Когда изобрели электрический ток. Когда появилось электричество в мире: кто его изобрел? Становление теоретических основ электричества

Электричество было известно людям с самых давних времен. Правда практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н.Лодыгин изобрел первую в мире электрическую лампочку накаливания. Но знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы. Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.

А причина возникновения электричества заключается в том, что при трении заряд делится на положительные и отрицательные заряды. Соответственно, заряды с одним знаком отталкиваются друг от друга, а с разными - притягиваются. Двигаясь по металлической проволоке, которая является проводником, эти заряды и создают электричество.
Без электричества в наше время просто невозможно представить нормальную цивилизованную жизнь. Оно светит, греет, даёт нам возможность общаться на огромных расстояниях друг от друга и т. п. Электрический ток приводит в действие самые различные агрегаты и приборы - от маленького будильника до огромного прокатного стана. Поэтому если представить, что однажды электричество может исчезнуть одновременно на всей планете, жизнь человека резко изменит свое направление. Мы уже не можем обходиться без электрического тока, ведь он питает и заставляет работать практически все механизмы и приборы, придуманные человеком. И если посмотреть вокруг себя, то можно увидеть, что в любой квартире, хотя бы в одну из розеток будет воткнута штепсельная вилка, от которой идет провод в магнитофон, телевизор, микроволновую печь или в другие приборы, которые мы ежедневно используем дома или на работе.
Сегодня без электричества не сможет прожить ни одна цивилизованная страна. Каким же образом добывается такое огромное количество электроэнергии, которое может обеспечить потребности миллиардов людей, живущих на Земле?
Для этих целей созданы электростанции . На них при помощи генераторов и создаётся электроэнергия, которая затем передаётся на огромные расстояния по линиям электропередач. Электростанции бывают разных видов. Одни для получения электричества используют энергию воды, они называются гидроэлектростанции. Другие получают энергию от сгорания топлива (газа, дизельного топлива или угля). Это тепловые электростанции, которые вырабатывают не только электрический ток, но и могут одновременно нагревать воду, которая затем поступает в отопительные трубы, греющие помещения домов или цехов заводов. А есть ещё атомные электростанции, ветровые, приливные, солнечные и многие другие.
В гидроэлектростанции (ГЭС) поток воды вращает турбины генератора, который вырабатывает электроэнергию. В тепловых электростанциях (ТЭС) эта обязанность возложена на водяной пар, который образуется в результате нагрева воды от сгорания топлива. Водяной пар под очень большим давлением врывается в турбины генератора, где расположено множество вертящихся частей снабженных специальными лепестками, напоминающими пропеллеры самолета. Пар, проходя через лепестки, вращает рабочие агрегаты генератора, благодаря чему и вырабатывается электрический ток.
Похожий принцип используется и в атомной электростанции (АЭС), только там топливом служат радиоактивные материалы - уран и плутоний. Благодаря особым свойствам урана и плутония они выделяют очень большое количество тепла, которое используется для нагрева воды и добывания водяного пара. Потом нагретый пар поступает в турбину и происходит выработка электрического тока. Интересно, что всего десять граммов подобного топлива заменяет целый вагон угля.

В основном электростанции не работают сами по себе. Они связаны между собой линиями электропередач. С их помощью электроэнергия направляется туда, где она больше всего нужна. Линии электропередач протянулись по всей нашей необъятной стране, поэтому тот ток, который мы используем у себя дома может вырабатываться очень далеко, за сотни километров от нашей квартиры. Но где бы ни стояла электростанция, благодаря линиям электропередачи каждый человек сможет воткнуть вилку и розетку и включить любой необходимый ему прибор или устройство.

