Эталонная сетевая модель OSI

Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).

Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.

Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.

Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

  • 7. Прикладной уровень (application layer)
  • 6. Представительский уровень или уровень представления (presentation layer)
  • 5. Сеансовый уровень (session layer)
  • 4. Транспортный уровень (transport layer)
  • 3. Сетевой уровень (network layer)
  • 2. Канальный уровень (data link layer)
  • 1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо ) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Заключение

Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

Эталонная модель OSI являет собой 7-уровневую сетевую иерархию созданную международной организацией по стандартам (ISO). Представленная модель на рис.1 имеет 2 различных модели:

  • горизонтальная модель на основе протоколов, реализующую взаимодействие процессов и ПО на разных машинах
  • вертикальную модель на основе услуг, реализуемых соседними уровнями друг другу на одной машине

В вертикальной — соседние уровни меняются информацией с помощью интерфейсов API. Горизонтальная модель требует общий протокол для обмена информацией на одном уровне.

Рисунок — 1

Модель OSI описывает только системные методы взаимодействия, реализуемые ОС, ПО и тд. Модель не включает методы взаимодействия конечных пользователей. В идеальных условиях приложения должны обращаться к верхнему уровню модели OSI, однако на практике многие протоколы и программы имеют методы обращения к нижним уровням.

Физический уровень

На физическом уровне данные представлены в виде электрических или оптических сигналов, соответствующие 1 и 0 бинарного потока. Параметры среды передачи определяются на физическом уровне:

  • тип разъемов и кабелей
  • разводка контактов в разъемах
  • схема кодирования сигналов 0 и 1

Самые распространенные виды спецификаций на этом уровне:

  • — параметры несбалансированного последовательного интерфейса
  • — параметры сбалансированного последовательного интерфейса
  • IEEE 802.3 —
  • IEEE 802.5 —

На физическом уровне нельзя вникнуть в смысл данных, так как она представлена в виде битов.

Канальный уровень

На этом канале реализована транспортировка и прием кадров данных. Уровень реализует запросы сетевого уровня и использует физический уровень для приема и передачи. Спецификации IEEE 802.x делят этот уровень на два подуровня управление логическим каналом (LLC) и управление доступом к среде (MAC). Самые распространенные протоколы на этом уровне:

  • IEEE 802.2 LLC и MAC
  • Ethernet
  • Token Ring

Также на этом уровне реализуется обнаружение и исправление ошибок при передаче. На канальном уровне пакет помещается в поле данных кадра — инкапсуляция. Обнаружение ошибок возможно с помощью разных методов. К примеру реализация фиксированных границ кадра, или контрольной суммой.

Сетевой уровень

На этом уровне происходит деление пользователей сети на группы. Здесь реализуется маршрутизация пакетов на основе MAC-адресов. Сетевой уровень реализует прозрачную передачу пакетов на транспортный уровень. На этом уровне стираются границы сетей разных технологий. работают на этом уровне. Пример работы сетевого уровня показан на рис.2 Самые частые протоколы:

Рисунок — 2

Транспортный уровень

На этом уровне потоки информации делятся на пакеты для передачи их на сетевом уровне. Самые распространенные протоколы этого уровня:

  • TCP — протокол управления передачей

Сеансовый уровень

На этом уровне происходит организация сеансов обмена информацией между оконечными машинами. На этом уровне идет определение активной стороны и реализуется синхронизация сеанса. На практике многие протоколы других уровней включают функцию сеансового уровня.

Уровень представления

На этом уровне происходит обмен данными между ПО на разных ОС. На этом уровне реализовано преобразование информации ( , сжатие и тд) для передачи потока информации на транспортный уровень. Протоколы уровня используются и те, что используют высшие уровни модели OSI.

