В процессе кристаллизации данного вещества. Исследование свойств воды при кристаллизации. Замерзание жидкости при внешнем воздействии снега

, растворов , расплавов , из вещества в другом кристаллическом или аморфном состоянии.
Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пересыщения пара, когда практически одновременно возникают во множестве мелкие кристаллики- "зародыши", центры кристаллизации. Микрористаллики растут за счёт присоединения к своей поверхности новых атомов или молекул из окружающего расплава, жидкости или пара. Рост граней кристалла происходит послойно, края незавершенных атомных слоев (ступени роста) при кристаллизации продвигаются вдоль грани последовательными фронтами один за другим. В зависимости от скорости роста и условий процесс кристаллизации приводит к формированию разнообразных форм роста (многогранные, уплощённые, игольчатые, нитевидные , скелетные , дендритные и другие формы) и внутренних структур кристаллов (зональные, секториальные, блочные и др. структуры). При быстрой кристаллизации неизбежно возникают различные внутренние дефекты кристаллической решетки .

Если кристалл не плавится, не растворяется, не испаряется и не растет, то он находится в термодинамическом равновесии с маточной средой (расплавом, раствором или паром). Равновесие кристалла с расплавом того же вещества возможно лишь при температуре плавления, а равновесие с раствором и паром - если последние насыщены. Пересыщение или переохлаждение среды - необходимое условие для роста находящегося в ней кристалла, причём скорость роста кристалла тем больше, чем больше отклонение от РТ-условий равновесия.

Кристаллизация - фазовый переход вещества из состояния переохлажденной (пересыщенной) маточной среды в кристаллическое химическое соединение с меньшей свободной энергией. Избыточная энергия, образующаяся при кристаллизации, выделяется в виде скрытой теплоты. Часть этой теплоты может превращаться в механическую работу. Например, растущий кристалл может поднимать положенный на него груз, развивая Кристаллизационное давление (будучи разным для разных минералов, оно в отдельных случаях может оцениваться в десятки кг/см 2). В частности, антолиты такого мягкого минерала, как гипс , могут поднимать куски породы массой в несколько кг. Широко известен также пример с антолитами льда , способными раздвигать мёрзлый грунт или поднимать тяжёлые предметы. А кристаллы солей, образующиеся в трещинах бетонных плотин в морской воде, иногда вызывают разрушение бетона.

Переохлажденная среда может долго сохранять, не кристаллизуясь, неустойчивое метастабильное состояние. Однако при достижении некоторого предельного для данных условий критического переохлаждения среды в ней мгновенно возникает множество мелких кристалликов-зародышей. Возникшие кристаллики растут и, если переохлаждение уменьшается, новые зародыши, как правило, больше не возникают. Многое зависит также от присутствия энергетически активных фаз или частиц, могущих играть роль "затравок", провоцирующих начало кристаллизации.

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ней «центров кристаллизации». В случае их отсутствия жидкость «переохлаждается», т. е. температура понижается ниже точки плавления данного вещества, но вещество остается в жидком состоянии. Возможность такого переохлаждения для воды была замечена уже более двухсот лет назад, в 1724 г., Фаренгейтом. Выгодная покупка недвижимости в Одессе в то время, как не сложно догадаться, доступна еще не была.

Позднее были установлены и изучены разнообразнейшие обстоятельства, способствующие как затвердеванию переохлажденной жидкости, так и ее сохранению в жидком виде. Выяснилось, что громадное значение для начала кристаллизации имеет «заражение» какими-либо твердыми частицами. Так^ если вода имеет поверхность, доступную действию атмосферного воздуха со взвешенными в нем пылинками различных твердых веществ, то ее трудно переохладить. Напротив, в запаянной пробирке, особенно при откачке оттуда воздуха, вода очень легко переохлаждается.

Кристаллизацию переохлажденной жидкости обыкновенно можно вызвать, потирая какой-нибудь твердой палочкой внутреннюю стенку стеклянного сосуда, в котором находится жидкость. При этом, по всей вероятности, от стенки отрываются микроскопические частички стекла, и они-то играют роли затравки.

К таким же заключениям приводят и факты, взятые из практических наблюдений. Капитан корабля «Днсковери» Р. Ф. Скотт записал 12 сентября 1902 г. в корабельном журнале, что сети и веревки, спущенные под воду (очевидно, переохлажденную), оказывались после их поднятия покрытыми кристаллами льда, причем в одном случае вокруг линя толщиной в 1 дюйм (2,54 см) образовался цилиндро-хлопьевидного льда диаметром около 25 см. Кристаллы льда в виде листочкоз были перпендикулярны к канату, и их плоскости взаимно пересекались под углом 60°. «Все это,- по словам Скотта,- похоже на красивое кружево; выставляя его на свет, мы видим сквозь него роскошные краски спектра, как от призмы. От прикосновения лед распадается на куски, и каждый листочек можно расщепить на тончайшие слои».

При этом нельзя упускать из вида, что кристаллизация жидкости сопровождается выделением теплоты, и если эту теплоту не удалять, то температура жидкости поднимется до такого предела, когда кристаллизация уже будет невозможна. Поэтому за ростом кристаллов из их зародышей удобно следить в переохлажденной жидкости. Так и поступал.виднейший современный исследователь этих вопросов Тамман, основоположник учения о центрах кристаллизации и признанный авторитет в этой области. Он и его сотрудники исследовали многочисленные жидкости, определяя для них две величины: скорость образования зародышей в зависимости от степени переохлаждения и затем, с полученными зародышами, скорость их роста.

Однако среди исследованных Тамманом жидкостей отсутствовала вода. По признанию Таммана первые же центры кристаллизации у воды растут с такой быстротой, что через незначительное время весь сосуд заполняется тонкими ледяными иглами, и поэтому невозможно проследить за скоростью возникновения кристаллических зародышей.

