Форма и характеристики гиперболы. Примеры задач на построение гиперболы

2.4. Многогранные углы

В соответствии с тематическим планированием, на данный параграф отводится один час учебного времени (один урок).

1. Проверка домашнего задания (5 мин.)

2. Выполняем этап работы с информацией (20 –25 мин.)

Технологически этап ориентирован на преимущественное формирование познавательных универсальных учебных действий (умения формулировать вопросы к тексту, самостоятельно формулировать ответы с опорой на текст).

В этом параграфе находит дальнейшее развитие понятие трёхгранного угла. Появляется многогранный угол, и в связи с этим появляется возможность уточнить понятие многоугольника.

В связи с многогранными углами ещё раз обсуждается проблема выпуклости фигур. На примере многогранных углов мы дополнительно уточняем представления учащихся о выпуклых и невыпуклых фигурах (многоугольники, многогранные углы, произвольные фигуры).

Для многогранных углов полезно сформулировать свойства их плоских углов , аналогичные соответственным свойствам плоских углов трёхгранного угла (без доказательства):

1. Каждый плоский угол многогранного угла меньше суммы остальных плоских углов.

2. Сумма всех плоских углов многогранного угла меньше 360º.

3. Выполняем этап развития умений (15 20 мин.)

Этап ориентирован на выработку

познавательных УУД – формирование умений:

– по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

– по использованию доказательной математической речи;

– по работе с информацией, в том числе и с различными математическими текстами;

Регулятивных УУД – формирование умений ставить личные цели деятельности, планировать свою работу, действовать по плану, оценивать полученные результаты;

коммуникативных УУД – формирование умений совместно с другими детьми в группе находить решение задачи и оценивать полученные результаты.

Обсуждаем, что это этап разъяснения всего непонятного, а также тренинга. Устанавливаем цели работы на данном этапе, добиваясь при этом от детей личного целеполагания: разъяснить для себя всё, что недостаточно хорошо понятно, потренироваться в решении тех задач, которые вызывают затруднения.

Здесь можно поработать с заданиями 34, 35 на стр. 29–30.

Предлагаем также несколько дополнительных задач.

1) Многогранный угол имеет n граней. Сколько у него рёбер?

Ответ: n рёбер.

2) Можно ли изготовить модель четырёхгранного угла с плоскими углами: 1) 80°, 130°, 70°, 100°; 2) 45°, 60°, 120°, 90°; 3) 80°, 80°, 80°, 80°? Если модель получилась, то какого угла: выпуклого или невыпуклого?

Ответ: 1) можно; 2) можно как выпуклого, так и невыпуклого; 3) можно, только выпуклого.

3) Опираясь на известное вам свойство плоских углов трёхгранного угла, докажите, что каждый плоский угол четырёхгранного угла меньше суммы трёх остальных его плоских углов.

Указание: Через два противолежащих ребра нужно провести плоскость и рассмотреть получившиеся трёхгранные углы. Доказательство справедливо только для выпуклых углов.

4) В четырёхгранном угле все плоские углы равны. Докажите, что они острые.

Решение: 1. Пусть α – градусная мера плоского угла.

2. Тогда 4α < 360° (по свойству суммы плоских углов выпуклого многогранного угла).

3. Следовательно, α < 90°, т. е. α – острый угол.

5) В выпуклом многогранном угле каждый из плоских углов равен а) 30°; б) 45°; в) 80°; г) 150°. Сколько граней может иметь такой многогранный угол?

Ответ: а) 3 ≤ n < 12; б) 3 ≤ n < 8; в) 3 ≤ n < 4,5; г) 3 ≤ n < 2,4 (такого многогранного угла не существует). При подсчетах нужно учитывать, что n – число целое.

6) В выпуклом многогранном угле все плоские углы равны между собой. Многогранный угол имеет а) 6; б) 8; в) 10 граней. Чему могут быть равны плоские углы данного многогранного угла?

