Почему крутится волчок. Вращение волчка. Некоторые вопросы, связанные с судейством

Видео 1. Эксперимент с вращением более лёгкого волчка.
Экспериментальные данные приведены в таблице 1.

Таблица 1. Экспериментальные данные для вращения более лёгкого волчка. Измерения времени сделаны для каждого 10-го оборота.
Обороты переводятся в расстояние


График математической модели скорости приведён на рис. 3.
График математической модели координаты приведён на рис. 4.


Рис. 3. График математической модели скорости для ИДВУСД волчка в первом опыте. Экспериментальные данные скорости обозначены синими точками.



Рис. 4. График математической модели координаты для ИДВУСД волчка в первом опыте. Экспериментальные данные координаты обозначены синими точками.

3. Исследование второго (более тяжёлого) волчка.

Движение (вращение) второго волчка будем фиксировать видеосъёмкой с частотой кадров: 600 кадров в секунду.

Вес волчка: 0,015 кг.
Диаметр волчка равен 0,057 метра.

Рис. 5. Общий вид второго, более тяжёлого волчка.

Видео 2. Эксперимент с вращением более тяжёлого волчка.
Экспериментальные данные приведены в таблице 2.

Таблица 2. Экспериментальные данные для вращения более тяжёлого волчка. Измерения времени сделаны для каждого 10-го оборота.


График математической модели скорости приведён на рис. 6.
График математической модели координаты приведён на рис. 7.


Рис. 6. График математической модели скорости для ИДВУСД волчка во втором опыте. Экспериментальные данные скорости обозначены синими точками.


Рис. 7. График математической модели координаты для ИДВУСД волчка во втором опыте. Экспериментальные данные координаты обозначены синими точками.


4. Сравнение графиков скорости для первого и второго опытов.

На рисунке 8 показаны два графика скорости – для лёгкого и для более тяжёлого волчка.
График математической модели скорости для более лёгкого волчка построен зелёными точками. График математической модели скорости для более тяжёлого волчка построен голубыми точками.


Рис. 8. Графики скорости для лёгкого и тяжёлого волчков. Экспериментальные данные координаты обозначены синими точками.



У волчков (маховиков) ещё много тайн. Ведь, та мат модель, которую я привёл - это не единственный вариант движения волчков (маховиков). Следует продолжить поиски, и исследовать волчки из различных материалов и даже магнитов.

5. Исследование латунного волчка - тонвала.

Движение (вращение) латунного волчка будем фиксировать видеосъёмкой с частотой кадров: 600 кадров в секунду.
Для определения пройденного расстояния, на плоскость диска волчка наклеим метку красного цвета.
Вес волчка: 0,104 кг.
Диаметр волчка равен 0,05 метра.


Рис. 9. Общий вид латунного волчка.

Видео 3. Эксперимент с вращением латунного волчка.
Экспериментальные данные приведены в таблице 3.

Таблица 3. Экспериментальные данные для вращения латунного волчка. Измерения времени сделаны для каждого 10-го оборота.


График математической модели скорости приведён на рис. 10.
График математической модели координаты приведён на рис. 11.


Рис. 10. График математической модели скорости для ИДВУСД латунного волчка. Экспериментальные данные скорости обозначены синими точками.



Рис. 11. График математической модели координаты для ИДВУСД латунного волчка. Экспериментальные данные координаты обозначены синими точками.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует?

Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину, вследствие которой вращающийся волчок не падает.

На рис. 26 изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть A его ободка и на часть B, противоположную ей. Часть A стремится двигаться от вас, часть B – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе. Этим толчком вы заставляете часть A двигаться вверх, часть B – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется. Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Рисунок 26. Почему волчок не падает?

Рисунок 27. Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.

Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности. Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения. Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения, также стремится сохранить свое направление.



Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными. Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения.

Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойстве волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах.

Таково полезное использование простой, казалось бы, игрушки.

Искусство жонглеров

Многие удивительные фокусы разнообразной программы жонглеров основаны тоже на свойстве вращающихся тел сохранять направление оси вращения. Позволю себе привести выдержку из увлекательной книги английского физика проф. Джона Перри «Вращающийся волчок».

Рисунок 28. Как летит монета, подброшенная с вращением.

Рисунок 29. Монета, подброшенная без вращения, падает в случайном положении.

Рисунок 30. Подброшенную шляпу легче поймать, если ей было сообщено вращение около оси.

Однажды я показывал некоторые из моих опытов перед публикой, пившей кофе и курившей табак в великолепном помещении концертного зала „Виктория“ в Лондоне. Я старался заинтересовать моих слушателей, насколько мог, и рассказывал о том, что плоскому кольцу надо сообщить вращение, если его желают бросить так, чтобы можно было наперед указать, куда оно упадет; точно так же поступают, если хотят кому‑нибудь бросить шляпу так, чтобы он мог поймать этот предмет палкой. Всегда можно полагаться на сопротивление, которое оказывает вращающееся тело, когда изменяют направление его оси. Далее я объяснял моим слушателям, что, отполировав гладко дуло пушки, никогда нельзя рассчитывать на точность прицела; вследствие этого теперь делают нарезные дула, т. е. вырезают на внутренней стороне дула пушек спиралеобразные желоба, в которые приходятся выступы ядра или снаряда, так что последний должен получить вращательное движение, когда сила взрыва пороха заставляет его двигаться по каналу пушки. Благодаря этому снаряд покидает пушку с точно определенным вращательным движением.

Это было все, что я мог сделать во время этой лекции, так как я не обладаю ловкостью в метании шляп или дисков. Но после того, как я закончил свою лекцию, на подмостки выступили два жонглера, – и я не мог пожелать лучшей иллюстрации упомянутых выше законов, нежели та, которую давал каждый отдельный фокус, показанный этими двумя артистами. Они бросали друг другу вращающиеся шляпы, обручи, тарелки, зонтики… Один из жонглеров бросал в воздух целый ряд ножей, ловил их опять и снова подбрасывал с большой точностью вверх; моя аудитория, только что прослушав объяснение этих явлений, ликовала от удовольствия; она замечала вращение, которое жонглер сообщал каждому ножу, выпуская его из рук так, что мог наверное знать, в каком положении нож снова вернется к нему. Я был тогда поражен, что почти все без исключения жонглерские фокусы, показанные в тот вечер, представляли иллюстрацию изложенного выше принципа».

Хороший волчок должен легко вертеться. Для этого необходимо правильно разместить центр тяжести.При большой скорости вращающийся волчок стремится сохранить неизменным положение своей оси и не падает. Постепенно из-за трения скорость вращения уменьшается. И когда скорость становится недостаточной, ось волчка по спирали отклоняется от вертикали, далее следует падение.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям?

Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует? Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину , вследствие которой вращающийся волчок не падает.

На рисунке изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть А его ободка и на часть В, противоположную ей. Часть А стремится двигаться от вас, часть В – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе.

Этим толчком вы заставляете часть А двигаться вверх, часть В – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется.

Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.
Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности.

Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения.

Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения , также стремится сохранить свое направление.
Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы.

Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными.
Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения. Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойство волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах. Таково полезное использование простой, казалось бы, игрушки.

Вращение обеспечивает устойчивость снарядов и пуль в полете, а также может быть использовано для обеспечения устойчивости космических снарядов – спутников и ракет – при их движении.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует?

Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину, вследствие которой вращающийся волчок не падает.

На рис. 26 изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть А его ободка и на часть В , противоположную ей. Часть А стремится двигаться от вас, часть В – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе. Этим толчком вы заставляете часть А двигаться вверх, часть В – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется. Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.


Почему волчок не падает?

Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности. Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения. Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения, также стремится сохранить свое направление.


Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.

Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными. Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения.

Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойство волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах. [Вращение обеспечивает устойчивость снарядов и пуль в полете, а также может быть использовано для обеспечения устойчивости космических снарядов – спутников и ракет – при их движении (Прим. ред.).]

Таково полезное использование простой, казалось бы, игрушки.

Cтраница 3


Формула (92.1) показывает, что угловая скорость прецессии coj тем меньше, чем больше угловая скорость со вращения волчка вокруг его оси симметрии.  

Формула (92.1) показывает, что угловая скорость прецессии со, тем меньше, чем больше угловая скорость со вращения волчка вокруг его оси симметрии.  

Положение оси фигуры (оси симметрии тела) легко установить у любого волчка и наблюдать за ее перемещениями при вращении волчка. Мгновенная ось вращения, вообще говоря, невидима.  

Метальные группы можно рассматривать как симметрические волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка.  

Метальные группы можно рассматривать как симметрические волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка. Часто в молекуле можно различать жесткую основу, с которой связаны один или несколько жестких волчков.  

Внутреннее вращение / т / 1 / а, (VI. 152.  

Метальные группы можно рассматривать как симметричные волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка. Часто в молекуле можно различить жесткую основу, с которой связаны один или несколько жестких же волчков.  

Центр тяжести волчка, ось которого совершает быструю прецессию, практически останавливался и снова приобретал некоторую скорость лишь в последней стадии движения, когда угловая скорость вращения волчка заметно падала.  

При отсутствии вращения около собственной оси его состояние равновесия при вертикальном направлении оси будет неустойчивым (если центр тяжести выше точки опоры); когда угловая скорость вращения волчка около оси сделается достаточно большой, его состояние меростатического вращения становится устойчивым (не только в линейном, но даже и в строгом смысле), если в качестве действующей силы рассматривается только сила веса. Но если принять во внимание сопротивление воздуха, то в уравнения малых колебаний войдут диссипативные силы, и мы теоретически найдем, как это и имеет место в действительности, что угловая скорость, хотя и медленно, будет убывать, так что в конце концов волчок упадет. Исчерпывающее объяснение этого явления будет дано в гл.  

Примером твердого тела, ну неподвижную точку, может служить волчок, заостренный ножки которого упирается в гнездо, сделанное в подставке, так что этот конец ножки при вращении волчка остается неподвижным.  

Для всей молекулы, имеющей массу М, включая вращающуюся группу в равновесном положении, находятся главные центральные оси инерции 1, 2, 3 и главные моменты инерции относительно этих осей / д, 1В, / с; затем проводятся координатные оси волчка, так чтобы ось 2 совпадала с осью вращения волчка, ось х проходила через центр тяжести волчка и была перпендикулярна оси z и ось у проходила через точку пересечения осей х, z и была бы перпендикулярна к ним. Атомы волчка, лежащие на оси вращения z, из дальнейшего рассмотрения исключаются.  

При большой скорости со вращения волчка скорость прецессии ничтожна. Когда вращение волчка ослабевает, всегда наблюдается прецессия.  

Включают электромотор и доводят скорость вращения волчка до 8000 об / мин. При вращении волчка тяжелые минералы оседают и застревают в пазах волчка 5, а легкие отбрасываются вместе с жидкостью на стенки делительных воронок 2 и 6 и через отвод 3 попадают в воронку Бюхнера. Так как фильтрование происходит медленно, включают масляный насос.  

Импетус Бенедетти характеризует направлением, рассматривая его как некий прямолинейный элемент. Так, вращение волчка он объясняет прямолинейностью горизонтального и тангенциального импетусов, уравновешивающих тяжесть частей, к которым они приложены. Пока скорость волчка велика, это позволяет ему сохранять свое положение. Расходуясь, импетусы уступают место тяжести, что ведет к падению волчка. Опираясь на эти рассуждения, Бенедетти показывает, что совершенного естественного движения (а им является только вечное и равномерное круговое движение) быть не может.