Прикладной уровень

Прикладной уровень реализует доступ приложения в сеть. Уровень управляет переносом файлов и управление сетью. Используемые протоколы:

  • FTP/TFTP — протокол передачи файлов
  • X 400 — электронная почта
  • Telnet
  • CMIP — управление информацией
  • SNMP — управление сетью
  • NFS — сетевая файловая система
  • FTAM — метод доступа для переноса файлов

На примере Карты Сознания Дэвида Хокинса, мы выяснили, что существует множество градаций уровней сознания. Каждый уровень обозначает определенные понимания и переживания, через которые можно пройти для перехода на следующий уровень.
Это можно сравнить с ключами от дверей, когда с каждым новым опытным пониманием одного аспекта сознания, человеку становится легче перейти к следующему аспекту сознания или уровню понимания.
Кроме Дэвида Хоккинса, классификацию уровней сознания в разные периоды времени разрабатывали многие ученые и мыслители. Перечислю наиболее известные и интересные:
- 7 уровней сознания Ричарда Барретта;

- 7 типов (номеров) человека, в зависимости от характеристик сознания Георгия Гурджиева;
- 7 уровней квантового сознания Стивена Волинского.

ПИРАМИДА ЛОГИЧЕСКИХ УРОВНЕЙ ЛИЧНОСТИ ПО Р.ДИЛТСУ. Рисунок 1

7 уровней сознания Ричарда Барретта

Ричард Барретт, американский консультант, основываясь на идеях гуру психологии и менеджмента Абрахама Маслоу, рассматривает потребности через призму «Семи уровней сознания». В его концепции низший уровень организационного сознания включает выживание и потребность в финансовой стабильности. Иерархию Ричарда Барретта завершают уровни высших, духовных потребностей - поиск своего предназначения, активная жизненная позиция и позитивное развитие своего сообщества, служение обществу и планете.

СЕМЬ УРОВНЕЙ СОЗНАНИЯ ПО Р.БАРРЕТУ. Рисунок 2

7 типов (номеров) человека, в зависимости от характеристик сознания Георгия Гурджиева


Г.И.Гурджиев отмечал, что каждый человек находится на определенном уровне сознания и в течение жизни эволюционирует (за исключением наименее развитых), последовательно достигая более высоких уровней. Он не просто определил семь условных уровней сознания, а проиллюстрировал, как именно меняется мировоззрение человека, отношение к жизни и деятельности, с переходом на каждый новый уровень.


Теорию Гурджиева прекрасно иллюстрирует выдержка из книги П.Д.Успенского «В поисках чудесного. Фрагменты неизвестного учения».


«Обратимся еще раз к идее человека. В языке, о котором я говорю, вместо слова «человек» употребляются семь слов, а именно: человек номер один, человек номер два, человек номер три, человек номер четыре, человек номер пять, человек номер шесть и человек номер семь. С этими семью понятиями люди, говоря о человеке, уже смогут понимать друг друга.


Человек номер семь - это такой человек, который достиг полного развития, возможного для человека, который обладает всем, чем может обладать человек, то есть, волей, сознанием, постоянным и неизменным Я, индивидуальностью, бессмертием, а также многими иными свойствами, которые мы в своей слепоте и в своем невежестве приписываем себе. Лишь тогда, когда мы до известной степени понимаем человека номер семь и его свойства, мы можем понять и те постепенные переходы, которыми к нему приближаемся, то есть, понимаем процесс возможного для нас развития.

Человек номер шесть стоит очень близко к человеку номер семь. Его отличает от человека номер семь только то обстоятельство, что некоторые из его качеств еще не стали постоянными.

Человек номер пять также является недостижимым для нас стандартом, так как это человек, достигший единства.

Человек номер четыре - это промежуточная стадия.

Человек номер два - это человек на том же уровне развития, но его эмоциональный центр совпадает с центром тяжести психической жизни. Это человек, у которого эмоциональная функция имеет перевес над всеми прочими, человек чувств, эмоций.

Человек номер три означает человека на том же уровне развития; но у него центр тяжести психической жизни лежит в интеллектуальном центре, то есть, мыслительная функция получает преобладание над двигательной, инстинктивной и эмоциональной функциями; это человек рассудка, который ко всему подходит с точки зрения теорий и умственных соображений.

Деление человека на семь категорий, или семь номеров, объясняет тысячи явлений, которые иначе понять невозможно. Это деление дает верное понятие об относительности в приложении к человеку. Вещи могут быть одними или другими в зависимости от рода того человека, с точки зрения которого они воспринимаются или по отношению к которому они берутся.

В соответствии с этим все внутренние и внешние проявления человека, все, что принадлежит человеку, все, что им создано, также делится на семь категорий.

Теперь можно сказать, что существует знание номер один, основанное на подражании или инстинктах, заученное, втиснутое в человека, сообщенное ему долгими упражнениями. Человек номер один, если он таков в полном смысле слова, заучивает все наподобие попугая или обезьяны.