ЭЛЕКТРИЧЕСТВО

ЭЛЕКТРИЧЕСТВО , форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между зарядами описаны ЗАКОНОМ КУЛОНА. Когда заряды движутся в магнитном поле, они испытывают воздействие магнитной силы и в свою очередь создают противоположно направленное магнитное поле (ЗАКОНЫ ФАРАДЕЯ). Электричество и МАГНЕТИЗМ представляют собою различные аспекты одного и того же явления, ЭЛЕКТРОМАГНЕТИЗМА. Поток зарядов образует ЭЛЕКТРИЧЕСКИЙ ток, который в проводнике представляет собою поток отрицательно заряженных ЭЛЕКТРОНОВ. Для того, чтобы в ПРОВОДНИКЕ возник электрический ток, необходима ЭЛЕКТРОДВИЖУЩАЯ СИЛА или РАЗНОСТЬ ПОТЕНЦИАЛОВ между концами проводника. Ток, который движется только в одном направлении, называется постоянным. Такой ток создается, когда источником разности потенциалов является БАТАРЕЙКА. Ток, меняющий направление дважды за цикл, называется переменным. Источником такого тока являются центральные сети. Единицей измерения тока служит АМПЕР, единицей заряда - КУЛОН, ом - это единица сопротивления, а вольт - единица электродвижущей силы. Основными средствами для вычисления параметров электрической цепи являются ЗАКОН ОМА и ЗАКОНЫ КИРХГОФА (о суммировании величин напряжения и тока в цепи). см. также ЭЛЕКТРИЧЕСКИЙ ТОК , ЭЛЕКТРОНИКА .

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создает переменный ток во внешней цепи. Наличие индуктивности или емкости (либо того и другого вместе) приводит к смещению фазы (А) между напряжением V и током I. На рисунке показано, что емкость вызывала смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности no-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю (В). Такие трехфазные токи используют в короткозамк-нугых асинхронных электродвигателях с ротором (С). В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых (D) и открытых (Е) колебательных контурах. Высокочастотные электромаг нитные волны, используемые в некоторых системах коммуникации, ПРОИЗВОДЯТСЯ ТЭКИМ1 цепями.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ЭЛЕКТРИЧЕСТВО" в других словарях:

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

    ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

    Совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …

    - (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

    Лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 актиноэлектричество … Словарь синонимов

    ЭЛЕКТРИЧЕСТВО - в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

    электричество - (1) EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 - Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 - In… … Справочник технического переводчика

    ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Электричество - – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

    ЭЛЕКТРИЧЕСТВО - совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Многие пользуются электричеством, но далеко не многие знают в чём заключается его суть. Электричество, как явление природы, было и будет всегда. Но люди, в силу своих познавательных способностей, могут лишь отрывать те или иные явления. И в силу своих человеческих особенностей могут порой забывать, терять, скрывать знания о них. Суть электричества в наше время раскрывается в научных теориях тех учёных, которые в своё время вели усердную работу над познанием этой невидимой силы. В разные периоды были сделаны определённые открытия, в последствии порождающие новые вопросы, на которые были очередные попытки на них ответить.

Итак, суть электричества заключается в том, что существуют так называемые элементарные частицы такие как электроны и протоны, входящие в состав атомов и молекул различных веществ. Напомню, модель атома следующая (похожая на солнечную систему): внутри располагается ядро, состоящее из протонов и нейтронов.

Протоны имеют положительный заряд, который проявляет себя в виде силы (по средствам существующего поля вокруг частиц), действующие на другой заряд другой частицы отталкивая её или притягивая. Нейроны, как бы, нейтральны, с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.

Именно эти заряды (полевые силы, действующие друг на друга) и являются основой, сутью электричества, поскольку именно эта сила и порождает различные явления, связанные с проявлением электричества в мире. Когда суммарное количество положительного заряда протонов равно отрицательному заряду электронов, входящих в состав атома вещества, то в целом атом будет электрически нейтральным, по отношению к другим атомам. Но вот если в силу тех или иных причин в атоме начнёт преобладать тот или иной вид заряда, то тут уже появятся силы, которые будут стремиться выровнять этот дисбаланс электрического заряда.

Но различные вещества по разному ведут себя, с точки зрения перераспределения электрических зарядов. У одних электроны настолько сильно притягиваются к своим ядрам атома, что не в силах сорваться со своей орбиты вращения. У других же веществ эти электроны достаточно легко отрываютя от атомов и начинают блуждать по соседним атомам данного вещества. В первом случае вещества называют диэлектриками, в другом же случае (где электроны свободно блуждают) вещества называют проводниками электричества. То есть, эти электрические заряды перетекают из одного места в другое, тем самым образуя электрический ток.

