6 в десятичной дроби. Десятичные дроби. Понятие десятичной дроби. Чтение десятичных дробей

Подробно рассмотрены примеры решений интегралов по частям, подынтегральное выражение которых является произведением многочлена на экспоненту (е в степени х) или на синус (sin x) или на косинус (cos x).

Формула интегрирования по частям

При решении примеров этого раздела, используется формула интегрирования по частям:
;
.

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или e x

Вот примеры таких интегралов:
, , .

Для интегрирования подобных интегралов, многочлен обозначают через u , а оставшуюся часть - через v dx . Далее применяют формулу интегрирования по частям.

Ниже дается подробное решение этих примеров.

Примеры решения интегралов

Пример с экспонентой, е в степени х

Определить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e - x dx = - e - x d(-x) = - d(e - x) .

Интегрируем по частям.

здесь
.
Оставшийся интеграл также интегрируем по частям.
.
.
.
Окончательно имеем:
.

Ответ

Пример определения интеграла с синусом

Вычислить интеграл:
.

Решение

Введем синус под знак дифференциала:

Интегрируем по частям.

здесь u = x 2 , v = cos(2 x+3) , du = ( x 2 )′ dx

Оставшийся интеграл также интегрируем по частям. Для этого вводим косинус под знак дифференциала.


здесь u = x , v = sin(2 x+3) , du = dx

Окончательно имеем:

Ответ

Пример произведения многочлена и косинуса

Вычислить интеграл:
.

Решение

Введем косинус под знак дифференциала:

Интегрируем по частям.

здесь u = x 2 + 3 x + 5 , v = sin 2 x , du = ( x 2 + 3 x + 5)′ dx

Представлены основные тригонометрические формулы и основные подстановки. Изложены методы интегрирования тригонометрических функций - интегрирование рациональных функций, произведение степенных функций от sin x и cos x, произведение многочлена, экспоненты и синуса или косинуса, интегрирование обратных тригонометрических функций. Затронуты нестандартные методы.

Основные тригонометрические формулы

Ниже приведены некоторые тригонометрические формулы, которые могут понадобится при интегрировании тригонометрических функций.

sin 2 a + cos 2 a = 1






sin (a+b) = sin a cos b + cos a sin b
cos (a+b) = cos a cos b - sin a sin b
sin 2 a = 2 sin a cos a
cos 2 a = cos 2 a - sin 2 a = 2 cos 2 a - 1 = 1 - 2 sin 2 a


Стандартные подстановки при интегрировании тригонометрических функций

Здесь мы рассмотрим стандартные подстановки, с помощью которых, в большинстве случаев, выполняется интегрирование тригонометрических функций.

Подстановка t = sin x

Преобразование выполняется по формулам:

cos x dx = dt ;
sin x = t ; cos 2 x = 1 - t 2 ;
;

Подстановка t = cos x

sin x dx = - dt ;
cos x = t ; sin 2 x = 1 - t 2 ;
;

Подстановка t = tg x

; ;
tg x = t ; ;
; .

Подстановка t = ctg x

; ;
ctg x = t ; ;
; .

Подстановка t = tg (x/2)

;
;
;
; ;
; .

Интегрирование обратных тригонометрических функций

Интегралы, содержащие обратные тригонометрические функции
arcsin φ , arctg φ , и т.д., где φ - некоторая алгебраическая функция от x , нередко интегрируются по частям, полагая u = arcsin φ , u = arctg φ , и т.д.

Примеры таких интегралов:
, , .

Стандартные методы интегрирования тригонометрических функций

Общий подход

Вначале, если это необходимо, подынтегральное выражение нужно преобразовать, чтобы тригонометрические функции зависели от одного аргумента, который совпадал бы с переменной интегрирования.

Например, если подынтегральное выражение зависит от sin(x+a) и cos(x+b) , то следует выполнить преобразование:
cos (x+b) = cos (x+a - (a-b)) = cos (x+a) cos (b-a) + sin ( x+a ) sin (b-a) .
После чего сделать замену z = x+a . В результате, тригонометрические функции будут зависеть только от переменной интегрирования z .

Когда тригонометрические функции зависят от одного аргумента, совпадающим с переменной интегрирования (допустим это z ), то есть подынтегральное выражение состоит только из функций типа sin z , cos z , tg z , ctg z , то нужно сделать подстановку
.
Такая подстановка приводит к интегрированию рациональных или иррациональных функций (если есть корни) и позволяет вычислить интеграл, если он интегрируется в элементарных функциях.

Однако, часто можно найти другие методы, которые позволяют вычислить интеграл более коротким способом, основываясь на специфике подынтегрального выражения. Ниже дано изложение основных таких методов.

Методы интегрирования рациональных функций от sin x и cos x

Рациональные функции от sin x и cos x - это функции, образованные из sin x , cos x и любых постоянных с помощью операций сложения, вычитания, умножения, деления и возведения в целочисленную степень. Они обозначаются так: R(sin x, cos x) . Сюда также могут входить тангенсы и котангенсы, поскольку они образованы делением синуса на косинус и наоборот.
Интегралы от рациональных функций имеют вид:
.

Методы интегрировании рациональных тригонометрических функций следующие.
1) Подстановка всегда приводит к интегралу от рациональной дроби. Однако, в некоторых случаях, существуют подстановки (они представлены ниже), которые приводят к более коротким вычислениям.
2) Если R(sin x, cos x) cos x → - cos x sin x .
3) Если R(sin x, cos x) умножается на -1 при замене sin x → - sin x , то выполняется подстановка t = cos x .
4) Если R(sin x, cos x) не меняется как при одновременной замене cos x → - cos x , и sin x → - sin x , то применяется подстановка t = tg x или t = ctg x .