Знание человека номер два - это просто знание того, что ему нравится; а того, что ему не нравится, он не знает. Всегда и во всем: он желает чего-то приятного. Если же это больной человек, он будет, напротив, знать только то, что ему неприятно, что его отталкивает, пробуждает в нем страх, ужас, отвращение.

Знание человека номер три - это знание, основанное на субъективно-логическом мышлении, на словах, на буквальном понимании. Это знание книжного червя и схоласта. Человек номер три, например, подсчитал, сколько раз каждая буква арабского алфавита повторяется в Коране Магомета; и обосновал на этом целую систему толкования Корана.

Знание человека номер четыре представляет собой род знания, весьма отличный от предыдущих. Это знание, исходящее от человека номер пять, который в свою очередь получает его от человека номер шесть; а к тому оно поступает от человека номер семь. Но, конечно, человек номер четыре усваивает из этого знания только то, что он может усвоить сообразно своим силам.

По сравнению с человеком номер один, два и три человек номер четыре начал уже освобождаться от субъективных элементов в своем знании, начал движение по пути к объективному знанию.

Знание человека номер пять - это целостное, неделимое знание. Он имеет одно неделимое Я, и все его знание принадлежит этому Я. Он не может иметь одно «я», которое будет желать чего-то такого, что неизвестно другому «я». То, что он знает, знает все его существо в целом. Его знание ближе к объективному знанию, чем знание человека номер четыре.

Знание человека номер шесть - это полное знание, какое только возможно для человека; но его еще можно утратить.

Совершенно также обстоит дело и с бытием.

Есть бытие человека номер один, который живет инстинктами и ощущениями; есть бытие человека номер два, так сказать, бытие сентиментального, эмоционального человека; есть бытие человека номер три, бытие рационалиста, человека теоретического ума, и так далее.

Совершенно ясно, почему знание не должно быть далеким от бытия. Человек номер один, два или три - и причиной тому его бытие - не воспринимает знание человека номер четыре, пять и выше. И что бы вы ему ни дали, он станет объяснять это на свой лад, принижая любую идею до того уровня, на котором находится сам.

Тот же порядок деления на семь категорий следует применять ко всему, что относится к человеку.

Есть искусство номер один, то есть, искусство человека номер один, подражательное и копирующее, грубо примитивное и чувственное, такое как музыка и пляски первобытных народов. Есть искусство номер два - сентиментальное искусство; есть искусство номер три, интеллектуальное и надуманное; должны существовать также искусство номер четыре, пять и так далее».

Успенский П.Д «В поисках чудесного».