Дальнейшая суть электричества уже связана именно с различными движениями этих электронов в различных средах, в различных материалах и различных условиях. В итоге и получаем всё то разнообразие электрических явлений, процессов и взаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, которые взаимодействуя друг с другом с одного своего состояния переходят в другое, а сопутствующим процессом будет перераспределение электронов между изменяющимися веществами внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. Эту самую силу и используют в батарейке для питания различных электрических устройств.

Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.

Другим примером, проявляющим суть электричества, может служить взаимодействие электромагнитных полей. Напомню, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, способное действовать на другие такие же поля других заряженных частиц. Так работает электродвигатель. Именно магнитные поля заставляют вращаться электрический мотор, когда по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.

P.S. - вот мы и разобрались в общих чертах о сути электричества и его явлениях. Для лучшего понимания просто представляйте, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Если есть разность потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Бежит электрический ток. Вот и всё.

. (история открытия явления)

До 1600 г. знания европейцев об электричестве оставалось на уровне древних греков, что повторяло историю развития теории паровых реактивных двигателей ("Элеопил" А. Герона).

Основоположником науки об электричестве в Европе стал выпускник Кембриджа и Оксфорда английский физик и придворный врач королевы Елизаветы - Уильям Гилберт (1544-1603). С помощью своего "версора" (первого электроскопа) У. Гильберт показал, что способностью притягивать легкие тела (соломинки) обладает не только натертый янтарь, но и алмаз, сапфир, карборунд, опал, аметист, горный хрусталь, стекло, сланцы и др., которые он назвал "электрическими" минералами.

Кроме того, Гильберт заметил, что пламя "уничтожает" электрические свойства тел, приобретенные при трении, и впервые исследовал магнитные явления, установив, что:

Магнит всегда имеет два полюса - северный и южный;
- одноименные полюса отталкиваются, а разноименные притягиваются;
- распиливая магнит, нельзя получить магнит только с одним полюсом;
- железные предметы под влиянием магнита приобретают магнитные свойства (магнитная индукция);
- природный магнетизм может быть усилен с помощью железной арматуры.

Изучая магнитные свойства намагниченного шара с помощью магнитной стрелки, Гильберт пришел к выводу, что они соответствуют магнитным свойствам Земли, а Земля является самым большим магнитом, что и объясняет постоянное наклонение магнитной стрелки.

1650 г.: Отто фон Герике (1602-1686) создает первую электрическую машину, извлекавшую из натираемого шара, отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако тайна свойств «электрической жидкости» , как в то время называли это явление, не получила тогда никакого объяснения.

1733 г.: французский физик , член Парижской Академии наук, Шарль Франсуа Дюфе (Dufay, Du Fay, 1698-1739) открыл существование двух видов электричества, которые назвал "стеклянным" и "смоляным". Первое возникает на стекле, горном хрустале, драгоценных камнях, шерсти, волосах и т. д.; второе - на янтаре, шелке, бумаге и т. п.

После многочисленных экспериментов Ш. Дюфе впервые электризовал тело человека и "получил" из него искры. В область его научных интересов входил магнетизм, фосфоресценция и двойное лучепреломление в кристаллах, ставшее впоследствии основой для создания оптических лазеров. Для обнаружения измерения электричества пользовался версором Гилберта, сделав его намного более чувствительным. Впервые высказал мысль об электрической природе молнии и грома.

1745 г.: выпускник Лейденского университета (Голландия) физик Питер ван Мушенбрук (Musschenbroek Pieter van, 1692-1761) изобрел первый автономный источник электроэнергии - лейденскую банку и провел с ней ряд опытов, в ходе которых установил взаимозвязь электрического разряда с его физиологическим действием на живой организм.