Технические трудности, помешавшие Тамману наблюдать начальную стадию кристалтизации воды, удалось преодолеть мне, причем оказалось, что для преодоления этих трудностей потребовались вовсе уж не чрезмерно сложные приемы.

В. своих работах по изучению кристаллизационных свойств воды вообще и ядер кристаллизации ее в частности я исходил из вывода теоретиков физико-химиков о том, что при малых переохлаждениях скорость развития ядер очень мала, а также из данных опыта, подтверждавших означенный вывод.

Поэтому я считал мнение Таммана, что при незначительном переохлаждении воды ядра кристаллизации будто бы развиваются настолько быстро, что технически нет возможности их изучать, неправильным, и это доказал на опыте, работая в области действительно малых переохлаждений (десятые и сотые доли градуса ниже 0°), при которых скорости развития ядер можно снизить до таких пределов, которые допускают возможность изучать ядра легко и свободно.

Таким образом преграда, мешавшая ранее Тамману и другим исследователям изучать ядра кристаллизации воды, оказалась снятой.

Для осуществления такой установки сосуд с переохлажденной водой окружался охладительной смесью из раствора соли ‘в воде со снегом; температура замерзания раствора зависит от концентрации в нем соли.

Исследование показало, что для наблюдения образования ледяных кристаллов наиболее удобны температуры между 0 и -1°. В случае более низких температур отмеченная Тамманом трудность уже сильно дает себя знать. Приходится считаться еще и с другими трудностями: с выделением теплоты при образовании кристаллов и с тем, что они стремятся всплывать вверх и уходят таким образом из-под наблюдения.

На рисунке показан один из вариантов примененной мной установки, где эти помехи уже не имеют места. Здесь буквой Я обозначен кристаллик льда, всплывающий наверх. Навстречу ему идет поток, воды, приводимой в движение вращающимся винтом. Скорость движения воды вниз поддерживается как раз такой, чтобы кристаллик оставался практически на неизменном уровне. Наружная трубка с протекающим по ней соляным раствором имеет назначением поддерживать постоянную температуру.

Применяя тонкое регулирование переохлаждения воды, можно было по желанию ускорять или замедлять, останавливать или. даже вести в обратном направлении процесс роста наблюдаемого кристалла, так что удалось уже выращенный кристалл вновь уменьшить и даже доводить до полного уничтожения.

Из этих опытов выяснилось, что форма кристаллического зародыша льда есть правильный диск, который при дальнейшем росте превращается в правильную шестиугольную пластинку прозрачного льда, а это последняя уже разрастается в шестилучевую звездочку. Дальнейший рост звездочки, которую удалось доводить до диаметра.2-3 см, дает ажурное строение, напоминающее по виду снежинку.

Громадные трудности связаны с фотографированием кристалликов. Ввиду их прозрачности их можно видеть только под таким углом зрения, при котором падающий на них свет испытывает полное внутреннее отражение. Кристаллики, вынутые из воды, обволакиваются жидкостью, а при ее удалении нарушается их нежная и тонкая структура.

КРИСТАЛЛИЗАЦИЯ - образование кристаллов из газа, раствора, расплава, стекла или кристалла др. структуры (полиморфные превращения). К. состоит в укладке атомов, молекул или ионов в кристаллическую решётку . К. определяет образование минералов, льда, играет важную роль в атм. явлениях, в живых организмах (образование зубной эмали, костей, почечных камней). Путём К. получают и массивные монокристаллы, и тонкие кристаллич. плёнки , диэлектриков и металлов. Массовая К.- одноврем. рост множества мелких кристаллов - лежит в основе металлургии и широко используется в хим., пищевой и медицинской промышленности.

Термодинамика кристаллизации . Расположение частиц в кристалле упорядочено (см. Дальний и ближний порядок) , и их энтропия S K меньше энтропии S c в неупорядоченной среде (паре, растворе, расплаве). Поэтому снижение темп-ры Т при пост. давлении р ведёт к тому, что химический потенциал вещества в кристалле

становится меньше его потенциала в исходной среде:

Здесь - энергии взаимодействия частиц и уд. объём вещества в кристаллич. и неупорядоченном состояниях (фазах), S K и S С - энтропии . Т. о., кристаллич. фаза оказывается "выгоднее", происходит К., сопровождаемая выделением т.н. скрытой теплоты К.: H=T(S C -S K )0,5-5 эВ, а также скачком уд. объёма (фазовый переход первого рода). Если р10 4 атм, то член в соотношении (1) мал, и притеплота К. равна , т. е. является мерой изменения энергии связи между частицами при К. [при К. из расплава и может иметь разл. знаки].

К. при полиморфных превращениях (см. Полиморфизм )может быть фазовым переходом второго рода. В случае переходов первого рода граница раздела кристалл - среда локализована в пределах неск. межатомных расстояний, и её уд. свободная энергия >0.

Для переходов 2-го рода граница не локализована и

Условия(р, Т, С к) = (р, Т , С с) для каждого из компонентов кристалла и среды определяют связь р, Т и концентрации компонентов С , при к-рых кристалл находится в равновесии со средой, т. е. диаграмму состояния вещества. Разность , являющаяся мерой отклонения от равновесия, наз. термодинами ч. движущей силой К. Обычно она создаётся понижением темп-ры ниже равновесного значения Т 0 , т.е. переохлаждением системы на Т-Т 0 -Т . Если

Т Т 0 , то

Если давление р паров или концентрация С в растворе больше равновесных значений р 0 и С 0 , то говорят об абс. пересыщении (р=р - р 0 или С=С-С 0 ) либо относит. пересыщении (=р/р 0 или С/С 0 ). В этом случае в разреженных парах и разведённых растворах

В процессе выращивания монокристаллов из растворов обычно , из паров и при хим. реакциях 1, при конденсации молекулярных пучков 10 2 -10 4 .