Рассуждаем так же, как и при решении задачи 5, n α < 360°, где n – количество граней многогранного угла, α– градусная мера плоского угла; 0 ≤ α < 360°/ n .

Ответ: а) 0 ≤ α< 60°; б) 0 ≤ α< 45°; в) 0 ≤ α< 36°.

По истечении времени, отведённого для выполнения заданий, результаты работы выносятся педагогом на доску и обсуждаются учащимися. Подводится итог работы, происходит самооценка, связанная с определением того, что ясно и получается и того, что не ясно и не получается.

4. Формулируем домашнее задание по различным уровням сложности – в зависимости от результатов работы на предыдущем этапе.

III уровень

3.1. Гипербола касается прямых 5x – 6y – 16 = 0, 13x – 10y – – 48 = 0. Запишите уравнение гиперболы при условии, что ее оси совпадают с осями координат.

3.2. Составьте уравнения касательных к гиперболе

1) проходящих через точку A (4, 1), B (5, 2) и C (5, 6);

2) параллельных прямой 10x – 3y + 9 = 0;

3) перпендикулярных прямой 10x – 3y + 9 = 0.

Параболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры параболы:

Точка F (p /2, 0) называется фокусом параболы, величина p параметром , точка О (0, 0) – вершиной . При этом прямая OF , относительно которой парабола симметрична, задает ось этой кривой.


Величина где M (x , y ) – произвольная точка параболы, называется фокальным радиусом , прямая D : x = –p /2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетом параболы.

Основное характеристическое свойство параболы : все точки параболы равноудалены от директрисы и фокуса (рис. 24).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 25).:


Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1. Определить параметры и форму параболы по ее каноническому уравнению:

Решение. 1. Уравнение y 2 = –8x определяет параболу с вершиной в точке О Оx . Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px , находим: 2p = 8, p = 4, p /2 = 2. Следовательно, фокус находится в точке F (–2; 0), уравнение директрисы D : x = 2 (рис. 26).


2. Уравнение x 2 = –4y задает параболу с вершиной в точке O (0; 0), симметричную относительно оси Oy . Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py , находим: 2p = 4, p = 2, p /2 = 1. Следовательно, фокус находится в точке F (0; –1), уравнение директрисы D : y = 1 (рис. 27).


Пример 2. Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать чертеж.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

x 2 + 8x – 16y – 32 =0;

(x + 4) 2 – 16 – 16y – 32 =0;

(x + 4) 2 – 16y – 48 =0;

(x + 4) 2 – 16(y + 3).

В результате получим

(x + 4) 2 = 16(y + 3).

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх (), осью x = –4. Фокус находится в точке F (–4; –3 + p /2), т. е. F (–4; 1) Директриса D задается уравнением y = –3 – p /2 или y = –7 (рис. 28).




Пример 4. Составить уравнение параболы с вершиной в точке V (3; –2) и фокусом в точке F (1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p /2 = 3 – 1 = 2, p = 4. Значит, искомое уравнение

(y + 2) 2 = –2 · 4(x – 3) или (y + 2) 2 = = –8(x – 3).

Задания для самостоятельного решения

I уровень

1.1. Определите параметры параболы и построить ее:

1) y 2 = 2x ; 2) y 2 = –3x ;

3) x 2 = 6y ; 4) x 2 = –y .

1.2. Напишите уравнение параболы с вершиной в начале координат, если известно, что:

1) парабола расположена в левой полуплоскости симметрично относительно оси Ox и p = 4;

2) парабола расположена симметрично относительно оси Oy и проходит через точку M (4; –2).

3) директриса задана уравнением 3y + 4 = 0.

1.3. Составьте уравнение кривой, все точки которой равноудалены от точки (2; 0) и прямой x = –2.

II уровень

2.1. Определить тип и параметры кривой.

Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> , тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> . Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> , при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> . Аналогично, так как при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> .