Лейденская банка представляла собой стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой, и являлась первым электрическим конденсатором. Если обкладки прибора, заряженного от электростатического генератора О. фон Герике соединяли тонкой проволокой, то она быстро нагревалась, а иногда и плавилась, что указывало на наличие в банке источника энергии, которую можно было транспортировать далеко от места ее зарядки.

1747 г.: член Парижской Академии наук, французский физик-экспериментатор Жан Антуан Нолле (1700-1770) изобрел первый прибор для оценки электрического потенциала - электроскоп , зарегистрировал факт более быстрого "стекания" электричества с острых тел и впервые сформировал теорию действия электричества на живые организмы и растения.

1747–1753 гг.: американский государственный деятель, ученый и просветитель Бенджамин (Вениамин) Франклин (Franklin, 1706-1790) публикует цикл работ по физике электричества, в которых:
- ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «–» ;
- объяснил принцип действия лейденской банки, установив, что главную роль в ней играет диэлектрик, разделяющий проводящие обкладки;
- установил тождество атмосферного и получаемого с помощью трения электричества и привел доказательство электрической природы молнии;
- установил, что металлические острия, соединённые с землёй, снимают электрические заряды с заряженных тел даже без соприкосновения с ними и предложил молниеотвод;
- выдвинул идею электрического двигателя и продемонстрировал «электрическое колесо», вращающееся под действием электростатических сил;
- впервые применил электрическую искру для взрыва пороха.

1759 г.: В России физик Франц Ульрих Теодор Эпинус (Aepinus, 1724-1802),впервые выдвигает гипотезу о наличии связи между электрическими и магнитными явлениями.

1761 г.: Швейцарский механик, физик и астроном Леонард Эйлер (L. Euler, 1707-1783) описывает новую электростатическую машину, состоящую из вращающегося диска из изоляционного материала с радиально наклеенными кожаными пластинами. Для съема электрического заряда к диску надо было подвести шелковые контакты, присоединенные к медным стержням со сферическими окончаниями. Приближая сферы друг к другу, можно было наблюдать процесс электрического пробоя атмосферы (искусственная молния).

1785-1789 гг.: Французский физик Шарль Огюстен Кулон (S. Coulomb, 1736-1806) публикует семь работ. в которых описывает закон взаимодействия электрических зарядов и магнитных полюсов (закон Кулона), вводит понятие магнитного момента и поляризации зарядов и доказывает, что электрические заряды всегда располагаются на поверхности проводника.

1791 г.: В Италии издается трактат Луиджи Гальвани (L. Galvani, 1737-1798), «De Viribus Electricitatis In Motu Musculari Commentarius» («Трактат о силах электричества при мышечном движении»), в котором доказывалось, что электричество вырабатывается живым организмом и наиболее эффективно проявляется в контакте разнородных проводников. В настоящее время этот эффект лежит в основе принципа действия электрокардиографов.

1795 г.: Итальянский профессор Александр Вольта (Alessandro Guiseppe Antonio Anastasio Volta, 1745-1827) исследует явление контактной разности потенциалов различных металлов и с помощью электрометра собственной конструкции дает численную оценку этому явлению. Результаты своих опытов А.Вольта впервые описывает 1 августа 1786 г. в письме своему другу. В настоящее время эффект контакной разности потенциалов используется в термопарах и системах анодной (электрохимической) защиты металлических сооружений.

1799 г:. А. Вольта изобретает источник гальванического (электрического) тока - вольтов столб . Первый вольтов столб состоял из 20 пар медных и цинковых кружочков, разделенных суконными кусочками, смоченными соленой водой, и предположительно мог давать напряжение 40-50 В и ток до 1 А.

В 1800 г. в журнале «Philosophical Transactions of the Royal Society, Vol. 90» под названием «On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds» («Электричество, получаемое в результате простого контакта разных веществ») было описано устройство, названное «электродвижущий аппарат», А. Вольта считал, что в основе принципа действия его источника тока лежит контактная разность потенциалов, и только спустя много лет было установлено, что причиной возникновения э.д.с. в гальваническом элементе является химическое взаимодействие металлов с проводящей жидкостью - электролитом. Осенью 1801 г. в России была создана первая гальваническая батарея, состоящая из 150 серебряных и цинковых дисков. Через год, осенью 1802 г., была изготовлена батарея из 4200 медных и цинковых дисков, дающая напряжение в 1500 В.

