P — n-переход. P–n переход и его электрические свойства

Принцип действия полупроводниковых приборов объясняется свойствами так называемого электронно-дырочного перехода (p-n - перехода) - зоной раздела областей полупроводника с разным механизмами проводимости.

Электронно-дырочный переход - это область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). Поскольку в р-области электронно-дырочного перехода концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область.

Для создания в исходном полупроводнике (обычно 4-валентном германии или кремнии) проводимости n- или p-типа в него добавляют атомы 5-валентной или 3-валентной примесей соответственно (фосфор, мышьяк или алюминий, индий и др.)

Атомы 5-валентной примеси (доноры) легко отдают один электрон в зону проводимости, создавая избыток электронов в полупроводнике, не занятых в образовании ковалентных связей; проводник приобретает проводимость n-типа. Введение же 3-валентной примеси (акцепторов) приводит к тому, что последняя, отбирая по одному электрону от атомов полупроводника для создания недостающей ковалентной связи, сообщает ему проводимость p-типа, так как образующиеся при этом дырки (вакантные энергетические уровни в валентной зоне) ведут себя в электрическом или магнитном полях как носители положительных зарядов. Дырки в полупроводнике р-типа и электроны в полупроводнике n-типа называются основными носителями в отличие от неосновных (электроны в полупроводнике р-типа и дырки в полупроводнике n-типа), которые генерируются из-за тепловых колебаний атомов кристаллической решетки.

Если полупроводники с разными типами проводимости привести в соприкосновение (контакт создается технологическим путем, но не механическим), то электроны в полупроводнике n-типа получают возможность занять свободные уровни в валентной зоне полупроводника р-типа. Произойдет рекомбинация электронов с дырками вблизи границы разнотипных полупроводников.

Этот процесс подобен диффузии свободных электронов из полупроводника n-типа в полупроводник р-типа и диффузии дырок в противоположном направлении. В результате ухода основных носителей заряда на границе разнотипных полупроводников создается обедненный подвижными носителями слой, в котором в n-области будут находиться положительные ионы донорных атомов; а в p- области - отрицательные ионы акцепторных атомов. Этот обедненный подвижными носителями слой протяженностью в доли микрона и является электронно-дырочным переходом.

Потенциальный барьер в p-n переходе.

Если к полупроводнику приложить электрическое напряжение, то в зависимости от полярности этого напряжения р-n-переход проявляет совершенно различные свойства.

Свойства p-n перехода при прямом включении.


Свойства p-n перехода при обратном включении.


Итак, с определенной долей приближения можно считать, что электрический ток через р-n-переход протекает, если полярность напряжения источника питания прямая, и, напротив, тока нет, когда полярность обратная.

Однако, кроме зависимости возникшего тока от внешней энергии, например, источника питания или фотонов света, которая используется в ряде полупроводниковых приборов, существует термогенерация. При этом концентрация собственных носителей заряда резко уменьшается, следовательно, и I ОБР тоже.Таким образом, если переход подвергнуть воздействию внешней энергии, то появляется пара свободных зарядов: электрон – дырка. Любой носитель заряда, рожденный в области объемного заряда p n перехода, будет подхвачен электрическим полем E ВН и выброшен: электрон – в n –область, дырка – в p – область. Возникает электрический ток, который пропорционален ширине области объемного заряда. Это вызвано тем, что чем больше E ВН , тем шире область, где существует электрическое поле, в котором происходит рождение и разделение носителей зарядов. Как было сказано выше, скорость генерации носителей зарядов в полупроводнике зависит от концентрации и энергетического положения глубоких примесей, существующих в материале.

По этой же причине выше предельная рабочая температура полупроводника. Для германия она составляет 80º С, кремний: 150º С, арсенид галлия: 250º С (DE = 1,4 эВ). При большей температуре количество носителей заряда возрастает, сопротивление кристалла уменьшается, и полупроводник термически разрушается.

Вольт-амперная характеристика p-n перехода.

Вольт-амперная характеристика (ВАХ) являет­ся графической зависимостью протекающего через р-n переход тока от приложенного к нему внешнего напря­жения I=f(U) . Вольт-амперная характе­ристика р-n перехода при пря­мом и обратном включе­нии приведена ниже.

Она состоит из прямой (0-А) и обратной (0-В-С) ветвей; на вертикальной оси отложены значения прямого и обратного тока , а на оси абсцисс - значения прямого и обратного напряжения .

Напряжение от внешнего источника, подведенное к кристаллу с р-п переходом, практически полностью со­средотачивается на обедненном носителями переходе. В зависимости от полярности возможны два варианта включения постоянного напряжения - прямое и обрат­ное .

При прямом включении (рис. справа - верх) внешнее элект­рическое поле направлено навстречу внутреннему и частично или полиостью ос­лабляет его, снижает высо­ту потенциального барьера (Rпр ). При обратном включении (рис. справа - низ) элект­рическое поле совпадает по направлению с полем р-п перехода и приводит к росту потенциального барьера (Rобр ).

ВАХ p-n перехода описывает­ся аналитической функцией:

где

U - приложенное к переходу внешнее напряжение соответствующего знака;

Iо = Iт - обратный (тепловой) ток р-п перехода;

- температурный потенциал, где k - постоянная Больцмана, q - элементарный заряд (при T = 300К , 0,26 В ).

При прямом напряжении (U>0 ) - экспоненциальный член быстро возрастает [], единицей в скобках можно пренебречь и считать . При обратном напряжении (U<0 ) экспоненциальный член стремится к нулю, и ток через переход практически равен обратному току; Ip-n = -Io .

Вольт-амперная характеристика р-n-перехода показывает, что уже при сравнительно небольших прямых напряжениях сопротивление перехода падает, а прямой ток резко увеличивается.

Пробой p–n перехода.

Пробоем называют резкое изме­нение режима работы перехода, находящегося под обрат­ным напряжением.

Характерной особенностью этого из­менения является резкое уменьшение дифференциального сопротивления перехода (Rдиф ). Соответствующий участок вольт-ампер­ной характеристики изображен на рисунке справа (обратная ветвь). После начала пробоя незначительное увеличение об­ратного напряжения сопровождается резким увеличени­ем обратного тока. В процессе пробоя ток может увели­чиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление Rдиф оказывается отрицатель­ным).

Пробой бывает лавинный, тунельный, тепловой. И туннельный и лавинный пробой принято называть электрическим пробоем .

Если блок полупроводника P-типа соединить с блоком полупроводника N-типа (рисунок ниже (a)), результат не будет иметь никакого значения. У нас будут два проводящих блока соприкасающихся друг с другом, не проявляя никаких уникальных свойств. Проблема заключается в двух отдельных и различных кристаллических структурах. Количество электронов уравновешивается количеством протонов в обоих блоках. Таким образом, в результате ни один блок не имеет какого-либо заряда.

Тем не менее, один полупроводниковый кристалл, изготовленный из материала P-типа с одной стороны и материала N-типа с другой стороны (рисунок ниже (b)), обладает уникальными свойствами. У материала P-типа основными являются положительные носители заряда, дырки, которые свободно передвигаются по кристаллической решетке. У материала N-типа основными и подвижными являются отрицательные носители заряда, электроны. Вблизи перехода электроны материала N-типа диффундируют через переход, соединяясь с дырками в материале P-типа. Область материала P-типа вблизи перехода приобретает отрицательный заряд из-за привлеченных электронов. Так как электроны покинули область N-типа, та приобретает локальный положительный заряд. Тонкий слой кристаллической решетки между этими зарядами теперь обеднен основными носителями, таким образом, он известен, как обедненная область . Эта область становится непроводящим материалом из собственного полупроводника. По сути, мы имеем почти изолятор, разделяющий проводящие легированные области P и N типов.

(a) Блоки полупроводников P и N типов при контакте не обладают пригодными для использования свойствами.
(b) Монокристалл, легированный примесями P и N типа, создает потенциальный барьер.

Такое разделение зарядов в P-N-переходе представляет собой потенциальный барьер. Этот потенциальный барьер может быть преодолен под воздействием внешнего источника напряжения, заставляющего переход проводить электрический ток. Формирование перехода и потенциального барьера происходит во время производственного процесса. Величина потенциального барьера зависит от материалов, используемых при производстве. Кремниевые P-N-переходы обладают более высоким потенциальным барьером, по сравнению с германиевыми переходами.

На рисунке ниже (a) батарея подключена так, что отрицательный вывод источника поставляет электроны к материалу N-типа. Эти электроны диффундируют к переходу. Положительный вывод источника удаляет электроны из полупроводника P-типа, создавая дырки, которые диффундируют к переходу. Если напряжение батареи достаточно велико для преодоления потенциала перехода (0,6В для кремния), электроны из области N-типа и дырки из области P-типа объединяются, уничтожая друг друга. Это освобождает пространство внутри решетки для перемещения в сторону перехода большего числа носителей заряда. Таким образом, токи основных зарядов областей N-типа и P-типа протекают в сторону перехода. Рекомбинация в переходе позволяет току батареи протекать через P-N переход диода. Такое включение называется прямым смещением .


(a) Прямое смещение отталкивает носителей зарядов к переходу, где рекомбинация отражается на токе батареи.
(b) Обратное смещение притягивает носителей зарядов к выводам батареи, подальше от перехода. Толщина обедненной области увеличивается. Устойчивый ток через батарею не протекает.

Если полярность батареи изменена на противоположную, как показано выше на рисунке (b), основные носители зарядов притягиваются от перехода к клеммам батареи. Положительный вывод батареи оттягивает от перехода основных носителей заряда в области N-типа, электронов. Отрицательный вывод оттягивает от перехода основных носителей в области P-типа, дырок. Это увеличивает толщину непроводящей обедненной области. В ней отсутствует рекомбинация основных носителей; и таким образом, отсутствует и проводимость. Такое подключение батареи называется обратным смещением .

Условное обозначение диода, показанное ниже на рисунке (b), соответствует пластине легированного полупроводника на рисунке (a). Диод представляет собой однонаправленное устройство. Электронный ток протекает только в одном направлении, против стрелки, соответствующем прямому смещению. Катод, полоса на условном обозначении диода, соответствует полупроводнику N-типа. Анод, стрелка, соответствует полупроводнику P-типа.

Примечание: в оригинале статьи предлагается алгоритм запоминания расположения типов полупроводника в диоде. Неуказывающая (N ot-pointing) часть условного обозначения (полоса) соответствует полупроводнику N -типа. Указывающая (P ointing) часть условного обозначения (стрелка) соответствует P -типу.


(a) Прямое смещение PN-перехода
(b) Соответствующее условное графическое обозначение диода
(c) График зависимости тока от напряжения кремниевого диода

Если к диоду приложено прямое смещение (как показано на рисунке (a) выше), при увеличении напряжения от 0 В ток будет медленно возрастать. В случае с кремниевым диодом протекающий ток можно будет измерить, когда напряжение приблизится к 0,6 В (рисунок (c) выше). При увеличении напряжения выше 0,6 В ток после изгиба на графике начнет резко возрастать. Увеличение напряжения выше 0,7 В может привести к току, достаточно большому, чтобы вывести диод из строя. Прямое напряжение U пр является одной из характеристик полупроводников: 0,6-0,7 В для кремния, 0,2 В для германия, несколько вольт для светоизлучающих диодов. Прямой ток может находиться в диапазоне от нескольких мА для точечных диодов до 100 мА для слаботочных диодов и до десятков и тысяч ампер для силовых диодов.

Если диод смещен в обратном направлении, то протекает только ток утечки собственного полупроводника. Это изображено на графике слева от начала координат (рисунок (c) выше). Для кремниевых диодов этот ток в самых экстремальных условиях будет составлять примерно 1 мкА. Это ток при росте напряжения обратного смещения увеличивается незаметно, пока диод не будет пробит. При пробое ток увеличивается настолько сильно, что диод выходит из строя, если последовательно не включено сопротивление, ограничивающее этот ток. Обычно мы выбираем диод с обратным напряжением, превышающим напряжения, которые могут быть приложены при работе схемы, чтобы предотвратить пробой диода. Как правило, кремниевые диоды доступны с напряжениями пробоя 50, 100, 200, 400, 800 вольт и выше. Также возможно производство диодов с меньшим напряжением пробоя (несколько вольт) для использования в качестве эталонов напряжения.

Ранее мы упоминали, что обратный ток утечки до микроампера в кремниевых диодах обусловлен проводимостью собственного полупроводника. Эта утечка может быть объяснена теорией. Тепловая энергия создает несколько пар электрон-дырка, которые проводят ток утечки до рекомбинации. В реальной практике этот предсказуемый ток является лишь частью тока утечки. Большая часть тока утечки обусловлена поверхностной проводимостью, связанной с отсутствием чистоты поверхности полупроводника. Обе составляющие тока утечки увеличиваются с ростом температуры, приближаясь к микроамперу для небольших кремниевых диодов.

Для германия ток утечки на несколько порядков выше. Так как германиевые полупроводники сегодня редко используются на практике, то это не является большой проблемой.

Подведем итоги

P-N переходы изготавливаются из монокристаллического куска полупроводника с областями P и N типа в непосредственной близости от перехода.

Перенос электронов через переход со стороны N-типа к дыркам на сторону P-типа с последующим взаимным уничтожением создает падение напряжения на переходе, составляющее от 0,6 до 0,7 вольта для кремния и зависящее от полупроводника.

Прямое смещение P-N перехода при превышении значения прямого напряжения приводит к протеканию тока через переход. Прикладываемая внешняя разность потенциалов заставляет основных носителей заряда двигаться в сторону перехода, где происходит рекомбинация, позволяющая протекать электрическому току.

Обратное смещение P-N перехода почти не создает ток. Прикладываемое обратное смещение оттягивает основных носителей заряда от перехода. Это увеличивает толщину непроводящей обедненной области.

Через P-N переход, к которому приложено обратное смещение, протекает обратный ток утечки, зависящий от температуры. В небольших кремниевых диодах он не превышает микроампер.

p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны , а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.

Полупроводники p и n типа изго­тавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) су­щественным образом изменяют его электрофизические свойства.

В полупроводнике n типа основными носителями заряда являются электроны . Для получения их используютдонорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.

В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки . Для получения их используют акцепторные примеси алюминий, бор.

Полупроводник n — типа (электронной проводимости)

Примесный атом фосфора обычно замещает основной атом в узлах кри­сталлической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов . Кристалл приобретает электронную проводимость или проводимость n-типа . При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положи­тельным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости опреде­ляется количеством введенных донорных атомов примеси.

Полупроводник p — типа (дырочной проводимости)

Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристал­лической решеткой. Электропроводность такого полупроводника обусловлена движением дырок , поэтому он называется дырочным полупроводни­ком р-типа . Концентрация дырок соответствует количеству введенных атомов акцепторной примеси.

Особое значение имеют контакты полупроводников с различными типами проводимости, так называемыми p-n-переходы. На их основе создаются полупроводниковые диоды, детекторы, термоэлементы, транзисторы.

На рисунке 41 изображена схема p-n-перехода.

На границе полупроводников p-n-типа образуется так называемый «запирающий слой», обладающий рядам замечательных свойств, которые и обеспечили широкое применение p-n-переходов в электронике.

Поскольку концентрация свободных электронов в полупроводнике n-типа очень высока, а в полупроводнике p-типа во много раз меньше, на границе происходит диффузия свободных электронов из области n в область p.

То же самое можно сказать и о дырках; они диффундируют наоборот из p в n.

Из-за этого в пограничной области (в «запирающем слое») происходит интенсивная рекомбинация электронно-дырочных пар, запирающий слой обедняется носителями тока, его сопротивление резко возрастает.

В результате диффузии по обе стороны от границы образуются объёмный положительный заряд в области n и объёмный отрицательный заряд в p-области.

Таким образом, в запирающем слое возникает электрическое поле с напряжённостью , силовые линии которого направлены от n к p, а значит, и контактная разность потенциалов , где d к – толщина запирающего слоя. На рисунке 37 изображён график распределения потенциала в p-n-переходе.

За нулевой потенциал принят потенциал границы p и n областей.

Следует заметить, что толщина запирающего слоя очень мала и на рис. 42 её масштаб для наглядности сильно искажён.

Величина контактного потенциала тем больше, чем больше концентрация основных носителей; при этом толщина запирающего слоя уменьшается. Например, для германия при средних значениях концентрации атомов примеси.

U к = 0,3 – 0,4 (В)

d к = 10 -6 – 10 -7 (м)

Контактное электрическое поле тормозит диффузию электронов из n в p и дырок из p в n и очень быстро в запирающем слое устанавливается динамическое равновесие между электронами и дырками, движущимися вследствие диффузии (ток диффузии) и движение их под действием контактного электрического поля в противоположную сторону (дрейфовый ток или ток проводимости).

В установившемся режиме ток диффузии равен и противоположен току проводимости, и так как в этих токах принимают участие и электроны и дырки, полный ток через запирающий слой равен нулю.

На рисунке 43 изображены графики распределения энергии свободных электронов и дырок в p-n-переходе.

Из графиков видно, что электронам из n области, чтобы попасть в p область, нужно преодолеть высокий потенциальный барьер. Следовательно, это доступно очень немногим из них, наиболее энергичным.



В тоже время электроны из p области свободно проходят в n область, загоняемые туда контактным полем (катятся в «яму»).

Но в n-области концентрация свободных электронов ничтожна и в установившемся режиме незначительное одинаковое количество электронов движется через границу в противоположных направлениях.

Аналогичные рассуждения можно привести о движении дырок через границу p-n-перехода. В результате при отсутствии внешнего электрического поля, полный ток через запирающий слой равен нулю.

К полупроводнику p-типа p-n-перехода подсоединим положительный полюс источника тока, а к полупроводнику n-типа – отрицательный, как это показано на рисунке 44.

Тогда электрическое поле в этой конструкции, направленное от полупроводника p-типа к полупроводнику n-типа, способствует направленному движению дырок и электронов через запирающий слой, что приводит к обогащению запирающего слоя основными носителями тока и, следовательно, к уменьшению его сопротивления. Диффузионные токи существенно превосходят токи проводимости как образованные электронами, так и дырками. Через p-n-переход течёт электрический ток, благодаря направленному движению основных носителей.

При этом величина контактного потенциала (потенциальный барьер) резко падает, т.к. внешнее поле направлено против контактного. Это означает, что для создания тока достаточно подключить к p-n-переходу внешнее напряжение порядка лишь нескольких десятых долей одного вольта.

Возникающий здесь ток называется прямым током . В полупроводнике p-типа прямой ток представляет собой направленное движение дырок в направлении внешнего поля, а в полупроводнике n-типа – свободных электронов в противоположном направлении. Во внешних проводах (металлических) движутся только электроны. Они перемещаются в направлении от минуса источника и компенсируют убыль электронов, уходящих через запирающий слой в область p. А из p электроны через металл уходят к + источника. Навстречу электронам «дырки» из p-области движутся через запирающий слой в n-область.

Распределение потенциала в этом случае изображена на рисунке 45а

Пунктиром показано распределение потенциала в p-n-переходе при отсутствии внешнего электрического поля. Изменение потенциала вне запирающего слоя пренебрежимо мало.

На рис. 45б изображено распределение электронов и дырок в условиях прямого тока.

Из рисунка 40б видно, что потенциальный барьер резко упал, и основным носителям тока электронам и дыркам легко проникнуть через запирающий слой в «чужие» для них области.

Теперь подключим положительный полюс к полупроводнику n-типа, а отрицательный к p-типа. Под действием такого обратного напряжения через p-n-переход протекает так называемый обратный ток .

В этом случае напряжённости внешнего электрического и контактного полей сонаправлены, следовательно, напряжённость результирующего поля увеличивается и увеличивается потенциальный барьер, который становится практически непреодолимым для проникновения основных носителей через запирающий слой, и токи диффузии прекращаются. Внешнее поле стремится, как бы отогнать дырки и электроны друг от друга, ширина запирающего слоя и его сопротивление увеличиваются. Через запирающий слой проходит только токи проводимости, то есть токи, вызванные направленным движением неосновных носителей. Но поскольку концентрация неосновных носителей много меньше, чем основных, этот обратный ток много меньше прямого тока.

На рисунке 45в изображено распределение потенциала в p-n-переходе в случае обратного тока.

Замечательное свойство p-n-перехода заключается в его односторонней проводимости.

При прямом направлении внешнего поля от p к n – ток большой, а сопротивление маленькое.

При обратном направлении ток маленький, а сопротивление большое.

Электронно-дырочный переход (сокращенно n-р-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором справа находится область полупроводника с дырочной, а слева - с электронной проводимостью (рис. 1). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора.

Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

Диффузия основных носителей через переход создает электрический ток I осн, направленный из р-области в n-область.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью \(~\vec E_i\). Это поле препятствует дальнейшей диффузии основных носителей: электронов из n-области и дырок из р-области.

Необходимо заметить, что в n-области наряду с электронами имеются неосновные носители - дырки, а в р-области - электроны. В полупроводнике непрерывно происходят процессы рождения и рекомбинации пар. Интенсивность этого процесса зависит только от температуры и одинакова во всем объеме полупроводника. Предположим, что в n-области возникла пара "электрон-дырка". Дырка будет хаотически перемещаться по η области до тех пор, пока не рекомбинирует с каким-либо электроном. Однако если пара возникает достаточно близко к переходу, то прежде, чем произойдет рекомбинация, дырка может оказаться в области, где существует электрическое поле, и под его действием она перейдет в р-область, т.е. электрическое поле перехода способствует переходу неосновных носителей в соседнюю область. Соответственно, создаваемый ими ток I неосн мал. так как неосновных носителей мало.

Таким образом, возникновение электрического поля \(~\vec E_i\) приводит к появлению неосновного тока I неосн. Накопление зарядов около перехода за счет диффузии и увеличение \(~\vec E_i\) будут продолжаться до тех пор, пока ток I неосн не уравновесит ток I осн (I неосн = I осн) и результирующий ток через электронно-дырочный переход станет равным нулю.

Если к n-р-переходу приложить разность потенциалов, то внешнее электрическое поле \(~\vec E_{ist}\) складывается с полем \(~\vec E_i\) . Результирующее поле, существующее в области перехода, \(~\vec E = \vec E_{ist} + \vec E_i\). Токи I осн и I неосн совершенно различно ведут себя по отношению к изменению поля в переходе, I неосн с изменением поля очень слабо изменяется, так как он обусловлен количеством неосновных носителей, а оно в свою очередь зависит только от температуры.

I осн (диффузия основных носителей) очень чувствителен к полю напряженностью \(~\vec E\). I осн быстро увеличивается с ее уменьшением и быстро падает при увеличении.

Пусть клемма источника тока соединена с n-областью. а "-" - с р-областью (обратное включение (рис. 2, а)). Суммарное поле в переходе усиливается: E > E ist и основной ток уменьшается. Если \(~\vec E\) достаточно велика, то I осн << I неосн и ток через переход создается неосновными носителями. Сопротивление n-р-перехода велико, ток мал.

Если включить источник так, чтобы область n-типа оказалась подключена к а область р-типа к (рис. 2, б), то внешнее поле будет направлено навстречу \(~\vec E_i\), и \(~\vec E = \vec E_i + \vec E_{ist} \Rightarrow E = E_i - E_{ist} < E_i\), т.е. поле в переходе ослабляется. Поток основных носителей через переход резко увеличивается, т.е. I осн резко возрастает.