К. может происходить в результате или с участием хим. реакций. Равновесное состояние смеси газов при возможной хим. реакции между составляющими её веществами A i можно обобщённо записать в виде , где - стехиометрич. коэф. (<0 для прямой реакции, >0 - для обратной). В этом случае

Здесь К - константа равновесия реакции, р i - (или концентрации, если реакция протекает в растворе). В случае электролитов

Рис. 4. Кристаллографическая плотнейшая (вверху) и пентагональная (внизу) упаковки.

Понижение темп-ры не только уменьшает работу образования зародыша, но и экспоненциально повышает вязкость расплава, т. е. снижает частоту присоединения новых частиц к зародышу (рис. 5, а). В результате I (Т )сначала достигает максимума, а затем становится столь малой (рис. 5, б) , что при низких темп-pax расплав затвердевает, оставаясь аморфным. В расплавах со сравнительно малой вязкостью это возможно лишь при очень быстром (10 6 К/с) охлаждении. Так получают аморфные сплавы металлов (см. Аморфные металлы) . В жидком гелии образование зародышей возможно не переходом системы через барьер, а туннельным просачиванием сквозь него. При выращивании крупных совершенных кристаллов на "затравках" избегают появления спонтанных зародышей, используя слабо пересыщенные растворы или перегретые расплавы. Наоборот, в металлургии стремятся получить максимальное число центров К., создавая глубокие переохлаждения (см. ниже).

Рис. 5. Температурные зависимости скорости зарождения и роста кристалла: а) сплошные кривые - температурная зависимость числа зародышей цитриновой кислоты в переохлаждённом водном растворе (темп-ры насыщения: А-62 °С, В - 85 °С); пунктир - увеличение вязкости (в пуазах) растворов с понижением Т; б) скорость роста v кристаллов бензофенона из расплава как функции Т .

Рост кристалла может быть послойным и нормальным в зависимости от того, является ли его поверхность в атомном масштабе гладкой или шероховатой. Атомные плоскости, образующие гладкую грань, почти полностью укомплектованы и содержат сравнительно небольшое число вакансий и атомов, адсорбированных в местах, соответствующих узлам кристаллич. решётки следующего слоя. Края незавершённых атомных плоскостей образуют ступени (рис. 6, в). В результате тепловых флуктуации ступень содержит нек-рое число трёхмерных входящих углов - изломов. Присоединение новой частицы к излому не изменяет энергии поверхности и поэтому является элементарным актом роста кристалла. С увеличением отношения тепловой энергии kT к поверхностной энергии (в расчёте на 1 атомное место на поверхности) плотность изломов увеличивается. Соответственно увеличивается конфигурац. энтропия и падает свободная линейная энергия ступени. При определ. отношениях (близких к 1, но несколько различных для разных граней) линейная энергия ступени обращается в 0, и ступень "размазывается" по грани, к-рая превращается в шероховатую, т. е. равномерно и плотно покрытую изломами поверхность (рис. 6, б) . Связь поверхностной энергии с теплотой К. позволяет заключить, что для веществ и темп-р, для к-рых изменение энтропии при К. таково, что S/k >4, все плотноупакованные грани - гладкие. Эта ситуация характерна для равновесия кристалл - пар, а также (для нек-рых веществ) для границы кристалл -расплав. Переход от шероховатости к огранению возможен при изменении концентрации в двухкомпонентных системах (К. из растворов). Если S/k<2 (типично для плавления металлов), то поверхности любой ориентации шероховаты. При отдельные гладкие грани сосуществуют с шероховатыми поверхностями (напр., кристаллы Ge и Si в расплавах, гранаты в расплавах и высокотемпературных растворах). Зависимость свободной энергии и скорости К. от ориентации поверхности имеет острые (сингулярные) минимумы для гладких (сингулярных) граней и округлённые (несингулярные) для шероховатых поверхностей.

Рис. 6. Атомно-гладкая (а ) и шероховатая (б ) поверхности (моделирование на ЭВМ).

Рис. 7. Концентрические ступени на грани (100) NaCl при росте из молекулярного пучка. Высота ступени 2,82 А (декорированы мелкими кристалликами специально осаждённого золота).

Рис. 8. а - Спиральная форма роста; б - ступень, оканчивающаяся на поверхности в точке её пересечения винтовой .

Присоединение нового атома в любом положении на поверхности кроме излома меняет её энергию. Заполнение немногочисленных вакансий, снижающее эту энергию, не может дать начала новому атомному слою, а концентрация атомов в местах, соответствующих узлам решётки следующего слоя, повышает энергию и поэтому мала. В результате необратимое присоединение частиц к кристаллу, т. е. его рост, возможен только когда на его поверхности есть изломы. На шероховатых поверхностях плотность изломов велика, и рост вдоль нормали к поверхности возможен практически в любой точке. Такой рост наз. нормальным. Он лимитируется скоростью присоединения отд. частиц к изломам. Его скорость R линейно увеличивается с переохлаждением на фронте К.:

Здесь а - межатомное расстояние,l 0 - расстояние между изломами, - эффективная частота тепловых , - энергия, необходимая для присоединения частиц к излому (энергия активации). Она учитывает перестройку ближнего порядка в жидкости, десольватацию строит. частиц и изломов в растворах, хим. реакции и т. д. В простых расплавах коэф. велики, что обеспечивает рост с заметной скоростью, когда переохлаждение на фронте К. Т 1К. Так, для роста Si 10 6 см/с R= (3-5)*10 -3 см/с достигается при 10 -5 К. При достаточно низких темп-pax подвижность частиц падает и скорость роста уменьшается, подобно скорости зарождения (рис. 5, б) .

Если поверхность гладкая, то изломы существуют только на ступенях, рост идёт последоват. отложением слоев и наз. послойным. Если поверхность образована лестницей одинаковых ступеней и в среднем отклонена от ближайшей сингулярной грани на угол с тангенсом р , то ср. скорость её роста вдоль нормали к этой сингулярной ориентации

где - скорость роста ступени вдоль грани, (В растворах 10 -1 -10 -3 см/с.)