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и . Ексцентриситет ; асмптоты ; Строим параболу. (см. рис. 3)

Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: Июнь 17, 2017 автором: Научные Статьи.Ру

Глава III. Кривые второго порядка

§ 43. Уравнения эллипса, гиперболы и параболы
в других (неканонических) системах координат

Применим выведенные в § 13 формулы перехода от одной прямоугольной декартовой системы координат к другой для изучения неканонических уравнений гиперболы, параболы, эллипса.

1) Рассмотрим уравнение

ху = а , а > 0. (1)

Из школьного курса известно, что уравнение (1) называется уравнением гиперболы и имеет график, изображенный на рис. 121.

Посмотрим, каким будет уравнение этой гиперболы в другой системе координат, в системе, которая получается из исходной поворотом базисных векторов на угол α = 45°.

В данном случае старые координаты х и у выражаются через новые х " и у " следующим образом:

Заменяя в уравнении (1) старые переменные новыми, получаем

√ 2 / 2 (х " - у ") √ 2 / 2 (х " + у ") = a

х " 2 - у " 2 = 2а . (2)

Мы получили каноническое уравнение равносторонней гиперболы. Следовательно, уравнение (1) задает равностороннюю гиперболу. Старые оси координат являются асимптотами гиперболы, поэтому уравнение (1) называют уравнением гиперболы, отнесенным к асимптотам (см. рис. 121). Сравнивая уравнения (1) и (2), видим, что действительная ось гиперболы, заданной уравнением (1), равна √2а .

Новая система координат О , i" , j" называется канонической, так как в ней уравнение гиперболы имеет канонический вид.

Уравнение ху = а, а < 0, приводится к каноническому виду аналогично. Для получения новых базисных векторов в этом случае следует повернуть старые базисные векторы на угол α = - 45°.

Задача 1. Дано каноническое уравнение равносторонней гиперболы х 2 - у 2 = 18. Написать ее уравнение, отнесенное к асимптотам.

Выполним поворот на угол α == -45°. Тогда старше координаты выражаются через новые по формулам

Подставив в данное уравнение значения х и у , получим

1 / 2 (х " - у ") 2 - 1 / 2 (х " + у ") 2 = 18

или после упрощения х"у" = 9.

2) Рассмотрим уравнение

y = αx 2 + βx + γ, α =/=0. (3)

Вам хорошо знакомо это уравнение и его график: парабола с осью, параллельной оси ординат. Записав уравнение (3) в виде

(4)

находим координаты вершины параболы

Перейдем к новой системе координат, направления осой которой совпадают с направлениями осей старой системы, а начало координат О" находится в вершине параболы. Точка О" имеет, следовательно, координаты (). Положив в формулах переноса

Так выражаются в данном случае старые координаты x и у через новые х" и у" . Заменяя в уравнении (4) старые координаты новыми, приходим к уравнению

y" = αx " 2 , α =/= 0.

Итак, если парабола в некоторой системе координат имеет уравнение (3), то всегда можно перейти к новой системе координат, в которой уравнение параболы будет иметь более простой вид: y" = αx " 2 , α =/= 0. Более того, всегда можно выбрать систему координат так, чтобы коэффициент в уравнении параболы был положителен. В самом деле, пусть α < 0, т. е. парабола расположена так, как показано на рис. 122.

Тогда в системе О", i", j" , которая получается из системы О", i", j" поворотом осей на угол α = 180°, уравнение параболы будет иметь вид y"" = - αx"" 2 . Полагая α 1 = - α, получаем y"" = α 1 x"" 2 , где α 1 > 0.

3) Пусть в некоторой системе координат парабола задана уравнением

y = αx 2 , α > 0. (5)

Перейдем к новой системе координат, которая получается из исходной поворотом базисных векторов на угол α = 90° (рис. 123).

Формулы поворота в этом случае принимают вид

Применяя в уравнении (5) старые координаты новыми, получаем

х" = αу" 2 или у" 2 = 1 / α х" .

Обозначим 1 / α через 2р , тогда

у" 2 = 2рх" .