СЕМЬ УРОВНЕЙ СОЗНАНИЯ И ЭНЕРГИИ ПО РАМТА. Рисунок 3

7 уровней квантового сознания Стивена Волинского
Стивен Волинский, основатель Института Квантовой Психологии предложил также 7 уровней квантового сознания. Свой подход он описал в книге, цитаты из которой (в сокращении) я предлагаю Вашему вниманию.
«Если объяснять подробнее, явный уровень - это где мои мысли по-видимому отличаются от стула, моя рука отличается от вашей руки.
А на неявном уровне или квантовом уровне есть основополагающее единство, где все связано со всем остальным. На квантовом, субатомном уровне, нет разницы между стулом, диваном, моей рукой, моей ручкой, моими волосами, холодильником и воздухом или пустым пространством между всеми ними. Если вы посмотрите на мир сквозь «субатомную линзу», мир на своем основополагающем уровне будет выглядеть как плавающие в пустоте частицы-состояния без боли (или без состояния), в котором могут появляться и исчезать «мои» личные проблемы.
Зачем мне нужно переживать на опыте, что я, стул, диван и остальная вселенная - одно и то же на субатомном уровне? Что мне это даст, когда я встану утром, выпью кофе, и выйду из дома? Мой ответ основан в первую очередь на моем личном опыте. Для меня жизнь стала ровнее. Любое переживание квантового сознания, даже если оно не ярко и живо в сознании круглые сутки, начинает убирать суждение, оценку, боль разделенности, которые обычно отравляют повседневную жизнь. Вместо того, чтобы абсолютно верить в границы и видимость отделения, соревнования, боли и конфликта, с переживанием большего единства открывается еще одно окно сознания.
Первый уровень
Как наблюдатель содержимого моего ума (мыслей, чувств, эмоций, ощущений, ассоциаций), я больше, чем содержимое моего ума.
Любой, кто изучал восточные традиции, узнает очевидные источники этого первого уровня. Краеугольный камень большинства медитативных дисциплин - практика наблюдения, «свидетельствования», или осознания содержимого своего ума или состояния существования. Индивид наблюдает конкретные мысли, образы, ощущения, чувства, эмоции, и в ходе этого приобретает чувство, что он отделен от потока содержания и является чем-то большим.
Когда наблюдатель начинает сознавать, что он не является своими мыслями, чувствами, и эмоциями, а скорее кем-то наблюдающим, открывается начало процесса разотождествления, который постепенно строится как первый мост к квантовому сознанию.
Второй уровень
Всё (мысли, чувства, эмоции, ощущения, ассоциации) состоит из энергии.
Здесь мы приближаемся к первому аспекту работы известного физика Дэвида Бома. Бом говорит, что мир состоит из энергии, пространства, массы, и времени. На втором уровне мы рассматриваем наши отношения с энергией.
Вы можете начать переживать на опыте, как все то, что вы наблюдали как происходящее в «вашем уме», состоит из одной и той же основополагающей энергии. Злость состоит из той же энергии, что и радость. Второй уровень позволяет вам убрать названия или содержание, которые обычно классифицируют по разным категориям разные грани переживания, и тогда вы автоматически рассеиваете или сводите на нет заряд любого переживания, которое вы наблюдаете.
Третий уровень
Я создатель того, что наблюдаю.
Этот раздел рассматривает работу физика Вернера Гейзенберга и его «принцип неопределенности». Гейзенберг показал, что наблюдатель создает то, что он наблюдает. Словами квантовой психологии: мы создаем наш СУБЪЕКТИВНЫЙ опыт.
В восточной традиции подчеркивается только тот, кто выполняет наблюдение. Нет никакого упоминания о какой-либо причинной связи между наблюдаемыми мыслями и тем, кто их наблюдает. Подразумевается, что эти два явления - мысль и наблюдатель мысли, - совершенно отдельны по своей сути.
Квантовая физика познакомила меня с моей следующей наводящей мост концепцией, принципом «создаваемой наблюдателем реальности», который утверждает:
1. Когда нет наблюдения, нет и реальности.
2. Наблюдение создает реальность (Герберт, 1985).
Проще говоря, вы как наблюдатель, создаете субъективную реальность, которую вы наблюдаете.
Практическая важность третьего уровня - в том, что он дает вам полномочия переходить из пассивной позиции свидетеля в активную позицию создателя. Когда вы понимаете, например, что вы создаете вашу печаль, депрессию, или беспокойство, вы можете перестать это создавать. Этот мост выводит нас дальше из густого леса Ньютоновской мысли к простирающейся свободе квантового сознания.
Четвертый и пятый уровни
Физическая вселенная состоит из энергии, пространства, массы и времени.
