Вычисление дробей примеры. Действия с обыкновенными дробями

Умножение и деление дробей.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта операция гораздо приятнее сложения-вычитания ! Потому что проще. Напоминаю: чтобы умножить дробь на дробь, нужно перемножить числители (это будет числитель результата) и знаменатели (это будет знаменатель). То есть:

Например:

Всё предельно просто . И, пожалуйста, не ищите общий знаменатель! Не надо его здесь…

Чтобы разделить дробь на дробь, нужно перевернуть вторую (это важно!) дробь и их перемножить, т.е.:

Например:

Если попалось умножение или деление с целыми числами и дробями - ничего страшного. Как и при сложении, делаем из целого числа дробь с единицей в знаменателе - и вперёд! Например:

В старших классах часто приходится иметь дело с трехэтажными (а то и четырехэтажными!) дробями. Например:

Как эту дробь привести к приличному виду? Да очень просто! Использовать деление через две точки:

Но не забывайте о порядке деления! В отличие от умножения, здесь это очень важно! Конечно, 4:2, или 2:4 мы не спутаем. А вот в трёхэтажной дроби легко ошибиться. Обратите внимание, например:

В первом случае (выражение слева):

Во втором (выражение справа):

Чувствуете разницу? 4 и 1/9!

А чем задается порядок деления? Или скобками, или (как здесь) длиной горизонтальных черточек. Развивайте глазомер. А если нет ни скобок, ни черточек, типа:

то делим-умножаем по порядочку, слева направо !

И еще очень простой и важный приём. В действиях со степенями он вам ох как пригодится! Поделим единицу на любую дробь, например, на 13/15:

Дробь перевернулась! И так бывает всегда. При делении 1 на любую дробь, в результате получаем ту же дробь, только перевернутую.

Вот и все действия с дробями. Вещь достаточно простая, но ошибок даёт более, чем достаточно. Примите к сведению практические советы, и их (ошибок) будет меньше!

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Все вычисления на ЕГЭ делайте как полноценное задание, сосредоточенно и чётко. Лучше написать две лишние строчки в черновике, чем накосячить при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

Вот вам задания, которые нужно обязательно прорешать. Ответы даны после всех заданий. Используйте материалы этой темы и практические советы. Прикиньте, сколько примеров вы смогли решить правильно. С первого раза! Без калькулятора! И сделайте верные выводы...

Помните – правильный ответ, полученный со второго (тем более – третьего) раза – не считается! Такова суровая жизнь.

Итак, решаем в режиме экзамена ! Это уже подготовка к ЕГЭ, между прочим. Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний. И только потом смотрим ответы.

Вычислить:

Порешали?

Ищем ответы, которые совпадают с вашими. Я специально их в беспорядке записал, подальше от соблазна, так сказать... Вот они, ответы, через точку с запятой записаны.

0; 17/22; 3/4; 2/5; 1; 25.

А теперь делаем выводы. Если всё получилось - рад за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет...

Значит, у вас одна из двух проблем. Или обе сразу.) Нехватка знаний и (или) невнимательность. Но... Это решаемые проблемы.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко.

Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n.

M - это делимое, то есть числитель дроби, а делитель n называют знаменателем.

Выделяют правильные дроби (m < n) а также неправильные (m > n).

Правильная дробь меньше единицы (к примеру 5/6 — это значит, что от единицы взято 5 частей; 2/8 — от единицы взято 2 части). Неправильная дробь равна или больше 1 (8/7 — единицей будет 7/7 и плюсом взята еще одна часть).

Так, единица, это когда числитель и знаменатель совпали (3/3, 12/12, 100/100 и другие).

Действия с обыкновенными дробями 6 класс

С простыми дробями можно производить следующие действия:

  • Расширять дробь. Если умножить верхнюю и нижнюю часть дроби на какое-либо одинаковое число (только не на ноль), то значение дроби не поменяется (3/5 = 6/10 (просто умножили на 2).
  • Сокращение дробей — схоже расширению, но тут делят на какое-либо число.
  • Сравнивать. Если у двух дробей числители одинаковыми, то большей окажется дробь с меньшим знаменателем. Если одинаковые знаменатели, то больше будет дробь с наибольшим числителем.
  • Выполнять сложение и вычитание. При одинаковых знаменателях это сделать просто (суммируем верхние части, а нижняя не меняется). При разных придется найти общий знаменатель и дополнительные множители.
  • Умножить и разделить дроби.

Примеры действий с дробями рассмотрим ниже.

Сокращенные дроби 6 класс

Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число.

На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2.

На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328 (заканчивается на четное) и т. д.

Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.

Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить.

Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264: 3 = 88. Это упростит сокращение больших чисел.

Помимо метода последовательного сокращения дроби на общие делители есть и другие способы.

НОД — это самый большой делитель для числа. Найдя НОД для знаменателя и числителя, можно сразу сократить дробь на нужное число. Поиск осуществляется путем постепенного деления каждого числа. Далее смотрят, какие делители совпадают, если их несколько (как на картинке ниже), то нужно перемножить.

Смешанные дроби 6 класс

Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева.

Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2.

Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется.

Вычисления с дробями 6 класс

Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте.

При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ).

В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя).

Обратите внимание, что при разности дробей алгоритм действий такой же.

При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу.

В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть.

В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ.

При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей).

При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть.

Основные задачи на дроби 6 класс

На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби.

Примеры умножения дроби 6 класс с пояснениями

Перемножающиеся дроби записываются под одной линией. После этого их сокращают путем деления на одни и те же числа (например, 15 в знаменателе и 5 в числителе можно разделить на пятерку).

Сравнение дробей 6 класс

Чтобы сравнить дроби, нужно запомнить два простых правила.

Правило 1. Если знаменатели разные

Правило 2. Когда знаменатели одинаковые

Например, сравним дроби 7/12 и 2/3.

  1. Смотрим на знаменатели, они не совпадают. Значит нужно найти общий.
  2. Для дробей общим знаменателем будет 12.
  3. Делим 12 сначала на нижнюю часть первой дроби: 12: 12 = 1 (это доп. множитель для 1-й дроби).
  4. Теперь 12 делим на 3, получаем 4 — доп. множитель 2-й дроби.
  5. Умножаем полученные цифры на числители, чтобы преобразовать дроби: 1 х 7 = 7 (первая дробь: 7/12); 4 х 2 = 8 (вторая дробь: 8/12).
  6. Теперь можем сравнивать: 7/12 и 8/12. Получилось: 7/12 < 8/12.

Чтобы представлять дроби лучше, можно для наглядности использовать рисунки, где предмет делится на части (к примеру, торт). Если требуется сравнить 4/7 и 2/3, то в первом случае торт делят на 7 частей и выбирают 4 из них. Во втором — делят на 3 части и берут 2. Невооруженным взглядом будет понятно, что 2/3 будет больше 4/7.

Примеры с дробями 6 класс для тренировки

В качестве тренировки можно выполнить следующие задания.

  • Сравнить дроби

  • выполнить умножение

Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72.

Решение уравнений с дробями 6 класс

В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается).

Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное.

Представим простые примеры решения уравнений:

Здесь требуется лишь произвести разность дробей, не приводя к общему знаменателю.

  • Деление на 1/2 заменили умножением на 2 (перевернули дробь).
  • Складывая 1/2 и 3/4, пришли к общему знаменателю 4. При этом для первой дроби понадобился дополнительный множитель 2, из 1/2 вышло 2/4.
  • Сложили 2/4 и 3/4 — получили 5/4.
  • Не забыли про умножение 5/4 на 2. Путем сокращения 2 и 4 получили 5/2.
  • Ответ получился в виде неправильной дроби. Ее можно преобразовать в 1 целую и 3/5.

    Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.

    Калькулятор онлайн.
    Вычисление выражения с числовыми дробями.
    Умножение, вычитание, деление, сложение и сокращение дробей с разными знаменателями.

    С помощью данного калькулятора онлайн вы можете умножить, вычесть, поделить, сложить и сократить числовые дроби с разными знаменателями.

    Программа работает с правильными, неправильными и смешанными числовыми дробями.

    Данная программа (калькулятор онлайн) умеет:
    - выполнять сложение смешанных дробей с разными знаменателями
    - выполнять вычетание смешанных дробей с разными знаменателями
    - выполнять деление смешанных дробей с разными знаменателями
    - выполнять умножение смешанных дробей с разными знаменателями
    - приводить дроби к общему знаменателю
    - преобразовывать смешанные дроби в неправильные
    - сокращать дроби

    Также можно ввести не выражение с дробями, а одну единственную дробь.
    В этом случае дробь будет сокращена и из результата выделена целая часть.

    Калькулятор онлайн для вычисления выражений с числовыми дробями не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Если вы не знакомы с правилами ввода выражений с числовыми дробями, рекомендуем с ними ознакомиться.

    Правила ввода выражений с числовыми дробями

    В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

    Знаменатель не может быть отрицательным.

    При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
    Ввод: -2/3 + 7/5
    Результат: \(-\frac{2}{3} + \frac{7}{5} \)

    Целая часть отделяется от дроби знаком амперсанд: &
    Ввод: -1&2/3 * 5&8/3
    Результат: \(-1\frac{2}{3} \cdot 5\frac{8}{3} \)

    Деление дробей вводится знаком двоеточие: :
    Ввод: -9&37/12: -3&5/14
    Результат: \(-9\frac{37}{12} : \left(-3\frac{5}{14} \right) \)
    Помните, что на ноль делить нельзя!

    При вводе выражений с числовыми дробями можно использовать скобки.
    Ввод: -2/3 * (6&1/2-5/9) : 2&1/4 + 1/3
    Результат: \(-\frac{2}{3} \cdot \left(6 \frac{1}{2} - \frac{5}{9} \right) : 2\frac{1}{4} + \frac{1}{3} \)

    Введите выражение с числовыми дробями.

    Вычислить

    Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
    Возможно у вас включен AdBlock.
    В этом случае отключите его и обновите страницу.

    У вас в браузере отключено выполнение JavaScript.
    Чтобы решение появилось нужно включить JavaScript.
    Вот инструкции, как включить JavaScript в вашем браузере .

    Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
    Через несколько секунд решение появится ниже.
    Пожалуйста подождите сек...


    Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
    Не забудте указать какую задачу вы решаете и что вводите в поля .



    Наши игры, головоломки, эмуляторы:

    Немного теории.

    Обыкновенные дроби. Деление с остатком

    Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком , и решение записывают в таком виде:
    497: 4 = 124 (1 остаток).

    Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 - делимое , 4 - делитель . Результат деления при делении с остатком называют неполным частным . В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, - остаток . В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело . Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

    Остаток всегда меньше делителя.

    Проверку при делении можно сделать умножением. Если, например, имеется равенство 64: 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

    Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
    а = b * n + r ,
    где а - делимое, b - делитель, n - неполное частное, r - остаток.

    Частное от деления натуральных чисел можно записать в виде дроби.

    Числитель дроби - это делимое, а знаменатель - делитель.

    Поскольку числитель дроби - это делимое, а знаменатель - делитель, считают, что черта дроби означает действие деление . Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

    Частное от деления натуральных чисел m и n можно записать в виде дроби \(\frac{m}{n} \), где числитель m - делимое, а знаменатель п - делитель:
    \(m:n = \frac{m}{n} \)

    Верны следующие правила:

    Чтобы получить дробь \(\frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

    Чтобы получить дробь \(\frac{m}{n} \), надо число m разделить на число n.

    Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

    Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

    Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
    \(\large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

    Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
    \(\large \frac{a}{b} = \frac{a: m}{b: m} \)
    Это свойство называют основным свойством дроби .

    Два последних преобразования называют сокращением дроби .

    Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю .

    Правильные и неправильные дроби. Смешанные числа

    Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \(\frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \(\frac{5}{5} \) или \(\frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями . Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями .

    Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

    Если число состоит из целой части и дроби, то такие дроби называются смешанными .

    Например:
    \(5:3 = 1\frac{2}{3} \) : 1 - целая часть, а \(\frac{2}{3} \) - дробная часть.

    Если числитель дроби \(\frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
    \(\large \frac{a}{b} : n = \frac{a:n}{b} \)

    Если числитель дроби \(\frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
    \(\large \frac{a}{b} : n = \frac{a}{bn} \)

    Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

    Действия с дробями. Сложение дробей.

    С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \(\frac{2}{7} \) и \(\frac{3}{7} \). Легко понять, что \(\frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

    Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

    Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
    \(\large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

    Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
    \(\large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

    Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

    Сложение смешанных дробей

    Такие записи, как \(2\frac{2}{3} \), называют смешанными дробями . При этом число 2 называют целой частью смешанной дроби, а число \(\frac{2}{3} \) - ее дробной частью . Запись \(2\frac{2}{3} \) читают так: «две и две трети».

    При делении числа 8 на число 3 можно получить два ответа: \(\frac{8}{3} \) и \(2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \(\frac{8}{3} = 2 \frac{2}{3} \)

    Таким образом, неправильная дробь \(\frac{8}{3} \) представлена в виде смешанной дроби \(2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть .

    Вычитание дробей (дробных чисел)

    Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое - это значит найти такое число, которое при сложении со вторым дает первое. Например:
    \(\frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \(\frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

    Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
    чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

    С помощью букв это правило записывается так:
    \(\large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

    Умножение дробей

    Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе - знаменателем.

    С помощью букв правило умножения дробей можно записать так:
    \(\large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

    Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь - в виде неправильной дроби.

    Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

    Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

    Деление дробей

    Возьмем дробь \(\frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \(\frac{3}{2} \). Эту дробь называют обратной дроби \(\frac{2}{3} \).

    Если мы теперь «перевернем» дробь \(\frac{3}{2} \), то получим исходную дробь \(\frac{2}{3} \). Поэтому такие дроби, как \(\frac{2}{3} \) и \(\frac{3}{2} \) называют взаимно обратными .

    Взаимно обратными являются, например, дроби \(\frac{6}{5} \) и \(\frac{5}{6} \), \(\frac{7}{18} \) и \(\frac{18}{7} \).

    С помощью букв взаимно обратные дроби можно записать так: \(\frac{a}{b} \) и \(\frac{b}{a} \)

    Понятно, что произведение взаимно обратных дробей равно 1 . Например: \(\frac{2}{3} \cdot \frac{3}{2} =1 \)

    Используя взаимно обратные дроби, можно деление дробей свести к умножению.

    Правило деления дроби на дробь:
    чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

    Чтобы выразить часть в долях целого, нужно часть разделить на целое.

    Задача 1. В классе 30 учащихся, отсутствуют четверо. Какая часть учащихся отсутствует?

    Решение:

    Ответ: в классе отсутствует учащихся.

    Нахождение дроби от числа

    Для решения задач, в которых требуется найти часть целого справедливо следующее правило:

    Если часть целого выражена дробью, то чтобы найти эту часть, можно целое разделить на знаменатель дроби и результат умножить на её числитель.

    Задача 1. Было 600 рублей, этой суммы истратили. Сколько денег истратили?

    Решение: чтобы найти от 600 рублей, надо эту сумму разделить на 4 части, тем самым мы узнаем, сколько денег составляет одна четвёртая часть:

    600: 4 = 150 (р.)

    Ответ: истратили 150 рублей.

    Задача 2. Было 1000 рублей, этой суммы истратили. Сколько денег было истрачено?

    Решение: из условия задачи мы знаем, что 1000 рублей состоит из пяти равных частей. Сначала найдём сколько рублей составляет одна пятая часть от 1000, а затем узнаем сколько рублей составляют две пятых:

    1) 1000: 5 = 200 (р.) - одна пятая часть.

    2) 200 · 2 = 400 (р.) - две пятых части.

    Эти два действия можно объединить: 1000: 5 · 2 = 400 (р.).

    Ответ: было истрачено 400 рублей.

    Второй способ нахождения части целого:

    Чтобы найти часть целого, можно умножить целое на дробь, выражающую эту часть целого.

    Задача 3. По уставу кооператива, для правомочности отчётного собрания на нём должно присутствовать не менее членов организации. В кооперативе 120 членов. При каком составе может состояться отчётное собрание?

    Решение:

    Ответ: отчётное собрание может состояться при наличии 80 членов организации.

    Нахождение числа по его дроби

    Для решения задач, в которых требуется найти целое по его части справедливо следующее правило:

    Если часть искомого целого выражена дробью, то чтобы найти это целое, можно данную часть разделить на числитель дроби и результат умножить на её знаменатель.

    Задача 1. Потратили 50 рублей, это составило от первоначальной суммы. Найдите первоначальную сумму денег.

    Решение: из описания задачи мы видим, что 50 рублей в 6 раз меньше первоначальной суммы, т. е. первоначальная сумма в 6 раз больше, чем 50 рублей. Чтобы найти эту сумму, надо 50 умножить на 6:

    50 · 6 = 300 (р.)

    Ответ: первоначальная сумма - 300 рублей.

    Задача 2. Потратили 600 рублей, это составило от первоначальной суммы денег. Найдите первоначальную сумму.

    Решение: будем считать, что искомое число состоит из трёх третьих долей. По условию две трети числа равны 600 рублей. Сначала найдём одну треть от первоначальной суммы, а затем сколько рублей составляют три третьих (первоначальная сумма):

    1) 600: 2 · 3 = 900 (р.)

    Ответ: первоначальная сумма - 900 рублей.

    Второй способ нахождения целого по его части:

    Чтобы найти целое по величине выражающей его часть, можно разделить эту величину на дробь, выражающую данную часть.

    Задача 3. Отрезок AB , равный 42 см, составляет длины отрезка CD . Найти длину отрезка CD .

    Решение:

    Ответ: длина отрезка CD 70 см.

    Задача 4. В магазин привезли арбузы. До обеда магазин продал , после обеда - привезённых арбузов, и осталось продать 80 арбузов. Сколько всего арбузов привезли в магазин?

    Решение: сначала узнаем, какую часть от привезённых арбузов составляет число 80. Для этого примем за единицу общее количество привезённых арбузов и вычтем из неё то количество арбузов, которое получилось реализовать (продать):

    И так, мы узнали, что 80 арбузов составляет от общего количества привезённых арбузов. Теперь узнаем сколько арбузов от общего количества составляет , а затем сколько арбузов составляют (количество привезённых арбузов):

    2) 80: 4 · 15 = 300 (арбузов)

    Ответ: всего в магазин привезли 300 арбузов.

    Калькулятор дробей предназначен для быстрого расчета операций с дробями, поможет легко дроби сложить, умножить, поделить или вычесть.

    Современные школьники начинают изучение дробей уже в 5 классе, с каждым годом упражнения с ними усложняются. Математические термины и величины, которые мы узнаем в школе, редко могут пригодиться нам во взрослой жизни. Однако дроби, в отличие от логарифмов и степеней, встречаются в повседневности достаточно часто (измерение расстояния, взвешивание товара и т.д.). Наш калькулятор предназначен для быстрого проведения операций с дробями.

    Для начала определим, что такое дроби и какие они бывают. Дробями называют отношение одного числа к другому, это число, состоящее из целого количества долей единицы.

    Разновидности дробей:

    • Обыкновенные
    • Десятичные
    • Смешанные

    Пример обыкновенных дробей:

    Верхнее значение является числителем, нижнее знаменателем. Черточка показывает нам, что верхнее число делится на нижнее. Вместо подобного формата написания, когда черточка находится горизонтально, можно писать по-другому. Можно ставить наклонную линию, например:

    1/2, 3/7, 19/5, 32/8, 10/100, 4/1

    Десятичные дроби являются самой популярной разновидностью дробей. Они состоят из целой части и дробной, отделенные запятой.

    Пример десятичных дробей:

    0,2, или 6,71 или 0,125

    Состоят из целого числа и дробной части. Чтобы узнать значение этой дроби, нужно сложить целое число и дробь.

    Пример смешанных дробей:

    Калькулятор дробей на нашем сайте способен быстро в онлайн-режиме выполнить любые математические операции с дробями:

    • Сложение
    • Вычитание
    • Умножение
    • Деление

    Для осуществления расчета нужно ввести цифры в поля и выбрать действие. У дробей нужно заполнить числитель и знаменатель, целое число может не писаться (если дробь обыкновенная). Не забудьте нажать на кнопку «равно».

    Удобно, что калькулятор сразу предоставляет процесс решения примера с дробями, а не только готовый ответ. Именно благодаря развернутому решению вы можете использовать данный материал при решении школьных задач и для лучшего освоения пройденного материала.

    Вам нужно осуществить расчет примера:

    После введения показателей в поля формы получаем:


    Чтобы сделать самостоятельный расчет, введите данные в форму.

    Калькулятор дробей

    Введите две дроби:
    + - * :

    Сопутствующие разделы.