Мы получили каноническое уравнение параболы. Таким образом, уравнением (5) задается парабола с фокальным параметром, равным 1 / 2α .

Из результатов, полученных в пункте 2), следует, что фокальный параметр параболы, заданной уравнением y = αx 2 + βx + γ, α =/=0 , равен 1 / 2 |α | .

Задача 2. Дано уравнение параболы y = 2x 2 + 6x + 7.

Привести его к каноническому виду. Найти расстояние от фокуса параболы до ее директрисы.

Выделим полный квадрат в правой части данного уравнения

у = 2(x 2 + 3х ) + 7 = 2(x + 3 / 2) 2 + 5 / 2 .

Координаты вершины параболы (- 3 / 2 ; 5 / 2).

Перейдем к новой системе координат, которая получается из исходной переносом начала координат в точку O" (- 3 / 2 ; 5 / 2) и поворотом базисных векторов на угол α = 90°
(рис. 124).

По формулам (3) § 13 получаем

Подставив эти значения х и у в уравнение параболы, получим

5 / 2 + x" =2(- 3 / 2 - y" + 3 / 2) 2 + 5 / 2

т. e. x" = 2y" 2 , или y" 2 = 1 / 2 x" .

Из полученного уравнения видно, что расстояние от фокуса параболы до директрисы (фокальный параметр) равно 1 / 4 .

4) Рассмотрим уравнение

(6)

Это уравнение похоже на каноническое уравнение эллипса, но не является таковым, так как в каноническом уравнении эллипса а > b.

Перейдем от системы координат хОу к системе х"Оу" , которая получается из исходной системы поворотом базисных векторов на угол α = 90°. Формулы поворота в этом случае имеют вид

Поэтому в новой системе данное уравнение запишется так:

Мы получили каноническое уравнение эллипса. Следовательно, уравнением (6) задается эллипс, большая ось которого лежит на оси Оу , малая на оси Ох . Фокусы такого эллипса расположены в точках F 1 (0; с ) и F 2 (0; -с ), где с = b 2 - a 2 (рис. 125).

Задача 3. Доказать, что кривая, заданная уравнением

25х 2 + 16y 2 -50х + 64y - 311 = 0,

является эллипсом. Найти его полуоси и координаты фокусов. Дать чертеж.

Преобразуем данное уравнение к виду:

25 (х - 1) 2 + 16 (у + 2) 2 = 400.

Oт системы координат хОу перейдем к системе х"О"у" , сохранив направление осей, а начало координат поместив и точку О" (1; -2). Тогда старые и новые координаты будут связаны формулами переноса

Поэтому в новой системе координат кривая имеет уравнение

25х" 2 + 16у" 2 = 400

Итак, данная кривая является эллипсом, полуоси которого равны 5 и 4. Полуфокусное расстояние с = √25-16 =3. Фокусы эллипса в новой системе имеют координаты (0; 3) и (0; -3). По формулам переноса находим их координаты в старой системе:
(1; 1) и (1; -5). Чертеж дан на рис. 126.

Задача 4. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 12, а другая ось принадлежит оси абсцисс и равна 8.

По условию задачи b = 6, а = 4, следовательно,

Задача 5. Написать уравнение эллипса, одна ось которого принадлежит оси ординат и равна 20, а расстояние между фокусами равно 16. Центр эллипса находится в точке
(0; 0).

Искомое уравнение эллипса можно записать в виде

Так как 2с = 16, 2b = 20, то с = 8, b = 10, а так как фокусы расположены на оси Оу , то
а 2 = b 2 - c 2 = 100 - 64 = 36 .Следовательно, эллипс имеет уравнение

Задача 6. Найти длины полуосей эллипса 25х 2 + 16у 2 = 400 и вычислить координаты его фокусов.

Запишем данное уравнение в виде

Следовательно, а 2 = 16, b 2 = 25 и с = b 2 - a 2 = √25-16 =3.
В результате имеем а = 4, b = 5, F 1 (0; 3),F 2 (0; - 3).