Отделы коры больших полушарий и их функции. Кора головного мозга: функции и особенности строения. Большие полушария. Строение и функции

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Головной мозг

Рефлекторная функция спинного мозга

n Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица)

n Спинной мозг осуществляет элементарные двигательные рефлексы – сгибательные и разгибательные, ритмические (шагательные, чесательные) рефлексы, возникающие при раздражении кожи или проприорецепторов мышц и сухожилий, а также посылают постоянную импульсацию к мышцам, поддерживая тонус

n Специальные мотонейроны иннервируют дыхательную мускулатуру (межреберные мышцы и диафрагму) и обеспечивают дыхательные движения

n Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внутренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с:

n Передачей в вышележащие отделы нервной системы получаемого с периферии потока информации;

n С проведением импульсов из головного мозга в спинной.

Головной мозг расположен в полости черепа. Он развивается из головного отдела нервной трубки и первоначально состоит из трех мозговых пузырей, которые называются передним , средним и задним .

Из переднего мозгового пузыря развиваются полушария большого мозга, базальные ядра, гипоталамус и таламус.

Из среднего мозга - средний мозг.

Из заднего мозгового пузыря - мост, продолговатый мозг и мозжечок.

Средний мозг, мост, продолговатый мозг входит в состав ствола мозга.

Большой мозг заполняет передневерхнюю часть полости черепа, а также переднюю и среднюю черепные ямки. Он представлен двумя полушариями , состоящими из нервных клеток (серое вещество) и волокон (белое вещество). Они разделены между собой глубокой продольной щелью. В глубине этой щели находится мозолистое тело - широкая дугообразно изогнутая пластинка белого вещества, соединяющая полушария между собой и состоящая из поперечно ориентированных нервных волокон (Рис. 11).

Области большого мозга . При помощи глубоких латеральной и центральной борозд каждое полушарие делится на: лобную, височную, теменную и затылочную доли (Рис. 12).

Тонкий слой серого вещества, покрывающий каждое полушарие, называется корой.

Кора представляет собой тонкий слой (1,3-4,5 мм) серого вещества на поверхности полушарий. Поверхность коры в процессе эволюции увеличивалась за счет появления борозд и извилин. Площадь коры у взрослого человека 2200-2600 см 2 . На нижней и внутренней поверхности коры находятся старая и древняя кора (архи – и палеокортекс). Они функционально связаны с гипоталамусом, миндалиной, некоторыми ядрами среднего мозга и все вместе образуют лимбическую систему, которая играет важнейшую роль в формировании эмоций и внимания, памяти и обучения Лимбическая система участвует в регуляции пищевого и питьевого поведения, цикла бодрствование-сон, агрессивно-оборонительных реакций и в ней находятся центры удовольствия и неудовольствия, беспирчинной радости, тоски, страха.


На наружной поверхности коры расположена новая кора – неокортекс. Вся кора имеет 6-7 слоев, различающихся формой, величиной и расположением нейронов (Рис. 13). Между нервными клетками всех слоев коры в процессе их деятельности возникают постоянные и временные связи.

Рис.11. Среднесагиттальный разрез головы человека


Рис. 12. Области большого мозга

Основные типы клеток коры – пирамидные и звездчатые нейроны.

Звездчатые – воспринимают раздражения и объединяют деятельность различных пирамидных нейронов.

Пирамидные осуществляют эфферентную функцию коры и взаимодействия между различными зонами коры.


Рис. 13. Перечень слоёв коры (начиная с поверхностного): молекулярный слой (I), наружный зернистый слой (II), пирамидный слой (III), или слой средних пирамид, внутренний зернистый слой (IV), ганглионарный слой (V), или слой крупных пирамид, слой полиморфных клеток (VI).

Под корой располагается белое вещество больших полушарий, которое состоит из ассоциативных, комиссуральных и проекционных волокон. Ассоциативные волокна связывают отдельные участки одного и того же полушария, а короткие ассоциативные волокна – отдельные извилины и близкие поля. Комиссуральные волокна – связывают симметричные части обоих полушарий, большая их часть проходит через мозолистое тело. Проекционные волокна выходят за пределы полушарий, входят в состав нисходящих и восходящих путей. По которым осуществляется двусторонняя связь коры с нижележащими отделами ЦНС.

Известны случаи рождения детей без коры больших полушарий головного мозга (анэнцефалы). Они живут несколько дней (максимум 3 -4 года). Один такой ребенок почти все время спал, у него были некоторые врожденные реакции (сосание, глотание). Поэтому сделали вывод, что в процессе филогенеза происходит кортиколизация функций (все, что приобретается организмом в течение индивидуальной жизни, связано с корой больших полушарий - вся высшая нервная деятельность).