1820 г.: датский физик Ханс Кристиан Эрстед (Ersted, 1777-1851) в ходе опытов по отклонению магнитной стрелки под действием проводника с током, установил связь между электрическими и магнитными явлениями. Сообщение об этом явлении, опубликованное в 1820 г., стимулировало исследования в области электромагнетизма, что, в конечном счете, привело к формированию основ современной электротехники.

Первым последователем Х.Эрстеда стал французский физик Андре Мари Ампер (1775-1836) сформулировавший в том-же году правило определения направления действия электрического тока на магнитную стрелку, названное им "правилом пловца" (правило Ампера или правой руки), после чего были определены законы взаимодействия электрических и магнитных полей (1820 г.), в рамках которых впервые была сформулирована идея об использовании электромагнитных явлений для дистанционной передачи электрического сигнала.

В 1822 г. А. Ампер создает первый усилитель электромагнитного поля - многовитковые катушки из медного провода, внутри которых помещались сердечники из мягкого железа (соленоиды), ставшие технологической основой для изобретенного им в 1829 г. электромагнитного телеграфа, открывшего эру современной электросвязи.

821 г.: английский физик Майкл Фарадей (М. Faraday, 1791-1867) познакомился с работой Х. Эрстеда об отклонении магнитной стрелки вблизи проводника с током (1820) и после исследования взаимосвязи электрических и магнитных явлений установил факт вращения магнита вокруг проводника с током и вращения проводника с током вокруг магнита.

В течение последующих 10 лет М. Фарадей пытался «превратить магнетизм в электричество», результатом чего стало открытие в 1831 электромагнитной индукции , что привело к формированию основ теории электромагнитного поля и появлению новой отрасли промышленности - электротехники. В 1832 г. М. Фарадей публикует работу, в которой выдвигается идея о том, что распространение электромагнитных взаимодействий есть волновой процесс, происходящий в атмосфере с конечной скоростью, что стало основой для появления новой отрасли знаний - радиотехники.

Стремясь установить количественные соотношения между различными видами электричества, М. Фарадей начал исследования по электролизу и в 1833–1834 гг. сформулировал его законы. В 1845 г., исследуя магнитные свойства различных материалов, М. Фарадей открывает явления парамагнетизма и диамагнетизма и установливает факт вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Это было первое наблюдение связи между магнитными и оптическими явлениями, которое позднее было объяснено в рамках электромагнитной теории света Дж. Максвелла.

Примерно в это-же время свойства электричества изучал немецкий физик Георг Симон Ом (G.S. Ohm, 1787-1854). Проведя серию экспериментов, Г. Ом в 1826 г. сформулировал основной закон электрической цепи (закон Ома) и в 1827 г. дал его теоретическое обоснование, ввел понятия «электродвижущая сила», падение напряжения в цепи и «проводимость».

Закон Ома устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника т.е. RI = U . Коэффициент пропорциональности R , получивший в 1881 г. название омическое сопротивление или просто сопротивление зависит от температуры проводника и его геометрических и электрических свойств.

Исследования Г. Ома завершают второй этап развития электротехники, а именно фомирования теоретической базы для расчета характеристик электрических цепей, что стало основой современной электроэнергетики.

В повседневной жизни приборы, работающие на электроэнергии, стали для нас привычным и вполне обыденным явлением. Многие даже не задумывались о том, кто придумал электричество. Ведь, если бы оно не было изобретено, сложно и представить, как бы мы сейчас жили.

На самом деле это открытие к своему современному проявлению шло не одно столетие, и на всем длинном пути многие умы приложили свой вклад в развитие этой сферы.

История изобретения электричества

Янтарь, потертый о шерстяную ткань, как правило, начинает притягивать мелкие кусочки бумаги и другие подобные предметы. Именно с этого наблюдения, по мнению историков, начался путь изобретения электричества. И первый, кто заинтересовался этим явлением, стал Фалес Милетский.