На втором уровне мы пережили на опыте, что все, что мы наблюдаем в себе - мысли, эмоции, ощущения и так далее, - состоит из энергии. На третьем уровне мы осознали, что являемся создателями того, что переживаем, и аспекта массы физической Вселенной. Теперь, на четвертом уровне, мы лучше изучаем аспект времени нашей Вселенной, и как мы создаем понятие времени. На пятом уровне, мы проходим через самый незаметный аспект нашего мира: вездесущее пространство. На этом уровне мы соприкасаемся с неизменной природой пространства, и исследуем, как с прикосновением к нему преобразуется наш опыт.
Как уже говорилось раньше, Дэвид Бом открыл, что физическая Вселенная - это «развертывание» и «свертывание» четырех основных элементов: энергии, пространства, массы и времени (продолжительности). Все, что существует в мире, как мы его знаем, от легкого возбуждения чувства любви до железобетонных зданий, состоит из этих четырех первичных элементов. Таким образом, основополагающая энергия, которую мы переживаем на втором уровне, может быть точнее описана как развертывание и свертывание энергии, пространства, массы, и времени.
Говоря в терминах квантовой психологии, чтобы проблема, например нежелательная эмоция, могла существовать, она должна иметь энергию, занимать пространство, иметь измеримую массу (твердость) и существовать во времени (иметь продолжительность - начало, середину, и конец). Рассмотрение проблемы в терминах этих четырех параметров может обеспечить гораздо более многомерную структуру, чем теперешняя двоичная система традиционных терапевтических моделей, в которых проблемы рассматриваются в линейной причинно-следственной связи.
Четвертый и пятый уровни приведут вас в новую сферу первичной сущности.
Шестой уровень
Этот уровень убирает железные занавесы, те разделения, которые мы считаем само собой разумеющимися. Например, мы предполагаем, что чувства «я люблю себя» и «я ненавижу себя» в корне и бесповоротно разные, что успех отличается от неудачи. Мир, как мы его знаем, переполнен границами, которые обозначают различия.
На шестом уровне мы путешествуем через пьянящий мир явных и неявных порядков Дэвида Бома, где проявленное и невидимое постоянно «сворачиваются» и «разворачиваются», где все границы создаются наблюдателем, а не даны от природы. Это квантовый мост, который выводит нас за рамки суждений и оценок, и знакомит нас с опытом основополагающего единства. С помощью опыта этого уровня становится по-настоящему возможно «плыть по течению». По мере того как будет углубляться ваше квантовое сознание этого уровня, вы сможете начать переживать на опыте мир далеко за пределами рамок созданных наблюдателем реальностей.
Седьмой уровень
«Все состоит из пустоты, а форма - сгущенная пустота» (А.Эйнштейн). Другими словами, все состоит из одного из того же вещества или пустоты.
Цитата Альберта Эйнштейна о соотношении формы и пустоты поразительно похожа на буддистский принцип, высказанный более 2.500 лет назад в «Сутре сердца»: «Форма - это не что иное, как пустота, а пустота - не что иное, как форма».
У всего в физической реальности есть форма: форма создает то, что Дэвид Бом назвал явным порядком размеров, очертаний, массы, плотности - от воздуха до листьев, кресел и людей. Однако если мы посмотрим через «субатомную линзу» на кресло или листок, мы увидим частицы - волны, плавающие в том, что выглядит как ничто - мы можем называть это пустотой, вакуумом. Это было бы похоже на вид звездного неба ясной ночью. Звезды - это форма; небо - это пустота.
Чтобы были «ты» и «я», должны быть согласованные границы, которые создают видимость разницы между тобой и мной, между стульями и столами, между деревьями и небом. Эти согласованные границы определяют то, как мы обычно воспринимаем мир, как мы живем на явном уровне формы. Когда мы приобретаем чувство, что эти границы не существуют на квантовом уровне - что воспринимаемое нами как открытое настежь пространство состоит из тех же частиц и волн, как и объекты, которые мы воспринимаем как плотные и «физические» - тогда ограниченное, обособляющее переживание «ты-шности» и «я-шности» растворяется в уютном пространстве единения.
На шестом уровне мы переживаем на опыте взаимосвязь всех вещей. Седьмой уровень ведет нас на шаг дальше, говоря, что все не только перекрывает одно другое, но и в действительности состоит из одного и того же материала. Таким образом, связь между объектами переходит за рамки интерпретации на уровень универсальной одинаковости или тождества.
Пережить «конечную точку» квантового сознания означает пережить основополагающую свободу от отделенной, обособленной самости. Чтобы достичь этого переживания, нам нужно, как это ни парадоксально, так или иначе повзаимодействовать с этой самостью. Восточные традиции воздвигли тысячи монастырей и храмов, чтобы обеспечить помещения и место для этого взаимодействия. Возможно, на этом, кульминационном уровне, можно найти переживание настоящего расширения».
По материалам сайтов: http://www.soznaniesveta.com, http://ezo.club