Плотность ступеней определяется тем, генерируются ли они двумерными зародышами или дислокациями .Образование двумерных зародышей требует преодоления потенциального барьера, высота к-рого пропорциональна линейной энергии ступеней и обратно пропорциональна . Соответственно, скорость К. экспоненциально мала при малых Т [для роста грани (III) Si с R=(3-5)*10 -3 см/с необходимо Т 0,ЗК; см. выше]. При К. из молекулярных пучков, если есть места преимущественного образования двумерных зародышей, ступени имеют вид замкнутых колец (рис. 7). Возможно, что образование зародышей "облегчается" точками выхода на поверхность краевых дислокаций.

При росте на винтовой дислокации, образуемая ею ступень в процессе роста приобретает спиральную форму (рис. 8), т. к. в точке окончания ступени на дислокации её скорость роста равна 0. В процессе спирального роста новый слой "накручивается" сам на себя вокруг точки выхода дислокации и на поверхности возникает пологий (вицинальный) холмик роста. Часто холмики образуются группой дислокаций, суммарный вектор Бюргерса к-рых имеет в направлении нормали к поверхности составляющую Ь , равную неск. параметрам а решётки. Точки выхода этих дислокаций могут занимать на поверхности некоторую область (с периметром 2L , рис. 9, а, в) . В этом случае склон кругового вицинального холмика образует с сингулярной гранью угол с тангенсом р =b /(19r c +2h ) (рис. 9,б ). Наклоны холмиков измеряютсяметодами оптич. (рис. 10), методом цветов тонких пластинок, а иногда непосредственно визуализацией ступеней.

Рис. 9. Двухзаходная спираль, образующая вицинальный холмик вокруг точек выхода на поверхность двух дислокаций: о) общий вид холмика; б) его сечение плоскостью, перпендикулярной грани и проходящей через точки выхода дислокаций; в) спираль на грани (100) синтетического алмаза.

Рис. 10. Интерференционные полосы от вицинального холмика на грани призмы кристалла ADP (рост из водного раствора).

Радиус двумерного критяч. зародыша пропорционален линейной энергии ступени и обратно пропорционален Т . Поэтому с увеличением Т крутизна холмика р линейно увеличивается при малых Т и стремится к насыщению при больших (при L 0). Соответственно, нормальная скорость роста R квадратично увеличивается с пересыщением при малых переохлаждениях и линейно - при больших (рис. 11). Вариации вектора Бюргсрса и протяжённость L дислокац. источника определяют разброс значений скорости роста кристаллографически идентичных граней (или одной и той же грани) в одинаковых условиях. В процессе роста грани точка выхода не перпендикулярной ей дислокации смещается и может достигнуть одного из рёбер. После этого ступень исчезает. Дальше К. идёт лишь путём двумерного зарождения, и скорость роста при малых переохлаждениях падает (по крайней мере в неск. раз при К. из расплава и на неск. порядков при К. из раствора). Из-за относительно малых значений линейной энергии ступеней на границе кристалл - расплав и отсутствия проблемы доставки кристаллизующегося вещества , и Л на неск. порядков выше, чем для К. из растворов и газовой фазы.

Ввиду малой плотности газовой фазы послойная К. из неё идёт в осн. не прямым попаданием частиц на ступени, а за счёт частиц, адсорбированных на атомно-гладких "террасах" между ступенями. За время между моментами прилипания к поверхности и такая частица совершает случайные блуждания по поверхности и уходит от точки прилипания на расстояние порядка ср. пробега l s . Поэтому достичь ступени могут лишь частицы, адсорбировавшиеся вокруг неё в полосе шириной Большинство частиц, падающих на поверхность с малой плотностью ступеней, испаряются - коэф. конденсации для таких поверхностей мал. Он приближается к 1 при большой плотности ступеней, т. е. при значит. пересыщениях. По той же причине скорость К. из газовой фазы даже на одной дислокации квадратично увеличивается с пересыщением при малых пересыщениях и линейно - при больших. При конденсации молекулярных пучков ступени образуются путём двумерного зарождения в местах, где пересыщение в адсорбционном слое достигает критического, и потому ср. расстояние между ступенями определяется длиной пробега адсор-биров. частиц.

Подвод вещества к растущей поверхности и отвод от неё теплоты К. ограничивает скорость К., когда эти процессы протекают медленнее поверхностных. Такой диффузионный режим типичен для К. из расплавов и неперемешиваемых растворов. Высокая скорость К. из расплава лежит в основе всех широко используемых методов выращивания монокристаллов, в к-рых скорость К. задаётся механич. движением кристалла относительно независимо формируемого теплового поля. Кинетич. режим К., когда скорость К. лимитируется поверхностными процессами, характерен для К. из перемешиваемых растворов, из газовой фазы и роста из перемешиваемого расплава кристаллов с высокой энтропией плавления.

Рис. 11. Наклоны р вицинальных холмиков, образованных двумя разными дислокационными источниками, и задаваемые ими скорости роста грани R в зависимости от пересыщения .

Формы роста кристаллов (габитус) определяются анизотропией скорости К. и условиями тепло- и массопереноса. Кристаллы с шероховатыми поверхностями имеют обычно округлую форму. Атомно-гладкие поверхности проявляются в виде граней. Стационарная форма кристаллич. многогранника такова, что расстояние от центра до каждой грани пропорционально её скорости роста. В результате кристалл оказывается образованным гранями с мин. скоростями роста (грани с большими скоростями постепенно уменьшаются и исчезают). Они параллельны плоскостям с наиб. плотной упаковкой и наиб. сильными связями в атомной структуре кристалла. Поэтому кристаллы с цепочечной и слоистой структурой имеют игольчатую или таблитчатую форму. Анизотропия скоростей роста и, следовательно, форма роста кристалла в разл. фазах зависят от состава, Т , Т и сильно меняются под действием поверхностно-активных примесей.

