Оптическая плотность вещества может изменяться в пределах. Определение оптической плотности и концентрации. Как работает методика

Обеспечение достаточной оптической плотности (заливки) знаков и изображений на странице является важным фактором в субъективной оценке качества печати. Нарушения в электрофотографическом процессе могут вызвать нежелательные отклонения темноты (заливки) изображения. Эти отклонения могут находиться в допустимых пределах или выходить из них. Величина этих допустимых отклонений устанавливается в технических условиях на расходные материалы к конкретному аппарату и может существенно отличаться для разных аппаратов. Объективная оценка плотности заливки характеризует неоднородность процесса и определяется как предел и стандартное отклонение коэффициента отражения печатного знака поперек страницы.

Термин оптическая плотность используется для характеристики меры пропускания света - для прозрачных объектов и отражения - для непрозрачных. Количественно определяется, как десятичный логарифм величины, обратной коэффициенту пропускания (отражения). В электрографии этот термин используется для оценки качества элементов изображения на копиях, полученных при определенных условиях проявления (использовании определенного типа тонера, оценки величины контраста скрытого электростатического изображения, качества копий при применении того или иного способа проявления и т. д.). В полиграфии эта характеристика используется для оценки издательских оригиналов, промежуточных изображений и оттисков.

Оптическая плотность обозначается OD(Optical Density) или просто D. Минимальное значение оптической плотности D=0 соответствует белому цвету. Чем больше света поглощается средой, тем она темнее, т.е., например, черный цвет имеет большую оптическую плотность, чем серый.

Коэффициент отражения связан с оптической плотностью и плотностью контраста следующим образом:

D = lg (1/R pr) и D c =R pr /R pt

где D - оптическая плотность изображения;

R pt - коэффициент отражения в точке измерения;

D c - плотность контраста;

R pr - коэффициент отражения бумаги.

Значения оптической плотности изображения на копиях для черного в электрографии для различных аппаратов (как отмечалось выше) существенно различны. Как правило по спецификациям производителей тонера для лазерных принтеров эти значения (минимально допустимые при нормальном состоянии аппаратуры) лежат в диапазоне от 1,3D до 1,45D. Для качественных тонеров оптическая плотность принимает значения в диапазоне от 1,45D до 1,5D и не превышают 1,6D. В технических условиях принято устанавливать ограничения по нижнему допустимому пределу со стандартным отклонением по оптической плотности 0,01.

Величину оптической плотности измеряют специальным прибором - денситометром, принцип работы которого основан на измерении потока, отраженного от отпечатка и пересчета этого показателя в единицы измерения оптической плотности.

В электрографии оптическую плотность изображений используют для характеристики проявителя (тонера) с целью определения требуемых значений оптической плотности линий установленной ширины при определенных условиях проявления или характеристики электрофотографического изображения на копиях в режиме номинального функционирования аппаратуры

Понятие оптической плотности (Optical Density) относится прежде всего к сканируемому оригиналу. Этот параметр характеризует способность оригинала поглощать свет; он обозначается как D или OD. Оптическая плотность вычисляется как десятичный логарифм отношения интенсивностей падающего и отраженного (в случае непрозрачных оригиналов) или проходящего (в случае прозрачных оригиналов) света. Минимальная оптическая плотность (D min) соответствует самому светлому (прозрачному) участку оригинала, а максимальная плотность (D max) соответствует самому темному (наименее прозрачному) участку. Диапазон возможных значений оптической плотности заключен между 0 (идеально белый или абсолютно прозрачный оригинал) и 4 (черный или абсолютно непрозрачный оригинал).

Типичные значения оптической плотности некоторых типов оригиналов представлены в следующей таблице:

Динамический диапазон сканера определяется максимальным и минимальным значениями оптической плотности и характеризует его способность работать с различными типами оригиналов. Динамический диапазон сканера связан с его разрядностью (битовой глубиной цвета): чем выше разрядность, тем больше динамический диапазон и наоборот. Для многих планшетных сканеров, главным образом, предназначенных для офисных работ, этот параметр не указывается. В таких случаях считается, что значение оптической плотности приблизительно равно 2,5 (типовое значение для офисных 24-битных сканеров). Для 30-битного сканера этот параметр равен 2,6-3,0, а для 36-битного - от 3,0 и выше.

С увеличением динамического диапазона сканер лучше передает градации яркости в очень светлых и очень темных участках изображения. Наоборот, при недостаточном динамическом диапазоне детали изображения и плавность цветовых переходов в темных и светлых участках теряются.

Разрешение

Разрешение (Resolution) или разрешающая способность сканера - параметр, характеризующий максимальную точность или степень детальности представления оригинала в цифровом виде. Разрешение измеряется в пикселах на дюйм (pixels per inch, ppi). Нередко разрешение указывают в точках на дюйм (dots per inch, dpi), но эта единица измерения является традиционной для устройств вывода (принтеров). Говоря о разрешении, мы будем использовать ppi. Различают аппаратное (оптическое) и интерполяционное разрешение сканера.

Аппаратное (оптическое) разрешение

Аппаратное (оптическое) разрешение (Hardware/optical Resolution) непосредственно связано с плотностью размещения светочувствительных элементов в матрице сканера. Это - основной параметр сканера (точнее, его оптико-электронной системы). Обычно указывается разрешение по горизонтали и вертикали, например, 300x600 ppi. Следует ориентироваться на меньшую величину, т. е. на горизонтальное разрешение. Вертикальное разрешение, которое обычно вдвое больше горизонтального, получается в конечном счете интерполяцией (обработкой результатов непосредственного сканирования) и напрямую не связано с плотностью чувствительных элементов (это так называемое разрешение двойного шага ). Чтобы увеличить разрешение сканера, нужно уменьшить размер светочувствительного элемента. Но с уменьшением размера теряется чувствительность элемента к свету и, как следствие, ухудшается соотношение сигнал/шум. Таким образом, повышение разрешения - нетривиальная техническая задача.

Интерполяционное разрешение

Интерполяционное разрешение (Interpolated Resolution) - разрешение изображения, полученного в результате обработки (интерполяции) отсканированного оригинала. Этот искусственный прием повышения разрешения обычно не приводит к увеличению качества изображения. Представьте себе, что реально отсканированные пикселы изображения раздвинуты, а в образовавшиеся промежутки вставлены «вычисленные» пикселы, похожие в каком-то смысле на своих соседей. Результат такой интерполяции зависит от ее алгоритма, но не от сканера. Однако эту операцию можно выполнить средствами графического редактора, например, Photoshop, причем даже лучше, чем собственным программным обеспечением сканера. Интерполяционное разрешение, как правило, в несколько раз больше аппаратного, но практически это ничего не означает, хотя может ввести в заблуждение покупателя. Значимым параметром является именно аппаратное (оптическое) разрешение.

В техническом паспорте сканера иногда указывается просто разрешение. В этом случае имеется в виду аппаратное (оптическое) разрешение. Нередко указываются и аппаратное, и интерполяционное разрешение, например, 600х 1200 (9600) ppi. Здесь 600 - аппаратное разрешение, а 9600 - интерполяционное.

Различимость линий

Различимость линий (Line detectability) - максимальное количество параллельных линий на дюйм, которые воспроизводятся с помощью сканера как раздельные линии (без слипаний). Этот параметр характеризует пригодность сканера для работы с чертежами и другими изображениями, содержащими много мелких деталей. Его значение измеряется в линиях на дюйм (lines per inch, Ipi).

Какое разрешение сканера следует выбрать

Этот вопрос чаще других задают при выборе сканера, поскольку разрешение - один из самых главных параметров сканера, от которого существенно зависит возможность получения высококачественных результатов сканирования. Однако это вовсе не означает, что следует стремиться к максимальному возможному разрешению, тем более, что оно дорого стоит.

Вырабатывая требования к разрешению сканера, важно уяснить общий подход. Сканер является устройством, преобразующим оптическую информацию об оригинале в цифровую форму и, следовательно, осуществляющим ее дискретизацию. Наданном этапе рассмотрения кажется, что чем мельче дискретизация (больше разрешение), тем меньше потерь исходной информации. Однако результаты сканировании предназначены для отображения с помощью некоторого устройства вывода, например, монитора или принтера. Эти устройства имеют свою разрешающую способность. Наконец, глаз человека обладает способностью сглаживать изображения. Кроме того, печатные оригиналы, полученные типографским способом или посредством принтера, также имеют дискретную структуру (печатный растр), хотя это может быть и не заметно для невооруженного глаза. Такие оригиналы обладают собственным разрешением.
Итак, есть оригинал с собственным разрешением, сканер со своей разрешающей способностью и результат сканирования, качество которого должно быть как можно выше. Качество результирующего изображения зависит от установленного разрешения сканера, но до некоторого предела. Если установить разрешение сканера больше собственного разрешения оригинала, то от этого качество результата сканирования, вообще говоря, не улучшится. Мы не хотим сказать, что сканирование с более высоким, чем у оригинала, разрешением бесполезно. Есть ряд причин, когда это нужно делать (например, когда мы собираемся увеличивать изображение при выводе на монитор или принтер или когда надо избавиться от муара). Здесь мы обращаем внимание на то, что улучшение качества результирующего изображения за счет повышения разрешения сканера не беспредельно. Можно увеличивать разрешение сканирования, не добиваясь при этом улучшения качества результирующего изображения, но зато увеличивая его объем и время сканирования.

О выборе разрешения сканирования мы еще неоднократно будем говорить в данной главе. Разрешение сканера - это максимальное разрешение, которое можно установить при сканировании. Так какая же величина разрешения нам нужна? Ответ зависит от того, какие изображения вы собираетесь сканировать и на какие устройства выводить. Ниже мы приведем лишь ориентировочные значения.
Если вы собираетесь сканировать изображения для последующего вывода на экран монитора, то обычно достаточно разрешения 72-l00ppi. Для вывода на обычный офисный или домашний струйный принтер - 100-150 ppi, на высококачественный струйный принтер - от 300 ppi.

При сканировании текстов из газет, журналов и книг с целью последующей обработки программами оптического распознавания символов (OCR - Optical Character Recognition) обычно требуется разрешение 200-400 ppi. Для вывода на экран или принтер эта величину можно уменьшить в несколько раз.

Для любительских фотографий обычно требуется 100-300 ppi. Для иллюстраций из роскошных типографских альбомов и буклетов - 300-600ppi.

Если вы собираетесь увеличивать изображение для вывода на экран или принтер без потери качества (четкости), то разрешение сканирования следует установить с некоторым запасом, т. е. увеличить его в 1,5-2 раза по сравнению с приведенными выше значениями.

Рекламным агентствам, например, требуется высококачественное сканирование слайдов и бумажных оригиналов. При сканировании слайдов для вывода на печать в формате 10x15 см потребуется разрешение 1200 ppi, а в формате А4 - 2400 ppi.
Обобщая изложенное выше, можно сказать, что в большинстве случаев аппаратного разрешения сканера 300 ppi достаточно. Если же сканер имеет разрешение 600 ppi, то это очень хорошо.

Оптическая плотность D , мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F 0 , падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F , прошедшему через этот слой: D = lg (F 0 /F ), иначе, О. п. есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg (1/t ). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзеном ; оно привлекается для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в светофильтрах и иных оптических изделиях. Особенно широко О. п. пользуются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии . Различают несколько типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис. ).

О. п. зависит от набора частот n (длин волн l ), характеризующего исходный поток; её значение для предельного случая одной единственной n называется монохроматической О. п. Регулярная (рис. , а)монохроматическая О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 k n l , где k n - натуральный поглощения показатель среды, l - толщина слоя (k n l = k cl - показатель в уравнении Бугера - Ламберта - Бера закона ; если рассеянием в среде нельзя пренебречь, k n заменяется на натуральный ослабления показатель ). Для смеси нереагирующих веществ или совокупносги расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отдельных веществ или отдельных сред соответственно. То же справедливо и для регулярной немонохроматической О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от n ) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр , Микрофотометр , Спектрозональная аэрофотосъёмка , Спектросенситометр , Спектрофотометр , Фотометр .)

Лит.: Гороховский Ю. Н., Левенберг Т. М., Общая сенситометрия. Теория и практика, М., 1963; Джеймс Т., Хиггинс Дж., Основы теории фотографического процесса, пер. с англ., М., 1954.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Любая частица, будь то молекула, атом или ион, в результате поглощения кванта света переходит на более высокий уровень энергетического состояния. Чаще всего осуществляется переход из основного в возбужденное состояние. Это вызывает появление в спектрах определенных полос поглощения.

Поглощение излучения приводит к тому, что при пропускании его через вещество интенсивность этого излучения снижается при увеличении количества частиц вещества, обладающего некоторой оптической плотностью. Этот метод исследования предложил В. М. Севергин еще в 1795 году.

Наилучшим образом этот метод годится для реакций, где определяемое вещество способно переходить в окрашенное соединение, что вызывает изменение окраски исследуемого раствора. Измерив его светопоглощение или сравнив окраску с раствором известной концентрации, несложно найти процент содержания вещества в растворе.

Основной закон светопоглощения

Суть фотометрического определения заключается в двух процессах:

  • перевод определяемого вещества в поглощающее электромагнитные колебания соединение;
  • замер интенсивности поглощения этих самых колебаний раствором исследуемого вещества.

Изменения в интенсивности потока света, проходящего через светопоглощающее вещество, будут вызываться также потерями света из-за отражения и рассеяния. Чтобы результат был достоверным, проводят параллельные исследования по замеру параметров при той же толщине слоя, в идентичных кюветах, с тем же растворителем. Так снижение интенсивности света зависит главным образом от концентрации раствора.

Уменьшение интенсивности света, пропущенного через раствор, характеризуют (также принято называть его пропусканием) Т:

Т = I / I 0 , где:

  • I — интенсивность света, пропущенного через вещество;
  • I 0 — интенсивность падающего пучка света.

Таким образом, пропускание показывает долю непоглощенного светового потока, проходящего через изучаемый раствор. Обратный алгоритм значения пропускания называют оптической плотностью раствора (D): D = (-lgT) = (-lg) * (I / I 0) = lg * (I 0 / I).

Это уравнение показывает, какие параметры являются главными для исследования. К ним относится длина волны света, толщина кюветы, концентрация раствора и оптическая плотность.

Закон Бугера-Ламберта-Бера

Он является математическим выражением, отображающим зависимость уменьшения интенсивности монохроматического потока света от концентрации светопоглощающего вещества и толщины жидкостного слоя, через который он пропущен:

I = I 0 * 10 -ε·С·ι , где:

  • ε — коэффициент поглощения света;
  • С — концентрация вещества, моль/л;
  • ι —толщина слоя анализируемого раствора, см.

Преобразовав, эту формулу можно записать: I / I 0 = 10 -ε·С·ι .

Суть закона сводится к следующему: различные растворы одного и того же соединения при равной концентрации и толщине слоя в кювете поглощают одинаковую часть падающего на них света.

Прологарифмировав последнее уравнение, можно получить формулу: D = ε * С * ι.

Очевидно, что оптическая плотность напрямую зависит от концентрированности раствора и толщины его слоя. Становится ясен физический смысл молярного коэффициента поглощения. Он равен D для одномолярного раствора и при толщине слоя в 1 см.

Ограничения применения закона

Этот раздел включает следующие пункты:

  1. Он справедлив исключительно для монохроматического света.
  2. Коэффициент ε связан с показателем преломления среды, особенно сильные отклонения от закона могут наблюдаться при анализе высококонцентрированных растворов.
  3. Температура при измерении оптической плотности должна быть постоянной (в рамках нескольких градусов).
  4. Световой пучок должен быть параллельным.
  5. рН среды должен быть постоянным.
  6. Закон применим для веществ, светопоглощающими центрами которых являются частицы одного вида.

Методы определения концентрации

Стоит рассмотреть метод градуировочного графика. Для его построения готовят ряд растворов (5-10) с различной концентрацией исследуемого вещества и замеряют их оптическую плотность. По полученным значениям выстраивают график зависимости D от концентрации. График является прямой линией, идущей от начала координат. Он позволяет легко определить концентрацию вещества по результатам проведенных измерений.

Также существует метод добавок. Применяется реже, чем предыдущий, но позволяет проанализировать растворы сложного состава, поскольку учитывает влияние дополнительных компонентов. Суть его состоит в определении оптической плотности среды D x , содержащей определяемое вещество неизвестной концентрации С х, с повторным анализом того же раствора, но с добавлением определенного количества исследуемого компонента (С ст). Величину С х находят, используя расчеты или графики.

Условия проведения исследования

Чтобы фотометрические исследования давали достоверный результат, необходимо соблюдать несколько условий:

  • реакция должна заканчиваться быстро и полностью, избирательно и воспроизводимо;
  • окраска образующегося вещества должна быть устойчива во времени и не изменяться под действием света;
  • исследуемое вещество берут в количестве, которого достаточно для перевода его в аналитическую форму;
  • замеры оптической плотности проводят в том интервале длин волн, при котором различие в поглощении исходных реагентов и анализируемого раствора наибольшее;
  • светопоглощение раствора сравнения принято считать оптическим нулем.

Тела, пропускающие и поглощающие свет (кроме матовых и мутных сред), характеризуются оптической прозрачностью θ, непрозрачностью О и оптической плотностью D.

Часто вместо коэффициентов пропускания и отражения используют оптическую плотность D.

В фотографии оптическая плотность наиболее распространена для выражения спектральных свойств светофильтров и меры почернения (потемнения) негативов и позитивов. Величина плотности зависит от таких одновременно действующих факторов: структуры падающего светового потока (сходящихся, расходящихся, параллельных лучей или рассеянного света) структуры прошедшего или отраженного потока (интегрального, регулярного, диффузного).

Оптическая плотность D, мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F0, падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F, прошедшему через этот слой: D = lg (F0/F), иначе, Оптическая плотность есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg (1/t).

В определении оптической плотности иногда десятичный логарифм lg заменяется натуральным ln.

Понятие Оптическая плотность введено Р. Бунзеном; оно используется для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в светофильтрах и иных оптических изделиях.

Особенно широко оптическая плотность используются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии. Различают несколько типов Оптическая плотность в зависимости от характера падающего и способа измерения прошедшего потоков излучения

Различается плотность D для белого света, монохроматическая D λ для отдельных длин волн и зональная D зон, выражающая ослабление светового потока в синей, зеленой или красной зоне спектра (D c 3 , D 3 3 , D K 3).

Плотность прозрачных сред (светофильтров, негативов) определяется в проходящем свете десятичным логарифмом величины, обратной коэффициенту пропускания τ:

D τ = lg(1/τ) = -lgτ

Плотность поверхностей выражается величиной отраженного света и определяется десятичным логарифмом коэффициента отражения ρ:

D ρ = lg (1/ ρ) = - lg ρ.

Величина плотности D = l ослабляет свет в 10 раз.

Интервал оптических плотностей прозрачных сред практически неограничен: от полного пропускания света (D = 0) до его полного поглощения (D = 6 и более, ослабление в миллионы раз). Интервал плотностей поверхностей предметов ограничен содержанием в их отраженном свете поверхностно отраженной составляющей порядка 4-1 % (черная типографская краска, черное сукно). Практически предельные плотности D = 2,1...2,4 имеют черный бархат и черный мех, ограничиваемые поверхностно отраженной составляющей порядка 0,6-0,3 %.



Оптическая плотность связана простыми зависимостями с концентрацией светопоглощающего вещества и со зрительным восприятием наблюдаемого объекта – его светлотой, чем и объясняется широкое использование этого параметра.

Заменив оптические коэффициенты на потоки излучения – упавший на среду (Ф 0) и вышедший из нее (Фτ или Фρ), получим выражения

Чем больше света поглощается средой, тем она темнее и тем выше ее оптическая плотность как в проходящем так и в отраженном свете.

Оптическая плотность может быть определена по световым коэффициентам. В этом случае ее называют визуальной.

Визуальная плотность в проходящем свете равна логарифму величины, обратной световому коэффициенту пропускания:

Визуальная плотность в отраженном свете определяется по формуле

Для нейтрально-серых оптических сред. т.е. для серых светофильтров, серых шкал, черно-белых изображений, оптические и световые коэффициенты совпадают, поэтому совпадают и оптические плотности:

Если известно, о какой плотности идет речь, индекс при D опускают. Описанные выше оптические плотности – интегральные , они отражают изменение мощностных характеристик белого (смешанного) излучения. Если оптическая плотность измеряется для монохроматического излучения, то ее называют монохроматической (спектральной). Она определяется с использованием монохроматических потоков излучения Ф λ по формуле

В приведенных выше формулах лучистые потоки Ф, могут быть заменены на световые потоки F λ , что следует из выражения

Поэтому можно записать:

Для цветных сред интегральные оптическая и визуальная плотности не совпадают, так как они рассчитываются по разным формулам:

Для фотоматериалов с прозрачной подложкой оптическая плотность определяется без плотности подложки и неэкспонированного эмульсионного слоя после обработки, называемой в совокупности «нулевой» плотностью или плотностью вуали D 0 .

Суммарная оптическая плотность двух и более светопоглощающих слоев (например, светофильтров) равна сумме оптических плотностей каждого слоя (фильтра). Графически характеристика поглощения выражается кривой зависимости оптической плотности D от длины волны белого света λ, нм.

Оптическая прозрачность Θ характеристика вещества толщиной 1 см, показывающая, какая доля излучения заданного спектра в виде параллельных лучей проходит через него без изменения направления: Θ = Ф τ /Ф.

Оптическая прозрачность связана не с пропусканием излучения вообще, а с его направленным пропусканием, и характеризует одновременно поглощение и рассеяние. Например, матовое стекло, оптически непрозрачное, пропускает рассеянный свет; УФ фильтры прозрачны для видимого света и непрозрачны для УФ излучения; черные ИК фильтры пропускают ИК излучение и не пропускают видимый свет.

Оптическую прозрачность определяет кривая спектрального пропускания для длин волн оптического диапазона излучений. Прозрачность объективов для белого света увеличивается при нанесении на линзы просветляющих покрытий. Прозрачность атмосферы зависит от наличия в ней мелких частиц пыли, газа, водяных паров, находящихся во взвешенном состоянии и влияющих на характер освещения и рисунок изображения при съемке. Прозрачность воды зависит от различных взвесей, мути и толщины ее слоя.

Оптическая непрозрачность О – отношение падающего светового потока к прошедшему через слой – величина, обратная прозрачности: О = Ф/Ф τ = l/Θ. Непрозрачность может изменяться от единицы (полное пропускание) до бесконечности и показывает, во сколько раз уменьшается свет, проходя через слой. Непрозрачность характеризует плотность среды. Переход к оптической плотности выражается десятичным логарифмом непрозрачности:
D = lg О =lg (l/τ) = - lg τ .

Спектральные отличия тел. По характеру излучения и поглощения светового потока все тела отличаются от ЧТ и условно делятся на селективные и серые, отличающиеся избирательным и неизбирательным поглощением, отражением и пропусканием. К селективным относятся хроматические тела, обладающие какой-либо цветностью, к серым – ахроматические. Термин «серый» характеризуется двумя признаками: характером излучения и поглощения относительно ЧТ и цветом поверхности, наблюдаемым в обиходе. Второй признак широко используется при визуальном определении цвета ахроматических тел – белых, серых и черных, отражающих спектр соответственно белого света от единицы до нуля.

Серое тело обладает степенью поглощения света, близкой к поглощению ЧТ. Коэффициент поглощения ЧТ равен 1, а серого тела – близок к 1 и также не зависит от длины волны излучения или поглощения. Распределение энергии, излучаемой по спектру, у серых тел для каждой данной температуры подобно распределению энергии ЧТ при той же температуре, но интенсивность излучения меньше в несколько раз (рис. 23).

Для несерых тел поглощение избирательно и зависит от длины волны, поэтому они считаются серыми лишь в определенных, узких интервалах длин волн, для которых коэффициент поглощения приблизительно постоянен. В видимой области спектра свойствами серого тела обладают уголь (α = 0,8)< сажа (α = 0,95) и платиновая чернь (α = 0,99).

Селективные (избирательные) тела обладают цветом и характеризуются кривыми зависимости коэффициентов отражения, пропускания или поглощения от длины волны падающего излучения. При освещении белым светом цвет поверхности таких тел определяется по максимальным величинам кривой спектрального отражения илипо минимальной величине кривой спектрального поглощения. Цвет прозрачных тел (светофильтров) определяется в основном кривой поглощения (плотностью D) или кривой пропускания τ. Кривые спектрального поглощения и пропускания характеризуют вещество селективных тел только для белого света. При их освещении цветным светом кривые спектрального отражения или пропускания меняются.

Белый, серый и черный цвет тел – это визуальное ощущение ахроматичности, применимое к отражению поверхностей и пропусканию прозрачных сред. Ахроматичность графически выражается горизонтальной прямой или едва заметной волнистой линией, параллельной оси абсцисс и расположенной на различном уровне оси ординат в световом диапазоне длин волн (рис. 24, а, б, в). Ощущение белого цвета создают поверхности с наибольшим равномерным коэффициентом

отражения по спектру (ρ = 0,9...0,7 – белые бумаги). Поверхности серого цвета имеют равномерный коэффициент отражения р = 0,5...0,05. Черные поверхности имеют ρ = 0,05...0,005 (черное сукно, бархат, мех). Разграничение это приблизительно и условно. Для прозрачных сред (например нейтральных серых светофильтров) характеристика ахроматичности также выражается горизонтальной линией поглощения (плотностью D, показывающей в какой степени ослабляется белый свет).

Светлота поверхности – это относительная степень зрительного ощущения, возникающего в результате действия цвета отраженного излучения на три цветоощущающих центра зрения. Графически светлота выражается суммарной плотностью этого излучения в диапазоне белого света. В общей светотехнике светлота неправильно используется для зрительной количественной оценки различия двух смежных поверхностей, различающихся по яркости.

Светлота белой поверхности, освещенной белым светом. В качестве 100 %-ной принимается светлота идеально белой поверхности (покрытой сернокислым барием или магнием) с ρ = 0,99. При этом характеризующая ее площадь на графике (рис. 24, а) ограничивается линией светлоты на уровне ρ = 1 или 100 %. На практике белыми считаются поверхности, светлота которых соответствует 80-90 % (ρ = 0,8...0,9). Линия светлоты серых поверхностей приближается к оси абсцисс (рис. 24, е), поскольку они отражают часть белого света. Линия светлоты черного бархата, практически не отражающего света, совмещается с осью абсцисс.

Светлота цветных поверхностей, освещенных белым светом, определяется на графике площадью, ограниченной кривой спектрального коэффициента отражения. Поскольку бесформенная площадь не может отразить количественную степень светлоты, она переводится в площадь прямоугольника с основанием на оси абсцисс (рис. 24, г, д, е). Высота прямоугольника определяет светлоту в процентах .

Светлота цветных поверхностей, освещенных цветным светом , выражается на графике площадью, ограниченной результирующей кривой, полученной в результате перемножения спектральной характеристики освещения на спектральную характеристику отражения, поверхности. Если цвет освещения не совпадает с цветом поверхности, то отраженный свет изменяет свой цветовой тон, насыщенность и светлоту.