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) . Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Взаимодействие уровней модели OSI

Модель OSI можно разделить на две различных модели, как показано на рис. 1.11:

Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Каждый уровень компьютера-отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера-получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

Рис. 1.11. Схема взаимодействия компьютеров в базовой эталонной модели OSI

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети.

При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 1.12, где Заг – заголовок пакета, Кон – конец пакета.

На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Рис. 1.12. Формирование пакета каждого уровня семиуровневой модели

Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

Отдельные уровни модели OSI удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы, необходимые для выполнения этой задачи.

Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни. На рис. 1.13 приведено краткое описание функций всех уровней.

Рис. 1.13. Функции уровней модели OSI

Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

Взаимодействию прикладных процессов;

Формам представления данных;

Единообразному хранению данных;

Управлению сетевыми ресурсами;

Безопасности данных и защите информации;

Диагностике программ и технических средств.

Прикладной уровень (Application layer)

Прикладной уровень обеспечивает прикладным процессам средства доступа к области взаимодействия, является верхним (седьмым) уровнем и непосредственно примыкает к прикладным процессам.

В действительности прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Специальные элементы прикладного сервиса обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например программе необходимо переслать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами FTAM (File Transfer, Access, and Management). В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере), посылает конкретные данные в виде Дейтаграммы на прикладной уровень. Одна из основных задач этого уровня – определить, как следует обрабатывать запрос прикладной программы, другими словами, какой вид должен принять данный запрос.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень выполняет следующие функции:

1. Выполнение различных видов работ.

Передача файлов;

Управление заданиями;

Управление системой и т. д;

2. Идентификация пользователей по их паролям, адресам, электронным подписям;

3. Определение функционирующих абонентов и возможности доступа к новым прикладным процессам;

4. Определение достаточности имеющихся ресурсов;

5. Организация запросов на соединение с другими прикладными процессами;

6. Передача заявок представительскому уровню на необходимые методы описания информации;

7. Выбор процедур планируемого диалога процессов;

8. Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов;

9. Определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок);

10. Соглашение об исправлении ошибок и определении достоверности данных;

11. Согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Указанные функции определяют виды сервиса, которые прикладной уровень предоставляет прикладным процессам. Кроме этого, прикладной уровень передает прикладным процессам сервис, предоставляемый физическим, канальным, сетевым, транспортным, сеансовым и представительским уровнями.

На прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское программное обеспечение.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних трех уровней относятся:

FTP (File Transfer Protocol) протокол передачи файлов;

TFTP (Trivial File Transfer Protocol) простейший протокол пересылки файлов;

X.400 электронная почта;

Telnet работа с удаленным терминалом;

SMTP (Simple Mail Transfer Protocol) простой протокол почтового обмена;

CMIP (Common Management Information Protocol) общий протокол управления информацией;

SLIP (Serial Line IP) IP для последовательных линий. Протокол последовательной посимвольной передачи данных;

SNMP (Simple Network Management Protocol) простой протокол сетевого управления;

FTAM (File Transfer, Access, and Management) протокол передачи, доступа и управления файлами.

Уровень представления данных (Presentation layer)

Функции данного уровня – представление данных, передаваемых между прикладными процессами, в нужной форме.

Этот уровень обеспечивает то, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. В случаях необходимости уровень представления в момент передачи информации выполняет преобразование форматов данных в некоторый общий формат представления, а в момент приема, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. Такая ситуация может возникнуть в ЛВС с неоднотипными компьютерами (IBM PC и Macintosh), которым необходимо обмениваться данными. Так, в полях баз данных информация должна быть представлена в виде букв и цифр, а зачастую и в виде графического изображения. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

В основу общего представления данных положена единая для всех уровней модели система ASN.1. Эта система служит для описания структуры файлов, а также позволяет решить проблему шифрования данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня.

Представительный уровень выполняет следующие основные функции:

1. Генерация запросов на установление сеансов взаимодействия прикладных процессов.

2. Согласование представления данных между прикладными процессами.

3. Реализация форм представления данных.

4. Представление графического материала (чертежей, рисунков, схем).

5. Засекречивание данных.

6. Передача запросов на прекращение сеансов.

Протоколы уровня представления данных обычно являются составной частью протоколов трех верхних уровней модели.

Сеансовый уровень (Session layer)

Сеансовый уровень – это уровень, определяющий процедуру проведения сеансов между пользователями или прикладными процессами.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того чтобы начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Сеансовый уровень управляет передачей информации между прикладными процессами, координирует прием, передачу и выдачу одного сеанса связи. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающими на разных рабочих станциях. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений во время сеанса и завершение сеанса.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Полудуплексной (процессы будут передавать и принимать данные по очереди);

Дуплексной (процессы будут передавать данные, и принимать их одновременно).