Но это наблюдение в те годы не привело ни к каким практическим последствиям. Более того, считалось, что лишь янтарь обладает такими «волшебными» свойствами. Такое мнение развеяли дальнейшие изучения физиков, когда эта наука перешла в разряд экспериментальной.

Второе имя, фигурирующее в вопросе «Кто изобрел электричество?» — Уильям Гилберт. Ему принадлежит открытие того, что кроме янтаря такими возможностями обладают стекло, горный хрусталь, алмазы и сапфиры. Продемонстрировать это в первой половине 17 века ему помог электроскоп. Гилберт также начал изучать магнитные явления, и был одним из первых физиков в истории, пытавшихся разобраться в них.

Далее эволюцию электроэнергии продолжил Отто фон Герике. В 1650 году он изобрел электростатическую машину. Она хоть и была достаточно примитивной и не имела никакого практического предназначения - это все же стало еще одним шагом в развитии данного направления. Изобретенное им устройство было оснащено шаром из природной серы, о который происходило трение. В результате вырабатывались небольшие электрические заряды.

То, что некоторые металлы имеют свойство проводить через себя ток, первым обнаружил Стивен Грей - это было начало 18 века. А разделение электричества на отрицательные и положительные заряды пришлось на эпоху исследований Роберта Симмера, как и само появление их название «заряд». Подобные выводы могли сделать его тем самым, кто придумал электричество, но эти открытия не были доведены до нужных результатов.

Обнаружение противоположных зарядов было произведено в наблюдении за наэлектризованным шелком. Физику удалось заметить, что при трении одного тела о другое, происходит перераспределение энергии. За Симмером эти исследования продолжил Шарль Дюфе. Он выяснил, что тела с однородным зарядом отталкиваются, в то время, как противоположные напротив, стремятся друг к другу.

Понятия «смоляного» и «стеклянного» зарядов было выведено именно Шарлем Дюфе, еще одним человеком из серии тех, кто «придумывал» электричество. В ходе проводимых им экспериментов обнаружилось, что если хорошенько потереть стекло о шелк, в результате вырабатывается определенный вид заряда. Противоположного заряда удалось достичь при взаимодействии шерсти и смолы. Отсюда и появились эти названия.

Открытие закона взаимодействия зарядов пришлось на 1785 год. Оно принадлежит физику Шарлю Кулону. Специально для изучения собственной теории, Кулон разработал весы, отличающиеся высокой точностью. С их помощью он определил обратную пропорциональность квадрата пути между электрически заряженными телами.

В итоге, это открытие перевело изучение свойств электричества в разряд точных наук. Поскольку с этого момента стало возможным применять математические формулы для вычисления определенных свойств для достижения нужных результатов.

Следующие претенденты на звание тех ученых, кто придумал электричество, уже были представители физики 19 века. Целый ряд открытий в этой сфере пришелся на десятилетие с 1821 по 1831 год. Физиками Эрстед и Ампер было обнаружено взаимоотношение электрических явлений и магнетизма. За этим открытием последовала теория Гаусса об электростатическом поле, обнародованная в 1830 году. Годом позже в разделе этой науки появляются точные понятия магнитного и электрического полей, выведенные вследствие открытий Майкла Фарадея - обнаружения принципов электролиза и электромагнитной индукции.

Спустя почти 50 лет, в 1880 году были выведены практические способы передачи электроэнергии на значительные расстояния - над этим этапом трудился физик Лачинов. В этом же десятилетии Генрих Герц обнаружил электромагнитные волны (1888 год).

И вся эта серия открытий и многочисленных исследований, получившая начало еще в 17 веке, привела ученых к открытию электрической теории вещества. Эта теория позволила реализовать возможность передачи энергии на дальние расстояния. Впоследствии технологии развивались и привнесли электроэнергию в каждый дом, обеспечив человечество всеми удобствами. Таким образом, можно отнести каждого участника в этой многовековой истории к почетному званию «кто придумал электричество».