Электрический ток в полупроводниках без примесей осуществляется. Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках

Полупроводники занимают промежуточное положение по электропроводности (или по удельному сопротивлению) между проводниками и диэлектриками. Однако это деление всех веществ по их свойству электропроводности является условным, так как под действием ряда причин (примеси, облучение, нагревание) электропроводность и удельное сопротивление у многих веществ весьма значительно изменяются, особенно у полупроводников.

В связи с этим полупроводники от металлов отличают по целому ряду признаков:

1. удельное сопротивление у полупроводников при обычных условиях гораздо больше, чем у металлов;

2. удельное сопротивление чистых полупроводников уменьшается с ростом температуры (у металлов оно растет);

3. при освещении полупроводников их сопротивление значительно уменьшается (на сопротивление металлов свет почти не влияет):

4. ничтожное количество примесей оказывает сильное влияние на сопротивление полупроводников.

К полупроводникам принадлежат 12 химических элементов в средней части таблицы Менделеева (рис. 1) - В, С, Si, Ρ, S, Ge, As, Se, Sn, Sb, Те, I, соединения элементов третьей группы с элементами пятой группы, многие оксиды и сульфиды металлов, ряд других химических соединений, некоторые органические вещества. Наибольшее применение для науки и техники имеют германий Ge и кремний Si.

Полупроводники могут быть чистыми и с примесями. Соответственно различают собственную и примесную проводимость полупроводников. Примеси в свою очередь делят на донорные и акцепторные.

Собственная электрическая проводимость

Для понимания механизма электрической проводимости в полупроводниках рассмотрим строение полупроводниковых кристаллов и природу связей, удерживающих атомы кристалла друг возле друга. Кристаллы германия и других полупроводников имеют атомную кристаллическую решетку (рис. 2).

Плоская схема структуры германия показана на рисунке 3.

Германий - четырехвалентный элемент, во внешней оболочке атома есть четыре электрона, слабее связанных с ядром, чем остальные. Число ближайших соседей каждого атома германия также равно 4. Четыре валентных электрона каждого атома германия связаны с такими же электронами соседних атомов химическими парноэлектронными (ковалентными ) связями. В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отщепляются от атомов (коллективизируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы германия друг возле друга. Такого рода связь условно может быть изображена двумя линиями, соединяющими ядра (см. рис. 3).

Но коллективизированная пара электронов принадлежит не только двум атомам. Каждый атом образует четыре связи с соседними, а данный валентный электрон может двигаться по любой из них (рис. 4). Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Коллективизированные валентные электроны принадлежат всему кристаллу.

Ковалентные связи германия достаточно прочны и при низких температурах не разрываются. Поэтому германий при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет и кристалл кремния.

Электропроводимость химически чистого полупроводника возможна в том случае, когда ковалентные связи в кристаллах разрываются и появляются свободные электроны.

Дополнительная энергия, которая должна быть затрачена, чтобы разорвать ковалентную связь и сделать электрон свободным, называется энергией активации .

Получить эту энергию электроны могут при нагревании кристалла, при облучении его высокочастотными электромагнитными волнами и т.д.

Как только электрон, приобретя необходимую энергию, уходит с локализованной связи, на ней образуется вакансия. Эту вакансию может легко заполнить электрон с соседней связи, на которой, таким образом, также образуется вакансия. Таким образом, благодаря перемещению электронов связи происходит перемещение вакансий по всему кристаллу. Эта вакансия ведет себя точно так же, как и свободный электрон - она свободно перемещается по объему полупроводника. Более того, учитывая, что и полупроводник в целом, и каждый его атом при не нарушенных ковалентных связях электрически нейтральны, можно сказать, что уход электрона со связи и образование вакансии фактически эквивалентно появлению на этой связи избыточного положительного заряда. Поэтому образовавшуюся вакансию можно формально рассматривать как носитель положительного заряда, который называют дыркой (рис. 5).

Таким образом, уход электрона с локализованной связи порождает пару свободных носителей заряда - электрон и дырку. Их концентрация в чистом полупроводнике одинакова. При комнатной температуре концентрация свободных носителей в чистых полупроводниках невелика, примерно в 10 9 ÷ 10 10 раз меньше концентрации атомов, но при этом она быстро возрастает с увеличением температуры.

  • Сравните с металлами: там концентрация свободных электронов примерно равна концентрации атомов.

В отсутствие внешнего электрического поля эти свободные электроны и дырки движутся в кристалле полупроводника хаотически.

Во внешнем электрическом поле электроны перемещаются в сторону, противоположную направлению напряженности электрического поля. Положительные дырки перемещаются в направлении напряженности электрического поля (рис. 6). Процесс перемещения электронов и дырок во внешнем поле происходит по всему объему полупроводника.

Общая удельная электропроводность полупроводника складывается из дырочной и электронной проводимостей. При этом у чистых полупроводников число электронов проводимости всегда равно числу дырок. Поэтому говорят, что чистые полупроводники обладают электронно-дырочной проводимостью , или собственной проводимостью .

С повышением температуры возрастает число разрывов ковалентных связей и увеличивается количество свободных электронов и дырок в кристаллах чистых полупроводников, а, следовательно, возрастает удельная электропроводность и уменьшается удельное сопротивление чистых полупроводников. График зависимости удельного сопротивления чистого полупроводника от температуры приведен на рис. 7.

Кроме нагревания, разрыв ковалентных связей и, как следствие, возникновение собственной проводимости полупроводников и уменьшение удельного сопротивления могут быть вызваны освещением (фотопроводимость полупроводника), а также действием сильных электрических полей.

Примесная проводимость полупроводников

Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.

Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике.

Примесными центрами могут быть:

1. атомы или ионы химических элементов, внедренные в решетку полупроводника;

2. избыточные атомы или ионы, внедренные в междоузлия решетки;

3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).

Донорная примесь

  • От латинского «donare» - давать, жертвовать.

Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях (рис. 8).

Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08⋅10 -19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии - «дырки» не происходит и дырочная проводимость очень мала, т.е. практически отсутствует.

Донорные примеси - это примеси легко отдающие электроны и, следовательно, увеличивающие число свободных электронов. При наличии электрического поля свободные электроны приходят в упорядоченное движение в кристалле полупроводника, и в нем возникает электронная примесная проводимость. В итоге мы получаем полупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа. (От лат. negativus - отрицательный).

Поскольку в полупроводнике n-типа число электронов значительно больше числа дырок, то электроны являются основными носителями заряда, а дырки - неосновными.

Акцепторная примесь

  • От латинского «acceptor» - приемщик.

В случае акцепторной примеси, например, трехвалентного индия In атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает» (рис. 9). Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью - дырки, а неосновные - электроны.

Акцепторные примеси - это примеси, обеспечивающие дырочную проводимость.

Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называются полупроводниками р-типа (От лат. positivus - положительный.).

Необходимо отметить, что введение примесей в полупроводники, как и в любых металлах, нарушает строение кристаллической решетки и затрудняет движение электронов. Однако сопротивление не увеличивается из-за того, что увеличение концентрации носителей зарядов значительно уменьшает сопротивление. Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 10 8 - 10 9 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз.

Если в полупроводник одновременно вводятся и донорные, и акцепторные примеси, то характер проводимости полупроводника (n- или p-тип) определяется примесью с более высокой концентрацией носителей заряда.

Электронно-дырочный переход

Электронно-дырочный переход (сокращенно р-n-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором слева находится область полупроводника с дырочной (p-типа), а справа - с электронной (n-типа) проводимостью (рис. 10). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора. Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью E i . Электрическое поле электронно-дырочного перехода (р-n-переход) препятствует дальнейшему переходу электронов и дырок через границу раздела двух полупроводников. Запирающий слой имеет повышенное сопротивление по сравнению с остальными объемами полупроводников.

Внешнее электрическое поле с напряженностью E влияет на сопротивление запирающего электрического поля. Если n-полупроводник подключен к отрицательному полюсу источника, а плюс источника соединен с p-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в p-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников (рис. 11). Электроны, переходя границу, «заполняют» дырки. При таком прямом направлении внешнего электрического поля толщина запирающего слоя и его сопротивление непрерывно уменьшаются. В этом направлении электрический ток проходит через р-n-переход.

Рассмотренное направление p-n-перехода называют прямым . Зависимость силы тока от напряжения, т.е. вольт-амперная характеристика прямого перехода, изображена на рис. 12 сплошной линией.

Если n-полупроводник соединен с положительным полюсом источника, а p-полупроводник - с отрицательным, то электроны в n-полупроводнике и дырки в p-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны (рис. 13). Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Направление внешнего электрического поля, расширяющее запирающий слой, называется запирающим (обратным ). При таком направлении внешнего поля электрический ток основных носителей заряда через контакт двух п- и p-полупроводников не проходит.

Ток через p-n-переход теперь обусловлен электронами, которые есть в полупроводнике p-типа, и дырками из полупроводника n-типа. Но неосновными носителей заряда очень мало, поэтому проводимость перехода оказывается незначительной, а его сопротивление - большим. Рассмотренное направление p-n-перехода называют обратным , его вольт-амперная характеристика изображена на рис. 12 штриховой линией.

Обратите внимание, что масштаб измерения силы тока при прямом и обратном переходах отличаются в тысячу раз.

Заметим, что при определенном напряжении, приложенном в обратном направлении, происходит пробой (т.е. разрушение) p-n-перехода.

