как пищевой антисептик используется при консервировании, засолке грибов, рыбы и овощей. Для борьбы с нарушениями работы щитовидной железы у населения формула соли поваренной обогащается за счет добавления безопасных соединений йода, например, KIO 3 , KI, NaI. Такие добавки поддерживают выработку гормона щитовидной железы, предотвращают заболевание эндемическим зобом.

Значение хлорида натрия для организма человека

Формула соли поваренной, ее состав приобрел жизненно важное значение для здоровья человека. Ионы натрия участвуют в передаче нервных импульсов. Анионы хлора необходимы для выработки соляной кислоты в желудке. Но слишком большое содержание поваренной соли в пище может приводить к высокому кровяному давлению и повышению риска развития заболеваний сердца и сосудов. В медицине при большой кровопотере пациентам вводят физиологический солевой раствор. Для его получения в одном литре дистиллированной воды растворяют 9 г хлорида натрия. Человеческий организм нуждается в непрерывном поступлении этого вещества с пищей. Выводится соль через органы выделения и кожу. Среднее содержание хлорида натрия в теле человека составляет примерно 200 г. Европейцы потребляют в день около 2-6 г поваренной соли, в жарких странах эта цифра выше в связи с более высоким потоотделением.

  • 3.Понятие эквивалента вещества. Определение эквивалента. Определение эквивалентной массы кислот, оснований, солей, оксидов, простых веществ в овр. Закон эквивалентов. Объемный анализ.
  • 5.Принципы и правила заполнения орбиталей. Принцип минимальной энергии. Принцип запрета Паули. Правило Хунда. Правило Клечковского.
  • 6. Периодический закон и периодическая система
  • 8. Ионная, металлическая, водородная связи. Влияние водородной связи на физико-химические свойства веществ.
  • 9.Классификация неорганических соединений
  • 10. Соли, их классификация, номенклатура, получение, химические свойства.
  • 11.Скорость химической реакции. Гомогенные и гетерогенные реакции. Кинетическое уравнение реакции. Период полупревращения.
  • 12.Влияние температуры на скорость реакции. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса. Эндотермические и экзотермические реакции
  • 13. Кинетика обратимых реакций. Химическое равновесие, выражение для константы равновесия, сдвиг химического равновесия. Принцип ле Шателье
  • 14.Гомогенный и гетерогенный катализ, цели применения катализаторов. Ферментативный катализ и его особенности.
  • 15. Тепловой эффект реакции. Первый закон термодинамики. Понятие энтальпии. Закон Гесса. Калорийность пищи.
  • 16.Энтропия. Второй закон термодинамики. (постулат Планта): Энергия Гиббса.
  • 18. Ионное произведение воды. Водородный и гидроксильный показатель (pH и pOh). Индикаторы. Расчет pH растворов слабых электролитов. Буферные растворы, расчет pH буферных систем.
  • 19. Гидролиз солей. Степень и константа гидролиза. Расчет рН растворов солей, образованных слабой кислотой и сильным основанием, сильной кислотой и слабым основанием.
  • 20 .Овр. Основные понятия. Метод электронного баланса. Метод полуреакций. Классификация овр.
  • 21. Перманганатомерия; иодометрия: определение концентрации н2о2 и активного хлора в хлорной извести. Эквивалент в овр.
  • 23.Коллигативные свойства, законы Рауля, закон Вант-Гоффа
  • 24 . Комплексные соединения, классификация, структура, номенклатура. Химическая связь в кс.
  • 25.Протеолитическая теория кислот и оснований.
  • 26.Протолитический баланс.
  • 27.Биогенные элементы- элементы ответственные за построение и жизнедеятельность клеток организма.
  • 29Азот, его свойства. Аммиак. Кислородные соединения азота. Круговорот азота в природе.
  • 30.Фосфор,его содинения
  • 32.Кислород его свойства. Озон. Пероксид водорода его свойства. Круговорот кислорода в природе.
  • 33.Сера
  • 38. Сорбция и её виды: абсорбция, адсорбция. Коэффициент абсорбции. Удельная адсорбция. Уравнение Ленгмюра, его линейная аппроксимация.
  • 39. Дисперсная система. Их классификация. Мицелла.
  • 10. Соли, их классификация, номенклатура, получение, химические свойства.

    Солями называются сложные вещества формула молекулы которых, состоит из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

    Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

    Na + Cl – – хлорид натрия

    Ca 2+ SO 4 2– – сульфат кальция и т.д.

    Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие типы солей:

    1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 и т. д.

    3. Основные соли можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

    По числу присутствующих в структуре катионов и анионов выделяют следующие типы солей.

    Простые соли - соли, состоящие из одного вида катионов и одного вида анионов (NaCl)

    Двойные соли - соли, содержащие два различных катиона (KAl(SO 4) 2 ·12 H 2 O).

    Смешанные соли - соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl).

    Также различают гидратные соли (кристаллогидраты), в состав которых входят молекулы кристаллизационной воды, например,Na 2 SO 4 ·10 H 2 O, и комплексные соли, содержащие комплексный катион или комплексный анион (K 4 , Cu(NH 3) 4 ](OH) 2

    По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

    В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

    При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

    Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

    Способы получения солей

    Взаимодействие металла с кислотой.

    Zn + 2HCl = ZnCl 2 + H 2

    Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

    Взаимодействие основного оксида с кислотой

    CaO + 2HCl = CaCl 2 + 2H 2 O

    FeO + H 2 SO 4 = FeSO 4 + H 2 O

    Взаимодействие основания с кислотой (реакция нейтрализации).

    Ba(OH) 2 + 2HCl = BaCl 2 + 2H 2 O

    2NaOH + H 2 SO 4 = Na 2 SO 4 + H 2 O

    При неполной нейтрализации кислоты основанием образуется кислая соль:

    H 2 SO 4 + NaOH = NaHSO 4 + H 2 O

    Взаимодействие соли с кислотой. В этом случаи образуется новая кислота и новая соль. Для осуществления этой реакции необходимо, что бы взятая кислота была сильнее образующейся или менее летучей.

    2NaCl + H 2 So 4 = Na 2 SO 4 + 2HCl

    Действием избытка кислоты на средние соли многоосновных кислот получают кислые соли:

    Na 2 SO 4 + H 2 SO 4 = 2NaHSO 4

    CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

    Взаимодействие основного оксида с кислотным оксидом.

    CaО + SiО 2 = CaSiO 3

    Взаимодействие основания с кислотным оксидом

    6NaOH + P 2 O 5 = 2Na 3 PO 4 + 3H 2 O

    Взаимодействие соли с кислотным оксидом. Вступающий в реакцию кислотный оксид должен быть менее летуч, чем образующийся после реакции.

    CaCO 3 + SiO 2 = t CaSiO 3 + CO 2

    Взаимодействие соли с основанием. Этим способом можно получить как средние соли, так и, при недостатке основания, основные соли. Кислые соли, взаимодействуют с основанием, переходят в средние:

    Fe(NO 3) 3 + 3NaOH = 3NaNo 3 + Fe(OH) 3 ↓

    ZnCl 2 + KOH = ZnOHCl + KCl

    Ca(HCO 3) 2 + Ca(OH) 2 = 2CaCO 3 + 2H 2 O

    Взаимодействие между двумя солями. Образуются две новые соли. Реакция протекает до конца лишь в том случае, если одна из образующихся солей выпадает в осадок:

    BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl

    AgNO 3 + KJ = AgI↓ + KNO 3

    Взаимодействие между металлом и солью. Вступивший в реакцию металл должен находится в ряду напряжения металлов левее металла, входящего в состав исходной соли.

    Fe + CuSO 4 = FeSO 4 + Cu

    Взаимодействие металла с неметаллом

    2Fe + 3Cl 2 = 2FeCl 3

    Взаимодействие металла со щелочью.

    Zn + 2NaOH кр Na 2 ZnO 2 + H 2

    Zn + 2NaOH + 2H 2 O = Na 2 + H 2

    Взаимодействие металла со щелочью

    Cl 2 + 2KOH = KCl + KClO + H 2 O

    Взаимодействие неметалла с солью.

    Cl 2 + KJ = 2KCl + J 2

    Термическое разложение солей.

    2KNO 3 2KNO 2 + O 2

    2KClO 3 2KCl + 3O 2

    Химические свойства солей

    Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

    1. Некоторые соли разлагаются при прокаливании:

    CaCO 3 = CaO + CO 2

    2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

    2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

    3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

    Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

    4. Взаимодействуют друг с другом с образованием новых солей:

    NaCl + AgNO 3 → AgCl + NaNO 3 .

    5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

    Fe + CuSO 4 → FeSO 4 + Cu↓.

    "

    Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

    Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

    Na + Cl – – хлорид натрия

    Ca 2+ SO 4 2– – сульфат кальция и т.д.

    Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

    1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

    2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

    3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

    4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

    По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

    В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

    При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

    Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

    Химические свойства солей

    Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

    1. Некоторые соли разлагаются при прокаливании:

    CaCO 3 = CaO + CO 2

    2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

    2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

    3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

    Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

    4. Взаимодействуют друг с другом с образованием новых солей:

    NaCl + AgNO 3 → AgCl + NaNO 3 .

    5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

    Fe + CuSO 4 → FeSO 4 + Cu↓.

    Остались вопросы? Хотите знать больше о солях?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

    Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

    Na + Cl – – хлорид натрия

    Ca 2+ SO 4 2– – сульфат кальция и т.д.

    Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

    1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

    2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

    3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

    4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

    По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

    В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

    При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

    Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

    Химические свойства солей

    Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

    1. Некоторые соли разлагаются при прокаливании:

    CaCO 3 = CaO + CO 2

    2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

    2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

    3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

    Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

    4. Взаимодействуют друг с другом с образованием новых солей:

    NaCl + AgNO 3 → AgCl + NaNO 3 .

    5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

    Fe + CuSO 4 → FeSO 4 + Cu↓.

    Остались вопросы? Хотите знать больше о солях?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Соли можно также рассматривать как продукты полного или частичного замещения ионов водорода в молекулах кислот ионами металлов (или сложными положительными ионами, например, ионом аммония NH) или как продукт полного или частичного замещения гидроксогрупп в молекулах основных гидроксидов кислотными остатками. При полном замещении получаются средние (нормальные) соли . При неполном замещении ионов Н + в молекулах кислот получаются кислые соли , при неполном замещении групп ОН - в молекулах основания – основные соли. Примеры образования солей:

    H 3 PO 4 + 3NaOH
    Na 3 PO 4 + 3H 2 O

    Na 3 PO 4 (фосфат натрия) – средняя (нормальная соль);

    H 3 PO 4 + NaOH
    NaН 2 PO 4 + H 2 O

    NaН 2 PO 4 (дигидрофосфат натрия) – кислая соль;

    Mq(OH) 2 + HCl
    MqOHCl + H 2 O

    MqOHCl (гидроксихлорид магния) – основная соль.

    Соли, образованные двумя металлами и одной кислотой, называются двойными солями . Например, сульфат калия-алюминия (алюмокалиевые квасцы) KAl(SO 4) 2 *12H 2 O.

    Соли, образованные одним металлом и двумя кислотами, называются смешанными солями . Например, хлорид-гипохлорид кальция CaCl(ClO) или СaOCl 2 – кальциевая соль соляной HCl и хлорноватистой HClO кислот.

    Двойные и смешанные соли при растворении в воде диссоциируют на все ионы, составляющие их молекулы.

    Например, KAl(SO 4) 2
    К + + Al 3+ + 2SO;

    CaCl(ClO)
    Ca 2+ + Cl - + ClO - .

    Комплексные соли – это сложные вещества, в которых можно выделить центральный атом (комплексообразователь) и связанные с ним молекулы и ионы - лиганды . Центральный атом и лиганды образуют комплекс (внутреннюю сферу) , который при записи формулы комплексного соединения заключают в квадратные скобки. Число лигандов во внутренней сфере называется координационным числом. Молекулы и ионы, окружающие комплекс, образуют внешнюю сферу .

    Центральный атом Лиганд

    К 3

    Координационное число

    Название солей образуется из названия аниона, за которым следует название катиона.

    Для солей бескислородных кислот к названию неметалла добавляется суффикс –ид, например, NaCl хлорид натрия, FeS сульфид железа (II).

    При наименовании солей кислородсодержащих кислот к латинскому корню названия элемента добавляется окончание -ат для высших степеней окисления, -ит для более низких (для некоторых кислот используется приставка гипо- для низких степеней окисления неметалла; для солей хлорной и марганцовой кислот используется приставка пер- ). Например, СаСО 3 – карбонат кальция, Fe 2 (SO 4) 3 –сульфат железа (III), FeSO 3 – сульфит железа (II), КОСl – гипохлорит калия, КСlО 2 – хлорит калия, КСlО 3 – хлорат калия, КСlО 4 – перхлорат калия, КМnO 4 - перманганат калия, К 2 Сr 2 O 7 – дихромат калия.

    В названиях комплексных ионов сначала указывают лиганды. Название комплексного иона завершается названием металла с указанием соответствующей степени окисления (римскими цифрами в скобках). В названиях комплексных катионов используются русские названия металлов, например, [ Cu(NH 3) 4 ]Cl 2 - хлорид тетрааммин меди (II). В названиях комплексных анионов используются латинские названия металлов с суффиксом–ат, например, К – тетрагидроксоалюминат калия.

    Химические свойства солей


    Смотрите свойства оснований.


    Смотрите свойства кислот.


    SiO 2 + CaCO 3
    CaSiO 3 + CO 2 .


    Амфотерные оксиды (они все нелетучие) вытесняют при сплавлении летучие оксиды из их солей

    Al 2 O 3 + K 2 CO 3
    2KAlO 2 + CO 2 .

    5. Соль 1 + соль 2
    соль 3 +соль 4 .

    Реакция обмена между солями протекает в растворе (обе соли должны быть растворимы) только в том случае, если хотя бы один из продуктов – осадок

    AqNO 3 + NaCl
    AqCl+ NaNO 3 .

    6. Соль менее активного металла +Металл более активный
    Металл менее активный + соль.

    Исключения – щелочные и щелочно-земельные металлы в растворе в первую очередь взаимодействуют с водой

    Fe + CuCl 2
    FeCl 2 +Cu.

    7. Соль
    продукты термического разложения.

    I) Соли азотной кислоты. Продукты термического разложения нитратов зависят от положения металла в ряду напряжений металлов:

    а) если металл левее Mq (исключая Li): MeNO 3
    MeNO 2 + O 2 ;

    б) если металл от Mq до Сu, а также Li: MeNO 3
    MeО + NO 2 + O 2 ;

    в) если металл правее Cu: MeNO 3
    Me + NO 2 + O 2 .

    II) Соли угольной кислоты. Почти все карбонаты разлагаются до соответствующего металла и СО 2 . Карбонаты щелочных и щелочно-земельных металлов кроме Li не разлагаются при нагревании. Карбонаты серебра и ртути разлагаются до свободного металла

    МеСО 3
    МеО + СО 2 ;

    2Aq 2 CO 3
    4Aq + 2CO 2 + O 2 .

    Все гидрокарбонаты разлагаются до соответствующего карбоната.

    Me(HCO 3) 2
    MeCO 3 + CO 2 +H 2 O.

    III) Соли аммония. Многие соли аммония при прокаливании разлагаются с выделением NH 3 и соответствующей кислоты или продуктов ее разложения. Некоторые соли аммония, содержащие анионы-окислители, разлагаются с выделением N 2 , NO, NO 2

    NH 4 Cl
    NH 3 +HCl;

    NH 4 NO 2
    N 2 +2H 2 O;

    (NH 4) 2 Cr 2 O 7
    N 2 + Cr 2 O 7 + 4H 2 O.

    В табл. 1 приведены названия кислот и их средних солей.

    Названия важнейших кислот и их средних солей

    Название

    Метаалюминиевая

    Метаалюминат

    Мышьяковая

    Мышьяковистая

    Метаборная

    Метаборат

    Ортоборная

    Ортоборат

    Четырехборная

    Тетраборат

    Бромоводородная

    Муравьиная

    Уксусная

    Циановодородная (синильная кислота)

    Угольная

    Карбонат

    Окончание табл. 1

    Название

    Щавелевая

    Хлороводородная (соляная кислота)

    Хлорноватистая

    Гипохлорит

    Хлористая

    Хлорноватая

    Перхлорат

    Метахромистая

    Метахромит

    Хромовая

    Двухромовая

    Дихромат

    Иодоводородная

    Периодат

    Маргонцовая

    Перманганат

    Азидоводород (азотистоводородная)

    Азотистая

    Метафосфорная

    Метафосфат

    Ортофосфорная

    Ортофосфат

    Двуфосфорная

    Дифосфат

    Фтороводородная (плавиковая кислота)

    Сероводородная

    Родановодородная

    Сернистая

    Двусерная

    Дисульфат

    Пероксодвусерная

    Пероксодисульфат

    Кремниевая

    ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

    Задача 1. Напишите формулы следующих соединений: карбонат кальция, карбид кальция, гидрофосфат магния, гидросульфид натрия, нитрат железа (III), нитрид лития, гидроксикарбонат меди (II), дихромат аммония, бромид бария, гексацианоферрат (II) калия, тетрагидроксоалюминат натрия.

    Решение. Карбонат кальция – СаСО 3 , карбид кальция – СаС 2 , гидрофосфат магния – MqHPO 4 , гидросульфид натрия – NaHS, нитрат железа (III) – Fe(NO 3) 3 , нитрид лития – Li 3 N, гидроксикарбонат меди (II) – 2 CO 3, дихромат аммония – (NH 4) 2 Cr 2 O 7 , бромид бария – BaBr 2 , гексацианоферрат (II) калия – K 4 , тетрагидроксоалюминат натрия – Na.

    Задача 2. Приведите примеры образования соли: а) из двух простых веществ; б) из двух сложных веществ; в) из простого и сложного веществ.

    Решение.

    а) железо при нагревании с серой образует сульфид железа (II):

    Fe + S
    FeS;

    б) соли вступают друг с другом в обменные реакции в водном растворе, если один из продуктов выпадает в осадок:

    AqNO 3 + NaCl
    AqCl+NaNO 3 ;

    в) соли образуются при растворении металлов в кислотах:

    Zn + H 2 SO 4
    ZnSO 4 +H 2 .

    Задача 3. При разложении карбоната магния выделился оксид углерода (IV), который пропустили через известковую воду (взята в избытке). При этом образовался осадок массой 2,5г. Рассчитайте массу карбоната магния, взятого для реакции.

    Решение.

      Составляем уравнения соответствующих реакций:

    MqCO 3
    MqO +CO 2 ;

    CO 2 + Ca(OH) 2
    CaCO 3 +H 2 O.

    2. Рассчитываем молярные массы карбоната кальция и карбоната магния, используя периодическую систему химических элементов:

    М(СаСО 3) = 40+12+16*3 = 100г/моль;

    М(МqСО 3) = 24+12+16*3 = 84 г/моль.

    3. Вычисляем количество вещества карбоната кальция (вещества, выпавшего в осадок):

    n(CaCO 3)=
    .

      Из уравнений реакций следует, что

    n(MqCO 3)=n(CaCO 3)=0,025 моль.

      Рассчитываем массу карбоната кальция, взятого для реакции:

    m(MqCO 3)=n(MqCO 3)*M(MqCO 3)= 0,025моль*84г/моль=2,1г.

    Ответ: m(MqCO 3)=2,1г.

    Задача 4. Напишите уравнения реакций, позволяющих осуществить следующие превращения:

    Mq
    MqSO 4
    Mq(NO 3) 2
    MqO
    (CH 3 COO) 2 Mq.

    Решение.

      Магний растворяется в разбавленной серной кислоте:

    Mq + H 2 SO 4
    MqSO 4 +H 2 .

      Сульфат магния вступает в обменную реакцию в водном растворе с нитратом бария:

    MqSO 4 + Ba(NO 3) 2
    BaSO 4 +Mq(NO 3) 2 .

      При сильном прокаливании нитрат магния разлагается:

    2Mq(NO 3) 2
    2MqO+ 4NO 2 + O 2 .

    4. Оксид магния - основной оксид. Он растворяется в уксусной кислоте

    MqO + 2СН 3 СООН
    (СН 3 СОО) 2 Mq + H 2 O.

      Глинка, Н.Л. Общая химия. / Н.Л. Глинка.– М.: Интеграл-пресс, 2002.

      Глинка, Н.Л. Задачи и упражнения по общей химии. / Н.Л. Глинка. - М.: Интеграл-пресс, 2003.

      Габриелян, О.С. Химия. 11 класс: учеб. для общеобразоват. учреждений. / О.С. Габриелян, Г.Г. Лысова. - М.: Дрофа, 2002.

      Ахметов, Н.С. Общая и неорганическая химия. / Н.С. Ахметов. – 4-е изд. - М.: Высшая школа, 2002.

    Химия. Классификация, номенклатура и реакционные возможности неорганических веществ: методические указания к выполнению практической и самостоятельной работ для студентов всех форм обучения и всех специальностей