Примеры:
, , .

Произведение степенных функций от cos x и sin x

Интегралы вида

являются интегралами от рациональных тригонометрических функций. Поэтому к ним можно применить методы, изложенные в предыдущем разделе. Ниже рассмотрены методы, основанные на специфике таких интегралов.

Если m и n - рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n - целые числа, то интегрирование выполняется с помощью формул приведения:

;
;
;
.

Пример:
.

Интегралы от произведения многочлена и синуса или косинуса

Интегралы вида:
, ,
где P(x) - многочлен от x , интегрируются по частям. При этом получаются следующие формулы:

;
.

Примеры:
, .

Интегралы от произведения многочлена, экспоненты и синуса или косинуса

Интегралы вида:
, ,
где P(x) - многочлен от x , интегрируются с помощью формулы Эйлера
e iax = cos ax + isin ax (где i 2 = -1 ).
Для этого методом, изложенном в предыдущем пункте, вычисляют интеграл
.
Выделив из результата действительную и мнимую часть, получают исходные интегралы.

Пример:
.

Нестандартные методы интегрирования тригонометрических функций

Ниже приведены ряд нестандартных методов, которые позволяют выполнить или упростить интегрирование тригонометрических функций.

Зависимость от (a sin x + b cos x)

Если подынтегральное выражение зависит только от a sin x + b cos x , то полезно применить формулу:
,
где .

Например

Разложение дроби из синусов и косинусов на более простые дроби

Рассмотрим интеграл
.
Наиболее простой способ интегрирования заключается в разложении дроби на более простые, применяя преобразование:
sin(a - b) = sin(x + a - (x + b)) = sin(x+a) cos(x+b) - cos(x+a) sin(x+b)

Интегрирование дробей первой степени

При вычислении интеграла
,
удобно выделить целую часть дроби и производную знаменателя
a 1 sin x + b 1 cos x = A (a sin x + b cos x) + B (a sin x + b cos x)′ .
Постоянные A и B находятся из сравнения левой и правой частей.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Интеграл от синуса sin (x) равен косинусу, причем со знаком минус. Многие часто допускает ошибки потому что не может запомнить, что производная от синуса равна минус косинусу, а от косинуса - синусу со знаком плюс.
Те кто изучает первоначальную должны помнить что к правой стороне следует добавить постоянную
Ету постоянную определяют с дополнительной условия.
График синуса имеет вид


Синус нечетная, а косинус - четная функция, поэтому при интегрировании появляется знак минус. В начале всем кажется все простым и понятным. Но рано или поздно наступает время усложнять интеграл, то есть интегрировать синус двойного угла, тройного аргумента и т.д. И во многих возникают трудности с интегрированием. Для вывода формулы интеграла для sin (k*x) проведем все выкладки сначала. Для того чтобы свести интеграл к табличной формулы надо внести коэффициент под дифференциал, но это изменит сам интеграл. Поэтому одновременно делим на коэффициент

Зная эту формулу, интеграл от синуса двойного угла записываем одной строкой
Далее можем проинтегрировать синус тройного угла
и т.д.
int(sin(k*x)=-1/k*cos(k*x).
По такой же формуле выводят интеграл от синуса половины угла, который равен минус 2 косинус половины угла.
Интеграл от синуса одной третьей х равен

Распространенные примеры интегрирования синуса

Пример 1. Найти интеграл от sin(4*x).
Решение: По формуле интегрирования находим

Пример 2. Вычислить интеграл от sin(5*x).
Решение: Выполняем интегрирования

Пример 3. Проинтегрировать выражение sin(7*x).

Пример 4. Найти интеграл функции y=sin(x/5).
Решение: Находим неопределенный интеграл

Как только Вы научитесь вычислять простые интегралы от синуса можете переходить к определенному интегралу

Пример 5. Найти первоначальную от sin(x) которая в нуле равна 2.
Решение: Вычисляем первоначальную

Из условия на первоначальную находим постоянную
-cos(0)+C=2;
C=2+cos(0)=3.

Возвращаемся к первоначальной и подставляем найденную постоянную

Это и есть ответ к задаче.

Пример 7. Проинтегрировать синус двойного угла y=sin(2*x) от 0 до 45 градусов.
Решение: Записываем интеграл от синуса и подставляем пределы интегрирования

По физическому содержанию определенный интеграл равен площади фигуры ограниченной функцией sin (x) и осью абсцисс.

Но определенный интеграл и площадь, это не одно и то же. Интеграл может быть отрицательным, а площадь нет. Если функция большую площадь имеет под осью абсцисс, то ее определенный интеграл отрицательный.

Площадь криволинейной трапеции равна интегралу от разницы уравнения верхней кривой и нижней.

В данном случае верхняя кривая это ось абсцисс или y = 0. Нижняя - это график синуса. Поэтому формула площади синус функции равна 1, или определенному интегралу по модулю.

Если функция антисимметрична относительно оси абсцисс то ее интеграл равен нулю, а площадь равна двойному интегралу графика над осью абсцисс. Например, интеграл синуса двойного угла от -45 до 45 градусов равен нулю


В то же время площадь заштрихованной фигуры равна единице.