В коре есть 3 типа областей – сенсорные, моторные и ассоциативные (Рис.14).

· Сенсорные ( расположены позади центральной борозды). Каждому рецепторному аппарату в коре соответствует определенная область, которую Павлов назвал корковым ядром анализатора. Именно к корковому ядру анализатора по афферентным волокнам приходят сигналы от рецепторов органов чувств. В сенсорных зонах выделяют первичные и вторичные проекционные поля. Нейроны проекционных первичных полей выделяют отдельные признаки сигнала (например, контур, цвет, контраст). Вторичные – формируют их в целостный образ. Сенсорные зоны локализованы в определенных частях коры: зрительная – в затылочной области, слуховая – в височной, вкусовая – в нижней части теменных областей, соматосенсорная зона (анализирующая импульсацию с рецепторов мышц, суставов, сухожилий и кожи) располагается в области задней центральной извилины.

· Моторные – зоны, раздражение которых вызывает двигательную реакцию, расположены впереди центральной борозды. В моторной коре тело человека спроецировано как бы вверх ногами, то есть ближе к латеральной борозде находятся области, обеспечивают функционирование мышц головы, а у противоположного конца предцентральной извилины - мышц нижней конечности (Рис.15).

· Ассоциативные – не имеют прямых афферентных и эфферентных связей с периферией. Они связаны с моторными и сенсорными зонами. Здесь расположены центры, связанные с речевой деятельностью. Функции ассоциативных зон –

А) обработка и хранение поступающей информации

Б) переход от наглядного восприятия к абстрактным символическим процессам.

В) Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в ассоциативных полях.

Г) Целенаправленное поведение человека, формирование намерений и планов, программ произвольных движений

Д) Отвечают за согласованную работу обеих полушарий мозга. Как правило, одно из полушарий является ведущим – доминантным. У большинства если ведущая рука – правая, доминантное полушарие – левое. Левое лучше снабжается кровью, в нем больше взаимосвязей нейронов, в нем находится моторный центр речи, отвечающий за произнесение слов и сенсорный центр речи, отвечающий за понимание слов. У человека есть три формы межполушарной функциональной асимметрии, т.е. неодинакового вклада полушарий: моторная, сенсорная и психическая. Моторная и сенсорная – это когда у человека с ведущей правой рукой, главным является левый глаз или левое ухо. Причем в каждом полушарии есть центры, которые контролируют оба уха, оба глаза и т.д. Это дает возможность совмещать функции двух полушарий в одном, при повреждении. Психическая асимметрия проявляется в виде специализации полушарий. Левое больше отвечает за аналитические процессы, абстрактное мышление, логическое мышление, предвосхищение событий. Правое обрабатывает информацию целиком, не расчленяя на детали, преобладает предметное мышление, художественное, а функции связаны с прошлым, т.е. обработка информации на основе прошлого опыта.

В коре полушарий большого мозга выделяют также высшие центры осознанного поведения, морали, воли и интеллекта.

глиальные клетки ; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).

Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.

Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.

Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.

Три основные области выделяют на полушарной поверхности :

  • выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
  • нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
  • медиальная расположена у продольной щели мозга.

Особенности устройства и деятельности

Кора большого мозга подразделяется на 4 вида:

  • древняя – занимает чуть более 0,5% всей поверхности полушарий;
  • старая – 2,2%;
  • новая – более 95%;
  • средняя – примерно 1,5%.

Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине. Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы . Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.

Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.

Одна из особенностей коры – ее электрическая активность, происходящая спонтанно. Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы. Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).

Структура

Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.

Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».

Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.

  1. Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
  2. Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
  3. Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
  4. Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
  5. Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
  6. Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.

Кора головного мозга разделяется на области – так называемая горизонтальная организация . Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.

Вертикальная организация

Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем. В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал. Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.

Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.

Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека. Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны. Установлено, что на этот процесс влияет специальный ген.

Горизонтальная организация

Принято разделять зоны коры головного мозга на:

  • ассоциативные;
  • сенсорные (чувствительные);
  • моторные.

Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.

Чувствительные

Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:

  • соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
  • зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
  • слуховую (расположена в височной доле);
  • вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
  • обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).

Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой. Музыка также может сопровождаться неприятными ощущениями.

Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.

Двигательные

Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.

Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону . Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот. Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.

Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.

Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.