Из-за большой скорости поверхностных процессов К. переохлаждение Т на атомно-шероховатых поверхностях мало, т. е. Т=Т 0 (отсюда назв. изотермы). Плотноупакованные грани с простыми индексами в случае неметаллов часто остаются сингулярными и появляются на округлом фронте К. в виде плоского среза в форме круга, эллипса или кольца (рис. 12, а) в зависимости от формы изотермы К. Темп-ра вдоль такой грани не постоянна и достигает минимума в точках, наиб. удалённых от изотермы Т=Т 0 . В этих точках наивысшего переохлаждения генерируются слои, определяющие скорость роста грани. Поэтому стационарный размер грани тем больше, чем большее Т нужно для её роста со скоростью, равной скорости округлого фронта К. в направлении вытягивания кристалла. Шероховатые и гранные поверхности захватывают разные кол-ва примесей, и кристалл с сосуществующими гранными и шероховатыми формами вырастает неоднородным (рис. 12, б) .

Рис. 12. Образование плоской грани на округлом фронте кристалла (кристалл вытягивается из расплава): а - осевое сечение кристалла с фронтом кристаллизации, вогнутым в сторону кристалла в центре и плоским по периферии; б -продольное сечение кристалла Si (периферич. область обогащена примесью).

Если Т в расплаве убывает по мере удаления от фронта К., то фронт неустойчив: случайно возникший на нём выступ попадает в область большего переохлаждения, скорость роста вершины выступа становится ещё больше и т. д. В результате плоский фронт распадается на прилегающие друг к другу пластинчатые или игольчатые кристаллы - в сечении, параллельном фронту, возникает полосчатая или ячеистая структура. Ячейки характерны для больших градиентов темп-ры и имеют обычно гексагональную форму независимо от симметрии кристалла (рис. 13). Неустойчивость не совместима с выращиванием совершенных монокристаллов, т. к. ведёт к захвату включений маточной среды. Сферич. кристалл, растущий в переохлаждённом расплаве или растворе, сохраняет свою форму, пока его радиус не достигнет критич. значения, зависящего от радиуса критич. зародыша и скорости поверхностных процессов К. В дальнейшем развиваются выступы, и кристалл приобретает скелетную (рис. 14, а, б )или дендритную форму (рис. 14, в , г ). Название последней связывается с появлением вторичных ветвей после достижения первичным выступом критич. длины.

Рис. 13. Схема ячеистой структуры фронта кристаллизации.

Рис. 14. Исходный округлый кристалл циклогексанола в расплаве (а ), начальная стадия роста скелетного кристалла (б ), дендрит (в ), дендрит при большом переохлаждении (г ).

Примесь, отталкиваемая фронтом К. из расплава, скапливается перед ним и, меняя равновесную темп-ру К., вызывает т. н. концентрац. переохлаждение, увеличивающееся по мере удаления от фронта. Если равновесная темп-pa в расплаве увеличивается с расстоянием от фронта быстрее, чем истинная, то возникает концентрационная неустойчивость. Она исчезает при достаточно высоких отношениях градиента темп-ры на фронте К. к его скорости.

Фронт К. из раствора всегда неустойчив, т. к. пересыщениеувеличивается по мере удаления от растущей поверхности. Для огранённых кристаллов характерно большое пересыщение около вершин и рёбер, причём перепад увеличивается с размером грани. При достаточно больших пересыще-нии и размере грани вершины становятся ведущими источниками ступеней роста, а в центр. частях граней возникают провалы - начинается скелетный рост (рис. 15). Ему способствуют нек-рые примеси. Неустойчивость К. из растворов подавляется интенсивным перемешиванием, снижением пересыщения, а иногда введением примесей.

Рис. 15. Скелетный кристалл шпинели.

Захват примесей. Отношение концентраций примеси в кристалле и исходном веществе наз. коэф. захвата К . При К<1 К. ведёт к очистке от примеси кристалла, при К>1 - к очистке исходной среды, К=1 соответствует сохранению концентрации. Коэф. захвата разными гранями различны и не совпадают с термоди-намич. равновесными, определяемыми диаграммой состояния. Поэтому состав кристалла отклоняется от термодинамически равновесного. Так, при лазерной или электронной импульсной рекристаллизации тонких приповерхностных слоев Si со скоростями К. до неск. м/с концентрация примесей As, Sb, In, Bi в кристалле Si превосходит равновесную в 3-600 раз, причём подавляющее большинство примесных атомов находится в узлах решётки. Это связано, во-первых, со статистич. отбором: каждый узел решётки при К. окончательно заполняется тем или иным атомом после множества попыток (от 10 6 -10 7 при скоростях 10 -3 см/с и до 10 при скоростях м/с). Во-вторых, в условиях быстрой К. не успевает протекать диффузия в расплаве.

Неравновесный захват примеси при послойном росте связан со статистич. отбором на ступенях, а также с тем, что даже равновесная концентрация примеси в поверхностном слое кристалла и торце ступени заметно отличается от объёмной. При достаточно быстром отложении слоев следующий слой замуровывает предыдущий вместе с содержащейся в нём примесью. В результате каждая грань захватывает примесь в кол-ве, отвечающем концентрации в её поверхностном слое, и кристалл оказывается сложенным из секторов роста разных граней, с разл. концентрациями примесей и др. дефектов - возникает т. н. секториальное строение кристалла (рис. 16). Количество примеси, захватываемое при движении ступени по грани, зависит от ориентации этой ступени. Поэтому сектор роста данной грани, в свою очередь, разбивается на области, отложенные вициналями разной ориентации с разным содержанием примеси (вицинальная секториальность, рис. 17).

Темп-pa и концентрация примеси на фронте К. из расплава флуктуируют из-за конвекции расплава и вращения кристалла и тигля в обычно слегка несимметричном тепловом поле. Соответствующие положения фронта К. отпечатываются в кристалле в виде полос (зонар-ное строение, рис. 16). Флуктуации темп-ры могут быть столь сильны, что рост кристалла сменяется плавлением и ср. скорость оказывается на порядок меньше мгновенной. Интенсивность конвекции и амплитуда полосчатости уменьшаются при выращивании кристаллов в невесомости.