Полупроводниковые приборы

Термисторы

Электрическое сопротивление полупроводников в значительной степени зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют терморезисторами или термисторами . Полупроводниковое вещество помещается в металлический защитный чехол, в котором имеются изолированные выводы для включения терморезистора в электрическую цепь.

Изменение сопротивления терморезисторов при нагревании или охлаждении позволяет использовать их в приборах для измерения температуры, для поддержания постоянной температуры в автоматических устройствах - в закрытых камерах-термостатах, для обеспечения противопожарной сигнализации и т.д. Существуют термисторы для измерения как очень высоких (Т ≈ 1300 К), так и очень низких (Т ≈ 4 - 80 К) температур.

Схематическое изображение (рис. а) и фотография (рис. б) термистора приведено на рисунке 14.

Рис. 14

Фоторезисторы

Электрическая проводимость полупроводников повышается не только при нагревании, но и при освещении. Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник.

Приборы, в которых учитывается зависимость электрической проводимости полупроводников от освещения, называют фоторезисторами .

Материалами для изготовления фоторезисторов служат соединения типа CdS, CdSe, PbS и ряд других.

Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т.д.

Схематическое изображение (рис. а) и фотография (рис. б) фоторезистора приведено на рисунке 15.

Рис. 15

Полупроводниковый диод

Способность p-n-перехода пропускать ток в одном направлении используется в полупроводниковых приборах, называемых диодами .

Полупроводниковые диоды изготавливают из германия, кремния, селена и других веществ.

Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический металлический корпус. Полупроводниковые диоды являются основными элементами выпрямителей переменного тока (если точнее, служат для преобразования переменного тока в пульсирующий ток постоянного направления.)

Схематическое изображение (рис. а) и фотография (рис. б) полупроводникового диода приведено на рисунке 16.

Рис. 16

Светодиоды

Светодиод или светоизлучающий диод - полупроводниковый прибор с p-n-переходом, создающий оптическое излучение при пропускании через него электрического тока.

Излучаемый свет лежит в узком диапазоне спектра, его спектральные характеристики зависят в том числе от химического состава использованных в нём полупроводников.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 300-308.
  2. Буров Л.И., Стрельченя В.Μ. Физика от А до Я: учащимся, абитуриентам, репетиторам. - Мн.: Парадокс, 2000. - С. 219-228.
  3. Мякишев Г. Я. Физика: Электродинамика. 10 – 11 кл.: учебник для углубленного изучения физики/ Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. - М.: Дрофа, 2005. - С. 309-320.
  4. Яворский Б. М., Селезнев Ю. А. Справочное руководство по физике для поступающих в вузы и самообразования. - М.: Наука, 1984. - С. 165-169.

На этом уроке мы рассмотрим такую среду прохождения электрического тока, как полупроводники. Мы рассмотрим принцип их проводимости, зависимость этой проводимости от температуры и наличия примесей, рассмотрим такое понятие, как p-n переход и основные полупроводниковые приборы.

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда (рис. 9).

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличие от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается (рис. 10).

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Полупроводниковые приборы

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например, германий.

Одним из таких приборов является диод - прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа (рис. 11).

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами, называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования (рис. 12).

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используется множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Вследствие чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?

Полупроводники занимают промежуточное место по электропроводности между проводниками и непроводниками электрического тока. К группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе. Наиболее характерными представителями полупроводников, нашедших практическое применение в технике, являются германий, кремний, селен, теллур, мышьяк, закись меди и огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

У полупроводников концентрация носителей свободного заряда увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов.

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам. Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок».



При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

При наличии примесей электропроводимость полупроводников сильно изменяется. Например, добавка примесей фосфора в кристалл кремния в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков.

Полупроводник, в который введена примесь (т.е. часть атомов одного сорта заменена на атомы другого сорта), называют примесным или легированным.

Различают два типа примесной проводимости – электронную и дырочную проводимости.

Так при легировании четырех валентного германия (Ge) или кремния (Si) пятивалентным – фосфор (P), сурьма (Sb), мышьяк (As) в месте нахождения атома примеси появляется лишний свободный электрон. При этом примесь называют донорной .

При легировании четырех валентного германия (Ge) или кремния (Si) трехвалентным - алюминием (Al), индием (Jn), бором (В), галлием (Ga) – возникает линяя дырка. Такие примеси называют акцепторными .

В одном и том же образце полупроводникового материала один участок может обладать р - проводимостью, а другой n – проводимостью. Такой прибор называют полупроводниковым диодом.

Приставка «ди» в слове «диод» означает «два», она указывает, что в приборе имеются две основные «детали», два тесно примыкающих один к другому полупроводниковых кристалла: один с р-проводимостью (это зона р), другой - с n - проводимостью (это зона п). Фактически же полупроводниковый диод - это один кристалл, в одну часть которого введена донорная примесь (зона п), в другую-акцепторная(зона р).

Если от батареи подвести к диоду постоянное напряжение «плюсом» к зоне р и «минусом» к зоне п , то свободные заряды - электроны и дырки - хлынут к границе, устремятся к рn -переходу. Здесь они будут нейтрализовать друг друга, к границе будут подходить новые заряды, и в цепи диода установится постоянный ток. Это так называемое прямое включение диода - заряды интенсивно движутся через него, в цепи протекает сравнительно большой прямой ток.

Теперь сменим полярность напряжения на диоде, осуществим, как принято говорить, его обратное включение - «плюс» батареи подключим к зоне п, «минус» - к зоне р. Свободные заряды оттянутся от границы, электроны отойдут к «плюсу», дырки - к «минусу» и в итоге pn - переход превратится в зону без свободных зарядов, в чистый изолятор. А значит, произойдет разрыв цепи, ток в ней прекратится.

Hе большой обратный ток через диод все же будет идти. Потому что, кроме основных свободных зарядов (носителей заряда) - электронов, в зоне п ,и дырок в зоне р - в каждой из зон есть еще и ничтожное количество зарядов обратного знака. Это собственные неосновные носители заряда, они существуют в любом полупроводнике, появляются в нем из-за тепловых движений атомов, именно они и создают обратный ток через диод. Зарядов этих сравнительно мало, и обратный ток во много раз меньше прямого. Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода. С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток. Часто ВАХ, для наглядности представляют в виде графиков.

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

Качественное отличие полупроводников от металлов проявляется в зависимости удельного сопротивления от температуры (рис.9.3)

Зонная модель электронно-дырочной проводимости полупроводников

При образовании твердых тел возможна ситуация, когда энергетическая зона, возникшая из энергетических уровней валентных электронов исходных атомов, оказывается полностью заполненной электронами, а ближайшие, доступные для заполнения электронами энергетические уровни отделены от валентной зоны Е V промежутком неразрешенных энергетических состояний – так называемой запрещенной зоной Е g .Выше запрещенной зоны расположена зона разрешенных для электронов энергетических состояний – зона проводимости Е c .


Зона проводимости при 0 К полностью свободна, а валентная зона полностью занята. Подобные зонные структуры характерны для кремния, германия, арсенида галлия (GaAs), фосфида индия (InP) и многих других твердых тел, являющихся полупроводниками.

При повышении температуры полупроводников и диэлектриков электроны способны получать дополнительную энергию, связанную с тепловым движением kT . У части электронов энергии теплового движения оказывается достаточно для перехода из валентной зоны в зону проводимости, где электроны под действием внешнего электрического поля могут перемещаться практически свободно.

В этом случае, в цепи с полупроводниковым материалом по мере повышения температуры полупроводника будет нарастать электрический ток. Этот ток связан не только с движением электронов в зоне проводимости, но и с появлением вакантных мест от ушедших в зону проводимости электронов в валентной зоне, так называемых дырок . Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместиться на новое место в кристалле.

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников. Электроны забрасываются в зону проводимости с уровня Ферми , который оказывается в собственном полупроводнике расположенным посередине запрещенной зоны (рис. 9.4).

Существенно изменить проводимость полупроводников можно, введя в них очень небольшие количества примесей. В металлах примесь всегда уменьшает проводимость. Так, добавление в чистый кремний 3 % атомов фосфора увеличивает электропроводность кристалла в 10 5 раз.

Небольшое добавление примеси к полупроводнику называется легированием.

Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла. Проводимость полупроводников при наличии примесей называется примесной проводимостью .

Различают два типа примесной проводимости электронную и дырочную проводимости. Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As) (рис. 9.5).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним. Он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки.

Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорской примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз.

Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника. Такая проводимость, обусловленная свободными электронами, называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы, например, атомы индия (рис. 9.5)

На рисунке 6 показан атом индия, который создал с помощью своих валентных электронов ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Электронно-дырочный переход. Диоды и транзисторы

В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n p -переход) – это область контакта двух полупроводников с разными типами проводимости.

На границе полупроводников (рис. 9.7) образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Способность n p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами . Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

На рисунке 9.8 приведена типичная вольт - амперная характеристика кремниевого диода.

Полупроводниковые приборы не с одним, а с двумя n–p-переходами называются транзисторами . Транзисторы бывают двух типов: p n p -транзисторы и n p n -транзисторы. В транзисторе n p n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа (рис.9.9).


В транзисторе p–n–p – типа всё наоборот. Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э).

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой .

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называютсядонорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.

Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим .

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.

Полупроводники находят широкое применение в современной электронной технике.

Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах - терморезисторах . Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами .

Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.