Ассоциативные

Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную. Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления . Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами. К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.

Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.

Особенности локализации по полям

Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой. Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде. Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.

Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:

  • ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
  • комиссуральными (связывают симметричные области обоих полушарий);
  • проекционными (способствуют сообщению коры, подкорковых структур с другими органами).

Таблица 1

Соответствующие поля

Двигательная

Чувствительная

Зрительная

Обонятельная

Вкусовая

Речедвигательная, которая включает центры:

Вернике, позволяющий воспринимать устную речь

Брока – отвечает за движение языковых мышц; поражение грозит полной потерей речи

Восприятия речи на письме

Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости. Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания. Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.

Значение коры больших полушарий. Высшая нервная деятельность (ВНД) - это деятельность коры больших полушарий головного мозга и ближайших к ней подкорковых образований, обеспечивающая наиболее совершенное приспособление (поведение) высокоорганизованных животных и человека к окружающей среде. В работе русского физиолога И. М. Сеченова «Рефлексы головного мозга» (1863) впервые была высказана мысль о связи сознания и мышления человека с рефлекторной деятельностью головного мозга. Эта идея была экспериментально подтверждена и развита академиком И. П. Павловым, который по праву является создателем учения о высшей нервной деятельности. Ее основой являются условные рефлексы.

Безусловные и условные рефлексы. Все рефлекторные реакции организма на различные раздражители И. П. Павлов подразделил на две группы: безусловные и условные.

Безусловные рефлексы - это врожденные рефлексы, передаваемые по наследству от родителей. Они являются видовыми, относительно постоянными и осуществляются низшими отделами ЦНС - спинным мозгом, стволом н подкорковыми ядрами головного мозга. Безусловные рефлексы (например, сосательный, глотательный, зрачковый рефлексы, кашель, чихание и др.) сохраняются у животных, лишенных больших полушарий. Они образуются в ответ на действие определенных раздражителей. Так, рефлекс слюноотделения возникает при раздражении пищей вкусовых сосочков языка. Возникшее возбуждение в виде нервного импульса проводится по чувствительным нервам в продолговатый мозг, где находится центр слюноотделения, откуда оно по двигательным нервам передается слюнным железам, вызывая слюноотделение. На основе безусловных рефлексов осуществляются регуляция и согласованная деятельность разных органов и их систем, поддерживается само существование организма.

В изменчивых условиях окружающей среды сохранение жизнедеятельности организма и приспособительное поведение осуществляется благодаря образованию условных рефлексов с обязательным участием коры больших полушарий головного мозга. Они не являются врожденными, а образуются в течение жизни на базе безусловных рефлексов под воздействием определенных факторов внешней среды. Условные рефлексы строго индивидуальны, т. е. у одних особей вида тот или иной рефлекс может присутствовать, у других - отсутствовать.

Образование и биологическое значение условных рефлексов. Условные рефлексы образуются в результате сочетания безусловного рефлекса с действием условного раздражителя. Для этого необходимо соблюдение двух условий: 1) действие условного раздражителя должно обязательно несколько предшествовать действию безусловного раздражителя (для образования у собаки условного слюноотделительного рефлекса на звонок нужно, чтобы он начал звонить за 5-30 с до подачи корма и некоторое время сопровождал процесс еды); 2) условный раздражитель должен неоднократно подкрепляться действием безусловного раздражителя. Так, после нескольких сочетаний звонка с приемом пищи у собаки будет наблюдаться слюноотделение при одном звуке звонка без пищевого подкрепления.

Механизм образования условного рефлекса состоит в установлении временной связи (замыкания) между двумя очагами возбуждения в мэре головного мозга. Для рассмотренного примера такими очагами являются центры слюноотделения и слуха. Дуга условного рефлекса в отличие от таковой безусловного значительно усложнена и включает рецепторы, воспринимающие условное раздражение, чувствительный нерв, проводящий возбуждение в головной мозг, участок коры, связанный с центром безусловного рефлекса, двигательный нерв и рабочий орган.

Биологическое значение условных рефлексов в жизни человека и животных огромно, так как они обеспечивают их приспособительное поведение - позволяют точно ориентироваться в пространстве и времени, находить пищу (по виду, запаху), избегать опасности, устранять вредные для организма воздействия. С возрастом число условных рефлексов возрастает, приобретается опыт поведения, благодаря которому взрослый организм оказывается лучше приспособленным к окружающей среде, чем детский. Выработка условных рефлексов лежит в основе дрессировки животных, когда тот или иной условный рефлекс образуется в результате сочетания с безусловным (дача лакомства и др.).

Торможение условных рефлексов. При изменении условий существования в организме образуются новые условные рефлексы, а выработанные ранее ослабляются или вовсе исчезают благодаря процессу торможения. И. П. Павлов опытным путем выявил два вида торможения условных рефлексов - внешнее и внутреннее.

Внешнее торможение происходит в случае образования в коре больших полушарий мозга нового очага возбуждения под действием более сильного раздражителя, не связанного с данным условным рефлексом. Например, боль приводит к торможению пищевого условного рефлекса. Или выработанный у животных условный пищевой рефлекс на свет, не проявляется при внезапном действии шума. Чем сильнее посторонний раздражитель, тем больше его ослабляющее действие.

Внутреннее торможение условного рефлекса развивается постепенно в случае многократного подкрепления условного раздражителя безусловным. Благодаря внутреннему торможению в ЦНС происходит угасание биологически нецелесообразных для организма реакций, утративших свое значение в измененных условиях среды. Например, при пересыхании водоема, из которого животные пили воду, условный раздражитель (вид ручья) не будет подкрепляться безусловным (питье воды), условный рефлекс начнет угасать и животные перестанут ходить на водопой. Они найдут новый источник воды, и возникнет новый условный рефлекс взамен утраченного. Образование новых условных рефлексов и исчезновение старых позволяет организму менять свое поведение, всякий раз приспосабливаясь к особенностям среды обитания. Внутреннее торможение дает организму возможность сводить к минимуму биологически нецелесообразные, лишние реакции в ответ на различные раздражители, переставшие подкрепляться безусловными рефлексами.

Наиболее сложные формы приспособительного поведения свойственны человеку. Так же как у животных, они связаны с образованием условных рефлексов и их торможением. Однако у человека деятельность коры больших полушарий головного мозга обладает наиболее развитой способностью к анализу и синтезу сигналов, поступающих из окружающей и внутренней среды организма. Аналитическая деятельность коры заключается в тонком различении (дифференцировке) по характеру и интенсивности действия множества раздражений, действующих на организм и доходящих в форме нервных импульсов до мозговой коры. За счет внутреннего торможения в коре осуществляется дифференцировка раздражителей по степени их биологической значимости. Синтетическая деятельность коры проявляется в связывании, объединении возбуждений, возникающих в разных зонах коры, что формирует сложные формы поведения человека.

Первая и вторая сигнальные системы. Сигнальной системой называют совокупность процессов в нервной системе, которые осуществляют восприятие, анализ информации и ответную реакцию организма. Академик И. П. Павлов разработал учение о первой и второй сигнальных системах.

Первой сигнальной системой он назвал деятельность коры больших полушарий мозга, которая связана с восприятием через рецепторы непосредственных раздражителей (сигналов) внешней среды, например световых, тепловых, болевых и т. д. Она является основой для выработки условных рефлексов, присущих как животным, так и человеку.

В отличие от животных человеку как социальному существу свойственна еще к вторая сигнальная система, связанная с функцией речи, со словом, слышимым или видимым (письменная речь). Слово, по И. П. Павлову, является сигналом для работы первой сигнальной системы («сигналы сигналов»). Например, действия человека (его поведение) будут одинаковыми как при произнесении слова «пожар!», так и при действительно наблюдаемом (зрительное раздражение) им пожаре. Образование условного рефлекса на основе речи является качественной особенностью высшей нервной деятельности человека.

Вторая сигнальная система сформировалась у человека вследствие общественного образа жизни и коллективного труда и выступала средством общения. Слово, речь, письмо являются не только слуховым и зрительным раздражителями, они несут также определенную информацию о предмете или явлении, т. е. определенную смысловую нагрузку. В процессе обучения речи у человека возникают временные связи между нейронами коры, воспринимающими сигналы от разных предметов, явлений, событий, и центрами, воспринимающими словесное обозначение этих предметов, явлений и событий, их смысловое значение. Вот почему у человека условно образованный рефлекс на какой-либо раздражитель легко воспроизводится без подкрепления, если этот раздражитель выразить словесно. Например, на словосочетание «утюг горячий!», человек отдернет руку и не коснется его. У собаки тоже можно выработать условный рефлекс на слово, но оно будет восприниматься ею как определенное звукосочетание без понимания смысла. Так, дрессированная собака, поднимающаяся на задние лапы при слове «служи», никак не будет реагировать на одинаковый по смыслу приказ «стань вертикально».

Развитие у человека речи повысило его способность отражать явления внешней среды, накапливать и использовать опыт предыдущих поколений. В результате сформировалась свойственная только человеку форма отражения действительности, называемая сознанием. Человек с помощью слов, математических символов, образов художественных произведений может передавать другим людям знания об окружающем мире, в том числе и о самом себе. Благодаря слову (словесной сигнализации) у человека появилась возможность отвлеченно и обобщенно воспринимать явления, находящие свое выражение в понятиях, суждениях, умозаключениях. Например, слово «деревья» обобщает многочисленные породы деревьев и отвлекает от конкретных признаков дерева каждой породы.

Способность к обобщению и отвлечению служит основой мышления человека, являясь результатом функции всей коры мозга и в особенности ее лобных долей. Благодаря отвлеченному логическому мышлению человек познает окружающий мир и его законы. Способность к мышлению используется человеком в его практической деятельности, когда он ставит определенные цели, намечает пути реализации и достигает их. В ходе исторического развития человечества благодаря мышлению накоплены огромные знания о внешнем мире.

Таким образом, благодаря первой сигнальной системе достигается конкретное чувственное восприятие окружающего мира и познается состояние самого организма. С развитием у человека второй сигнальной системы достигает чрезвычайной сложности абстрактная аналитическая и синтетическая деятельность коры, проявляющаяся в способности делать широкие обобщения, создавать понятия, открывать действующие в природе законы. Поэтому поведение человека, контролируемое второй сигнальной системой, состоит из целенаправленных действий. Две сигнальные системы тесно взаимодействуют между собой, так как вторая сигнальная система возникла на базе первой и функционирует в связи с ней. У человека вторая сигнальная система преобладает над первой вследствие общественного образа жизни и развития мышления.

Сон, его значение. Сон - специфическое состояние нервной системы, проявляющееся в выключении сознания, угнетении двигательной активности, снижении обменных процессов и всех видов чувствительности. Сон рассматривают как охранительное торможение, которое охватывает кору больших полушарий и позволяет нервным центрам восстановить свою работоспособность. И действительно, каждый человек после сна чувствует, что у него улучшилось самочувствие, восстановилась работоспособность, повысилось внимание. Однако сон - это сложный физиологический процесс, а не просто покой. Регистрация электрических потенциалов мозга - электроэнцефалограмм - позволила выявить две фазы сна: медленный и быстрый сон, характеризующиеся разными частотой и амплитудой колебаний электрической активности мозга. Фазы сна циклично сменяют друг друга. Один цикл длится примерно 1,5 ч, когда медленный сон на непродолжительное время (около 20 мин) сменяется быстрым сном. За ночь у взрослого человека цикл повторяется 4-6 раз. Именно во время медленного сна замедляются и значительно снижаются обменные процессы. Быстрый сон, как правило, сопровождается повышением уровня обменных процессов, быстрыми движениями глаз, сновидениями. Стадии медленного сна отсутствуют у животных, они свойственны только человеку. Ученые связывают это с безопасностью ночлега человека, т. е. отсутствием опасности нападения.

Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция — образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы—см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке). И, т.о. регистрируют суммарную активность всех ближайших нейронов. Современные электро-энцефалографы усиливают эти потенциалы в 2—3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ (рис. 55). В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8—12 колебаний в 1 сек.), в состоянии активного внимания — бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях — тэта-ритм (4—7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе — дельта-ритм (1—3 колебания в 1 сек.).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ — быстрой асинхронной активности (см. рис. 55). По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

В ЭЭГ при этом возникают различные формы синхронизации (см. рис. 55, ж, з). Выполнение освоенного и автоматизированного движения может протекать при незначительной активности очень небольшого числа корковых нейронов, находящихся в ограниченных областях коры. При этом почти на всей остальной поверхности коры восстанавливается исходный ритм колебаний — альфа-ритм (см. рис. 55, з).

В процессе спортивной тренировки происходит перестройка и совершенствование функций коры больших полушарий. С ростом спортивного мастерства увеличиваются амплитуда и регулярность проявления фоновой активности — альфа-ритма в состоянии покоя. При развитии качества быстроты (например, у баскетболистов) повышается частота волн альфа-ритма, что способствует ускорению произвольных движений.

В процессе мышечной работы значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электрической активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Процесс формирования двигательного навыка сопровождается концентрацией взаимосвязанной активности в ограниченных зонах коры, наиболее важных для текущей деятельности. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние — программирующие лобные области и задние — зоны афферентного синтеза (нижнетеменные и др.).