Рис. 16. Секториальное и зонарное строение кристалла алюмокалиевых квасцов.

Рис. 17. Вицинальный холмик, образованный на грани ступенями трёх разных ориентации вокруг краевой дислокации D(a) . Разные склоны холмика захватывают разные количества примеси (б ).

Образование дефектов . Посторонние газы, растворимые в растворах и расплавах лучше, чем в кристаллах, выделяются на фронте К. Пузырьки газа захватываются растущим кристаллом, если они превышают критич. размер, убывающий с увеличением скорости роста (аналогично захватываются твёрдые частицы). При К. в невесомости конвективный отвод пузырьков от фронта К. затруднён и кристалл обогащается газовыми включениями. Специально создавая пузырьки, получают пеноматериалы. Реальные кристаллы всегда имеют зонарно и секториально распределённые примеси, к-рые изменяют параметр решётки, что вызывает внутр. напряжения, дислокации и трещины. Последние возникают также из-за несоответствия параметров решёток затравки (подложки) и нарастающего на ней кристалла. Источниками внутр. напряжений и дислокаций являются также включения маточной среды и посторонних частиц.

При К. из расплава дислокации возникают из-за термоупругих напряжений, вызванных нелинейным распределением темп-ры; при охлаждении уже выросших частей кристалла снаружи; при линейном распределении темп-ры вдоль нормали к достаточно протяжённому фронту К., если свободный температурный изгиб кристалла невозможен; наследованием из затравки. Поэтому выращивание бездислокационных кристаллов Si, GaAs, IP начинают с затравок малого диаметра и ведут в максимально однородном температурном ноле. Кристаллы могут содержать петли дислокаций размером меньше 1 мкм. Петли образуются как контуры дискообразных скоплений (кластеров) межузельных атомов (или вакансий), возникших в результате распада пересыщенного твёрдого раствора при охлаждении выросшего кристалла. Атомы примеси могут быть центрами зарождения кластеров.

Массовая К . При определ. условиях возможен одноврем. рост множества кристаллов. Спонтанное массовое появление зародышей и их рост происходят, напр., при затвердевании отливок металлов. Кристаллы зарождаются прежде всего на охлаждаемых стенках изложницы, куда заливается перегретый металл. Зародыши на стенках ориентированы хаотично, однако в процессе роста "выживают" те из них, у к-рых направление макс. скорости роста перпендикулярно стенке (геометрич. отбор кристаллов). В результате у поверхности возникает т.н. столбчатая зона, состоящая из узких кристаллов, вытянутых вдоль нормали к поверхности.

Массовая К. в растворах начинается либо на спонтанно возникших зародышах, либо на специально введённых затравках. Сталкиваясь в перемешиваемом растворе между собой, со стенками сосуда и мешалкой, кристаллики разрушаются и дают начало новым центрам К. (вторичное зарождение). Причиной вторичного зарождения могут быть также мелкие обломки нависающих над гранью слоев, "запечатывающих" плоские параллельные грани, включения маточного раствора. В металлургии используют сильные конвективные потоки, обламывающие дендритные кристаллы и разносящие центры К. по всему объёму, иногда применяют УЗ-дробление растущих кристаллов. Массовой К. очищают вещества от примеси (К<1). Массовая К. из газовой фазы (в т. ч. из плазмы) используется для получения ультрадисперсных порошков с размерами кристалликов до 10 -6 см и менее. Необходимые для этого высокие переохлаждения достигаются резким охлаждением пара смеси химически реагирующих газов или плазмы. Известен способ массовой К. капель, кристаллизующихся во время падения в охлаждаемом газе.

Лит.: Выращивание кристаллов из растворов, 2 изд., Л., 1983; Леммлейн Г. Г., Морфология и генезис кристаллов, М., 1973; Лодиз Р. А., Паркер Р. Л., Рост монокристаллов, пер. с англ., М., 1974; Проблемы современной кристаллографии, М., 1975; Современная кристаллография, т. 3, М., 1980; Чернов А. А., Физика кристаллизации, М., 1983; Гегузин Я. Е., Kаганевский Ю. С., Диффузионные процессы на поверхности кристалла, М., 1984; Морохов И. Д., Трусов Л. И., Лаповок В. Н., Физические явления в ультрадисперсных средах, М., 1984; Скрипов В. П., Коверда В. П., Спонтанная кристаллизация переохлажденных жидкостей, М., 1984.

В обыденной жизни все мы то и дело сталкиваемся с явлениями, сопровождающими процессы перехода веществ из одного агрегатного состояния в другое. И наиболее часто нам приходится наблюдать подобные явления на примере одного из самых распространенных химических соединений - всем хорошо знакомой и привычной воды. Из статьи вы узнаете, как происходит превращение жидкой воды в твердый лед - процесс, называемый кристаллизацией воды - и какими особенностями характеризуется этот переход.

Что такое фазовый переход?

Всем известно, что в природе существует три основных агрегатных состояния (фазы) вещества: твердое, жидкое и газообразное. Часто к ним добавляют и четвертое состояние - плазму (благодаря особенностям, отличающим ее от газов). Однако при переходе от газа к плазме нет характерной резкой границы, и свойства ее определяются не столько взаимоотношением между частицами вещества (молекулами и атомами), сколько состоянием самих атомов.

Все вещества, переходя из одного состояния в другое, при обычных условиях резко, скачкообразно меняют свои свойства (исключение составляют некоторые сверхкритические состояния, но здесь мы их касаться не будем). Такое превращение и есть точнее, одна из его разновидностей. Происходит оно при определенном сочетании физических параметров (температуры и давления), называемом точкой фазового перехода.

Превращение жидкости в газ - обратное явление - конденсация. Переход вещества из твердого состояния в жидкое - плавление, если же процесс идет в противоположном направлении, то он именуется кристаллизацией. Твердое тело может сразу превратиться в газ и, наоборот - в этих случаях говорят о сублимации и десублимации.

При кристаллизации вода превращается в лед и наглядно демонстрирует, насколько меняются при этом ее физические свойства. Остановимся на некоторых важных подробностях этого явления.

Понятие о кристаллизации

Когда жидкость при охлаждении затвердевает, изменяется характер взаимодействия и расположения частиц вещества. Уменьшается кинетическая энергия беспорядочного теплового движения составляющих его частиц, и они начинают образовывать между собой устойчивые связи. Когда благодаря этим связям молекулы (или атомы) выстраиваются регулярным, упорядоченным образом, формируется кристаллическая структура твердого вещества.

Кристаллизация не охватывает одновременно весь объем охлаждаемой жидкости, а начинается с образования мелких кристалликов. Это так называемые центры кристаллизации. Они разрастаются послойно, ступенчато, путем присоединения все новых молекул или атомов вещества вдоль растущего слоя.

Условия кристаллизации

Кристаллизация требует охлаждения жидкости до некоторой температуры (она же одновременно является и точкой плавления). Так, температура кристаллизации воды при нормальных условиях - 0 °C.

Для каждого вещества кристаллизация характеризуется величиной скрытой теплоты. Это количество энергии, выделяемое при данном процессе (а при обратном - соответственно поглощаемой энергии). Удельная теплота кристаллизации воды - это скрытая теплота, выделяемая одним килограммом воды при 0 °C. Из всех веществ у воды она одна из самых высоких и составляет около 330 кДж/кг. Столь большая величина обусловлена особенностями структуры, определяющими параметры кристаллизации воды. Формулой для расчета скрытой теплоты мы воспользуемся ниже, после рассмотрения этих особенностей.

Для компенсации скрытой теплоты необходимо переохладить жидкость, чтобы начался рост кристаллов. Степень переохлаждения оказывает существенное влияние на количество центров кристаллизации и на скорость их разрастания. Пока протекает процесс, дальнейшее охлаждение температуры вещества не меняет.

Молекула воды

Чтобы полнее представлять себе, каким образом происходит кристаллизация воды, необходимо знать, как устроена молекула этого химического соединения, ведь строение молекулы обусловливает особенности связей, которые она образует.

В молекуле воды объединены один атом кислорода и два атома водорода. Они формируют тупоугольный равнобедренный треугольник, в котором атом кислорода расположен в вершине тупого угла величиной 104,45°. При этом кислород сильно оттягивает электронные облака в свою сторону, так что молекула представляет собой Заряды в нем распределены по вершинам воображаемой четырехгранной пирамиды - тетраэдра с внутренними углами приблизительно 109°. Вследствие этого молекула может образовывать по четыре водородных (протонных) связи, что, разумеется, влияет на свойства воды.

Особенности структуры жидкой воды и льда

Способность молекулы воды к формированию протонных связей проявляется и в жидком, и в твердом состоянии. Когда вода - жидкость, связи эти достаточно неустойчивы, легко разрушаются, но и постоянно образуются снова. Благодаря их наличию молекулы воды связаны между собой сильнее, чем частицы других жидкостей. Ассоциируясь, они формируют особые структуры - кластеры. По этой причине фазовые точки воды смещены в сторону более высоких температур, ведь для разрушения таких дополнительных ассоциатов тоже нужна энергия. Причем энергия довольно значительная: не будь водородных связей и кластеров, температура кристаллизации воды (а также ее плавления) составила бы -100 °C, а кипения +80 °C.

Строение кластеров идентично льда. Связываясь каждая с четырьмя соседками, молекулы воды выстраивают ажурную кристаллическую структуру с основой в форме шестиугольника. В отличие от жидкой воды, где микрокристаллы - кластеры - непостоянны и подвижны из-за теплового движения молекул, при образовании льда они перестраиваются устойчивым и регулярным образом. Водородные связи фиксируют взаимное расположение узлов кристаллической решетки, и в результате расстояние между молекулами становится несколько больше, чем в жидкой фазе. Этим обстоятельством объясняется скачок плотности воды при ее кристаллизации - плотность падает с почти 1 г/см 3 до примерно 0,92 г/см 3 .

О скрытой теплоте

Особенности молекулярного строения воды весьма серьезно отражаются на ее свойствах. Это видно, в частности, по большой удельной теплоте кристаллизации воды. Она обусловлена именно наличием протонных связей, отличающим воду от прочих соединений, образующих молекулярные кристаллы. Установлено, что энергия водородной связи в воде составляет около 20 кДж на моль, то есть на 18 г. Значительная часть этих связей устанавливается «в массовом порядке» при замерзании воды - вот откуда берется такая большая отдача энергии.

Приведем несложный расчет. Пусть при кристаллизации воды выделилось 1650 кДж энергии. Это немало: эквивалентную энергию можно получить, например, при взрыве шести гранат-лимонок Ф-1. Подсчитаем массу подвергшейся кристаллизации воды. Формула, связывающая количество скрытой теплоты Q, массу m и удельную теплоту кристаллизации λ, очень проста: Q = - λ * m. Знак минуса означает просто, что тепло отдается физической системой. Подставляя известные величины, получим: m = 1650/330 = 5 (кг). Всего 5 литров нужно, чтобы целых 1650 кДж энергии выделилось при кристаллизации воды! Разумеется, энергия отдается не мгновенно - процесс длится в течение достаточно продолжительного времени, и теплота рассеивается.

Об этом свойстве воды прекрасно знают, например, многие птицы, и используют его, чтобы погреться возле замерзающей воды озер и рек, в таких местах температура воздуха на несколько градусов выше.

Кристаллизация растворов

Вода - замечательный растворитель. Вещества, растворенные в ней, сдвигают точку кристаллизации, как правило, в сторону понижения. Чем выше концентрация раствора, тем при более низкой температуре будет происходить замерзание. Ярким примером служит морская вода, в которой растворено много различных солей. Их концентрация в воде океанов составляет 35 промилле, и кристаллизуется такая вода при -1,9 °C. Соленость воды в разных морях сильно отличается, поэтому и точка замерзания бывает различной. Так, вода Балтики имеет соленость не более 8 промилле, и температура кристаллизации ее близка к 0 °C. Минерализованные грунтовые воды также замерзают при температурах ниже нуля. Следует иметь в виду, что речь всегда идет только о кристаллизации воды: морской лед практически всегда пресный, в крайнем случае слабосоленый.

Водные растворы различных спиртов тоже отличаются пониженной температурой замерзания, причем кристаллизация их протекает не скачкообразно, а с некоторым интервалом температур. Например, 40-процентный спирт начинает замерзать при -22,5 °C, а окончательно кристаллизуется при -29,5 °C.

А вот раствор такой щелочи, как едкий натр NaOH или каустик являет собой интересное исключение: ему свойственна повышенная температура кристаллизации.

Как замерзает чистая вода?

В дистиллированной воде кластерная структура нарушена вследствие испарения при дистилляции, и количество водородных связей между молекулами такой воды очень мало. Кроме того, в такой воде отсутствуют примеси типа взвешенных микроскопических пылинок, пузырьков и т. п., представляющих собой дополнительные центры кристаллообразования. По этой причине точка кристаллизации дистиллированной воды понижена до -42 °C.

Можно переохладить дистиллированную воду даже до -70 °C. В подобном состоянии переохлажденная вода способна кристаллизоваться практически мгновенно по всему объему при малейшем сотрясении или попадании ничтожной примеси.

Парадоксальная горячая вода

Удивительный факт - горячая вода переходит в кристаллическое состояние быстрее, чем холодная - получил название «эффекта Мпембы» в честь танзанийского школьника, обнаружившего этот парадокс. Точнее, знали о нем еще в древности, однако, не найдя объяснения, натурфилософы и естествоиспытатели в конце концов перестали обращать внимание на загадочный феномен.

В 1963 году Эрасто Мпемба был удивлен тем, что подогретая смесь для мороженого застывает быстрее, чем холодная. А в 1969 году интригующее явление получило подтверждение уже в физическом эксперименте (кстати, с участием самого Мпембы). Эффект объясняют целым комплексом причин:

  • большее количество центров кристаллизации, таких как воздушные пузырьки;
  • высокая теплоотдача горячей воды;
  • высокий темп испарения, влекущего за собой уменьшение объема жидкости.

Давление как фактор кристаллизации

Взаимосвязь давления и температуры как ключевых величин, влияющих на процесс кристаллизации воды, наглядно отражена на фазовой диаграмме. Из нее видно, что при повышении давления температура фазового перехода воды из жидкого в твердое состояние чрезвычайно медленно понижается. Естественно, справедливо и обратное: чем давление ниже, тем более высокая температура нужна для образования льда, и растет она точно так же медленно. Чтобы добиться условий, при которых вода (не дистиллированная!) способна кристаллизоваться в обычный лед Ih при минимально возможной температуре -22 °C, давление нужно увеличить до 2085 атмосфер.

Максимальная температура кристаллизации соответствует следующему сочетанию условий, называемому тройной точкой воды: 0,006 атмосфер и 0,01 °C. При таких параметрах точки кристаллизации-плавления и конденсации-кипения совпадают, и все три агрегатных состояния воды сосуществуют равновесно (в отсутствие других веществ).

Множество типов льда

В настоящее время известно около 20 модификаций твердотельного состояния воды - от аморфного до льда XVII. Все они, кроме обычного льда Ih, требуют экзотических для Земли условий кристаллизации, и далеко не все стабильны. Только лед Ic очень редко обнаруживается в верхних слоях земной атмосферы, но его формирование связано не с замерзанием воды, так как он образуется из водяных паров при чрезвычайно низких температурах. В Антарктиде был найден лед XI, однако эта модификация - производная обычного льда.

Путем кристаллизации воды при экстремально высоких давлениях можно получить такие модификации льда, как III, V, VI, и с одновременным повышением температуры - лед VII. Вполне вероятно, что какие-либо из них могут образовываться в условиях, необычных для нашей планеты, на других телах Солнечной системы: на Уране, Нептуне или крупных спутниках планет-гигантов. Надо думать, будущие эксперименты и теоретические исследования малоизученных пока свойств этих льдов, а также особенности процессов их кристаллизации, прояснят этот вопрос и откроют еще много нового.

Переход вещества из твердого кристаллического состояния в жидкое называется плавлением . Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.

Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.

Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.

На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K ). На нем по горизонтальной оси отложено время, а по вертикальной — температура.

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени t нач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает го-реть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный учас-ток графика ВС. Только после того как весь лед расплавится и превратится в воду , температура снова начинает подниматься (участок CD ). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой по-местить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE ). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (гори-зонтальный участок EF ). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK ).

Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия моле-кул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD ) означает увеличение кинетической энер-гии молекул воды вследствие подводимого горелкой тепла.

При охлаждении воды (участок DE ) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF ) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвер-девании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, пре-вращаясь в жидкость (участок ВС ). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.

Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром , молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С . Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.

Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Неда-ром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.

Плавление аморфных веществ.

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача-ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы-шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления.

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты , которое выделяется при кристалли-зации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер-гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж .

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m , следует пользоваться той же формулой, но со знаком «минус»:

Теплота сгорания.

Теплота сгорания (или теплотворная способность , калорийность ) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обыч-ное топливо (уголь, нефть, бензин) содержит углерод . При горении атомы углерода соединяются с атомами кислорода , содержащегося в воздухе, в результате чего образуются молекулы углекислого газа . Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина , показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты Q , выделяющееся при сгорании m кг топлива, определяют по формуле:

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.