В полудуплексном режиме сеансовый уровень выдает тому процессу, который начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень разрешает передачу только той стороне, которая обладает маркером данных.

Сеансовый уровень обеспечивает выполнение следующих функций:

1. Установление и завершение на сеансовом уровне соединения между взаимодействующими системами.

2. Выполнение нормального и срочного обмена данными между прикладными процессами.

3. Управление взаимодействием прикладных процессов.

4. Синхронизация сеансовых соединений.

5. Извещение прикладных процессов об исключительных ситуациях.

6. Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки.

7. Прерывание в нужных случаях прикладного процесса и его корректное возобновление.

8. Прекращение сеанса без потери данных.

9. Передача особых сообщений о ходе проведения сеанса.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью протоколов трех верхних уровней модели.

Транспортный уровень (Transport Layer)

Транспортный уровень предназначен для передачи пакетов через коммуникационную сеть. На транспортном уровне пакеты разбиваются на блоки.

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням модели (прикладному и сеансовому) передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень определяет адресацию физических устройств (систем, их частей) в сети. Этот уровень гарантирует доставку блоков информации адресатам и управляет этой доставкой. Его главной задачей является обеспечение эффективных, удобных и надежных форм передачи информации между системами. Когда в процессе обработки находится более одного пакета, транспортный уровень контролирует очередность прохождения пакетов. Если проходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

В функции транспортного уровня входят:

1. Управление передачей по сети и обеспечение целостности блоков данных.

2. Обнаружение ошибок, частичная их ликвидация и сообщение о неисправленных ошибках.

3. Восстановление передачи после отказов и неисправностей.

4. Укрупнение или разделение блоков данных.

5. Предоставление приоритетов при передаче блоков (нормальная или срочная).

6. Подтверждение передачи.

7. Ликвидация блоков при тупиковых ситуациях в сети.

Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Наиболее распространенные протоколы транспортного уровня включают в себя:

TCP (Transmission Control Protocol) протокол управления передачей стека TCP/IP;

UDP (User Datagram Protocol) пользовательский протокол дейтаграмм стека TCP/IP;

NCP (NetWare Core Protocol) базовый протокол сетей NetWare;

SPX (Sequenced Packet eXchange) упорядоченный обмен пакетами стека Novell;

TP4 (Transmission Protocol) – протокол передачи класса 4.

Сетевой уровень (Network Layer)

Сетевой уровень обеспечивает прокладку каналов, соединяющих абонентские и административные системы через коммуникационную сеть, выбор маршрута наиболее быстрого и надежного пути.

Сетевой уровень устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними. Виртуальный или логический канал – это такое функционирование компонентов сети, которое создает взаимодействующим компонентам иллюзию прокладки между ними нужного тракта. Кроме этого, сетевой уровень сообщает транспортному уровню о появляющихся ошибках. Сообщения сетевого уровня принято называть пакетами (packet). В них помещаются фрагменты данных. Сетевой уровень отвечает за их адресацию и доставку.

Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз, выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, по которым проходит пакет.

Сетевой уровень отвечает за деление пользователей на группы и маршрутизацию пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Сетевой уровень выполняет функции:

1. Создание сетевых соединений и идентификация их портов.

2. Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть.

3. Управление потоками пакетов.

4. Организация (упорядочение) последовательностей пакетов.

5. Маршрутизация и коммутация.

6. Сегментирование и объединение пакетов.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Наиболее часто на сетевом уровне используются протоколы:

IP (Internet Protocol) протокол Internet, сетевой протокол стека TCP/IP, который предоставляет адресную и маршрутную информацию;

IPX (Internetwork Packet Exchange) протокол межсетевого обмена пакетами, предназначенный для адресации и маршрутизации пакетов в сетях Novell;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов (частично этот протокол реализован на уровне 2);

CLNP (Connection Less Network Protocol) сетевой протокол без организации соединений.

Канальный уровень (Data Link)

Единицей информации канального уровня являются кадры (frame). Кадры – это логически организованная структура, в которую можно помещать данные. Задача канального уровня – передавать кадры от сетевого уровня к физическому уровню.

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Задача канального уровня – брать пакеты, поступающие с сетевого уровня и готовить их к передаче, укладывая в кадр соответствующего размера. Этот уровень обязан определить, где начинается и где заканчивается блок, а также обнаруживать ошибки передачи.

На этом же уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются и исправляются (путем требований повторной передачи данных) ошибки.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.Х делят канальный уровень на два подуровня:

LLC (Logical Link Control) управление логическим каналом осуществляет логический контроль связи. Подуровень LLC обеспечивает обслуживание сетевого уровня и связан с передачей и приемом пользовательских сообщений.

MAC (Media Assess Control) контроль доступа к среде. Подуровень MAC регулирует доступ к разделяемой физической среде (передача маркера или обнаружение коллизий или столкновений) и управляет доступом к каналу связи. Подуровень LLC находится выше подуровня МАC.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу.

При больших размерах передаваемых блоков данных канальный уровень делит их на кадры и передает кадры в виде последовательностей.

При получении кадров уровень формирует из них переданные блоки данных. Размер блока данных зависит от способа передачи, качества канала, по которому он передается.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Канальный уровень может выполнять следующие виды функций:

1. Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.

2. Организация и передача кадров.

3. Обнаружение и исправление ошибок.

4. Управление потоками данных.

5. Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Наиболее часто используемые протоколы на канальном уровне включают:

HDLC (High Level Data Link Control) протокол управления каналом передачи данных высокого уровня, для последовательных соединений;

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x;

Ethernet сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей частоты и обнаружением конфликтов;

Token ring сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера;

FDDI (Fiber Distributed Date Interface Station) сетевая технология по стандарту IEEE 802.6, использующая оптоволоконный носитель;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов;

Frame relay сеть, организованная из технологий Х25 и ISDN.

Физический уровень (Physical Layer)

Физический уровень предназначен для сопряжения с физическими средствами соединения. Физические средства соединения – это совокупность физической среды, аппаратных и программных средств, обеспечивающая передачу сигналов между системами.

Физическая среда – это материальная субстанция, через которую осуществляется передача сигналов. Физическая среда является основой, на которой строятся физические средства соединения. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц.

Физический уровень состоит из Подуровня стыковки со средой и Подуровня преобразования передачи.

Первый из них обеспечивает сопряжение потока данных с используемым физическим каналом связи. Второй осуществляет преобразования, связанные с применяемыми протоколами. Физический уровень обеспечивает физический интерфейс с каналом передачи данных, а также описывает процедуры передачи сигналов в канал и получения их из канала. На этом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

Тип кабелей и разъемов;

Разводку контактов в разъемах;

Схему кодирования сигналов для значений 0 и 1.

Физический уровень выполняет следующие функции:

1. Установление и разъединение физических соединений.

2. Передача сигналов в последовательном коде и прием.

3. Прослушивание, в нужных случаях, каналов.

4. Идентификация каналов.

5. Оповещение о появлении неисправностей и отказов.

Оповещение о появлении неисправностей и отказов связано с тем, что на физическом уровне происходит обнаружение определенного класса событий, мешающих нормальной работе сети (столкновение кадров, посланных сразу несколькими системами, обрыв канала, отключение питания, потеря механического контакта и т.д.). Виды сервиса, предоставляемого канальному уровню, определяются протоколами физического уровня. Прослушивание канала необходимо в тех случаях, когда к одному каналу подключается группа систем, но одновременно передавать сигналы разрешается только одной из них. Поэтому прослушивание канала позволяет определить, свободен ли он для передачи. В ряде случаев для более четкого определения структуры физический уровень разбивается на несколько подуровней. Например, физический уровень беспроводной сети делится на три подуровня (рис. 1.14).

Рис. 1.14. Физический уровень беспроводной локальной сети

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Физический уровень может обеспечивать как асинхронную (последовательную) так и синхронную (параллельную) передачу, которая применяется для некоторых мэйнфреймов и мини-компьютеров. На Физическом уровне должна быть определена схема кодирования для представления двоичных значений с целью их передачи по каналу связи. Во многих локальных сетях используется манчестерское кодирование.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных и другие характеристики среды и электрических сигналов.

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 – механические/электрические характеристики несбалансированного последовательного интерфейса;

EIA-RS-422/449, CCITT V.10 – механические, электрические и оптические характеристики сбалансированного последовательного интерфейса;

Ethernet – сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов;

Token ring – сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера.