Сложение векторов с помощью параллелограмма. Правила, по которым происходит сложение векторов. Пример задачи на сложение векторов

трение закон скольжение качение

В технике для уменьшения влияния сил сухого трения между поверхностями вводят смазку (вязкую жидкость, создающую тонкий слой между твёрдыми поверхностями).

Влияние смазки заключается в том, что между трущимися поверхностями вводится слой вязкой жидкости, которая заполняет все неровности поверхностей и, прилипая к ним, образует два трущихся слоя жидкости (рис. 15)

Рис. 15.

Поэтому вместо трения двух твердых поверхностей при смазке возникает внутреннее трение жидкости, которое значительно меньше внешнего трения двух твердых поверхностей. Применение смазочных масел уменьшает трение в 8-10 раз. Типичный пример значения смазки представляет бег конькобежца на коньках. В результате действия силы со стороны конькобежца на нож конька снег тает и под коньком появляется вода, которая вновь замерзает, после того как пробежал конькобежец и исчезло давление. Однако в механизмах вода для смазки не годится, поскольку вследствие малой вязкости она выдавливалась бы из зазора неровностей между трущимися поверхностями.

Во всех машинах есть одна общая черта: в любой из них что-нибудь обязательно вращается. И везде есть неразлучная пара - ось и её подпорка - подшипник

Поскольку силы трения качения значительно меньше сил трения скольжения, то в машинах и механизмах в большинстве случаев подшипники скольжения заменяют подшипниками качения (рис. 16).

Рис. 16.

Подшипник состоит из двух колец. Одно из них - внутреннее - плотно насажено на ось и вращается вместе с ней. Другое - наружное кольцо - неподвижно зажато между основанием и крышкой подшипника.

Эти кольца - обоймы имеют на обращенных друг к другу поверхностях выточенные канавки. Между обойм находятся стальные шарики. При кручении подшипника шарики катятся по канавкам в обоймах.

Чем лучше отполированы поверхности дорожек и шариков, тем меньше трение. Чтобы шарики не сбегались в одну кучу, их разделяет сепаратор. Сепараторы обычно делаются пластиковые, стальные или бронзовые.

При вращении в таком подшипнике появляется трение качения. Потери на трение в шариковом подшипнике раз в 20-30 меньше, чем в подшипнике скольжения! Подшипники качения делают не только с шариками, но и с роликами разной формы. Без подшипников качения современная промышленность и транспорт были бы невозможны.

В настоящее время широко применяется такой способ уменьшения трения при движении транспортных средств, как воздушная подушка.

Воздушная подушка (рис. 17) -- это слой сжатого воздуха под транспортным средством, который приподнимает его над поверхностью воды или земли. Слой сжатого воздуха создаётся вентиляторами. Отсутствие трения о поверхность позволяет снизить сопротивление движению. От высоты подъёма зависит способность такого судна двигаться над различными препятствиями на суше или над волнами на воде.

Рис. 17

Схема работы судна с воздушной подушкой: 1 -- маршевые винты; 2 -- поток воздуха; 3 -- вентилятор; 4 -- гибкая перепонка (юбка).

Первым идею подобной машины на воздушной подушке высказал К.Э. Циолковский в 1927 году, в работе «Сопротивление воздуха и скорый поезд». Это бесколесный экспресс, который мчится над бетонной дорогой, опираясь на воздушную подушку - слой сжатого воздуха.

Цель урока:

  • Познакомить учащихся с силой трения, закрепить полученные знания о силах в природе. Сформировать понятие “трение” и “сила трения”;
  • продолжать формирование естественнонаучных представлений;
  • продолжать отработку практических навыков работы с оборудованием;
  • способствовать бережному отношению к приборам и оборудованию;
  • способствовать нравственному воспитанию учащихся через рассказ об ученых.

Формируемые умения: работать с приборами, наблюдать, сравнивать результаты опытов, делать выводы.

Тип урока: комбинированный.

Оборудование: динамометр; деревянные бруски; набор грузов; песок.

Демонстрации:

  • Силы трения покоя, скольжения.
  • Сравнение сил трения скольжения и качения.

Ход урока

  1. Актуализация опорных знаний. Создание ситуаций успеха.
  1. Фронтальный опрос:
  • Что называется силой?
  • Какие силы мы уже изучили?
  • Как дать полный ответ о любой силе?
  • С помощью какого прибора можно измерить силу?
  1. Решение задач. (У доски)
  • Какая сила тяжести действует на яблоко массой 120г?
  • Пружину жесткостью 500Н/м растянули на 2 см. Под действием какой силы она была растянута?
  1. Определите, о какой силе говорится в тексте книги “Занимательная физика” Я.И. Перельман “Всем нам случалось выходить из дома в гололедицу: сколько усилий стоит нам удержаться от падения, сколько смешных движений приходится нам проделывать, чтобы устоять!”
  2. Примеры проявления явления трения в природе.
  1. Объяснение нового материала.

Презентация . Тема урока “Сила трения” (слайд 1)

  1. Знакомство с силой трения (слайд 2,3)

Опыт 1. Влияние силы трения на движение тел. Толкнуть брусок по доске трибометра. Выявить причину быстрой остановки бруска.

  • Сила, возникающая при взаимодействии поверхности одного тела с поверхностью другого, когда тела неподвижны, либо перемещаются относительно друг друга, называется силой трения. (Ролик “Сила”)
  • Обозначается сила трения буквой F с индексом Fтр
  1. Немного истории (слайд 4,5)

Первым силу трения исследовал Леонардо да Винчи (1452-1519г.г.). Позже исследовали эту силу Гилиома Амонтон (1663-1705г.г.) и Шарль Кулон (1736-1806г.г.). Амонтон и Кулон ввели понятие коэффициента трения.

  1. Рассмотрим подробнее силу трения

Существуют различные виды сухого трения:

Трение покоя (слайд6). Сила, которая удерживает шкаф на месте - сила трения покоя. Чтобы сдвинуть тело с опоры нужно приложить силу. Эта сила уравновешивает силу трения. На наклонной опоре сила трения удерживает тело. Сила трения покоя по величине может достигать больших значений. (Ролик “Трение покоя”)

Задание №1. Измерение силы трения.

Оборудование:

Ход работы:

  • На доску трибометра положить деревянный брусок с грузом 100г, за крючок бруска прикрепить динамометр, и держа его горизонтально постепенно увеличивать силу тяги.
  • Сделать вывод.

Вывод: пока сила тяги мала, брусок остаётся в покое. Значит кроме силы тяги, на брусок действует еще какая-то сила, противодействующая данной. Эту силу называют силой трения покоя.

Трение скольжения (слайд7). Когда тело начинает двигаться по опоре, возникает сила трения скольжения, направленная в сторону, противоположную движению.

Задание №2. Измерение силы трения скольжения.

Оборудование: бруски, набор грузов, динамометр, линейка.

Ход работы:

  • Положите брусок на поверхность стола. Прикрепите динамометр к бруску и тяните за динамометр равномерно (с одинаковой скоростью).
  • Определите показания динамометра. Как можно уменьшить силу трения? Ответ: Чтобы уменьшить трение, на гладкие поверхности трущихся тел наносят жидкую смазку.
  • Поместите на брусок поочередно 1, затем 2, а затем 3 груза и для каждого из случаев измерьте силу трения.
  • Записать результат.
  • Сделать вывод.

Вывод: между молекулами соприкасающихся тел возникают силы взаимного притяжения, которые и являются причиной трения. Если тела хорошо отполированы, то сила трения может стать очень большой.

Трение качения (слайд8). Трение качения - сила трения, которая возникает, когда одно тело катится по поверхности другого. (ролик “Сила трения качения”).

В технике часто для уменьшения сил сухого трения наносят смазку, или заменяют трение скольжения трением качения (применяют подшипники). Сила трения качения намного меньше трения скольжения.

Задание №3: Сила трения качения всегда меньше силы трения скольжения.

Оборудование: брусок, динамометр, каток (вместо катка можно взять брусок и деревянные карандаши), линейка.

Ход работы:

  • Собрать установку (рис.1). (Если нет катка, то можно брусок положить на деревянные карандаши). Записать значения сил трения
  • Собрать установку (рис.2). Записать значения сил трения
Рис.1. Рис.2.
  • Сравнить значения и сделать вывод.

(Ролик “Отличие сил трения”)

  1. Другие силы трения.

При движении твердых тел в жидкостях возникает сила вязкого трения. Величина вязкого трения зависит от формы тела, рода жидкости и скорости движения тела.

  1. Особенности силы трения
  • возникают при соприкосновении двух движущихся тел
  • действуют параллельно поверхности соприкосновения тел
  • направлено против движения тела
  1. Нужно ли избавляться от трения? (слайд 9,10,11)

Представим нашу жизнь без трения (беседа с учащимися)

  1. Рефлексивно-оценочный этап:
  1. Ответить на вопросы:
  • Почему любое тело, приведенное в движение, в конце концов, останавливается?
    Ответ: На движущееся тело действует сила трения скольжения, которая направлена против движения и уменьшает скорость тела.
  • Почему труднее санки сдвинуть с места, чем их везти?
    Ответ: Сила трения покоя при движении с места санок больше силы трения скольжения.
  • Почему бочку катят, а не переносят?
    Ответ: В данном случае заменяют силу трения скольжения силой трения качения, которая значительно меньше
  • Как можно уменьшить трение?
    Ответ: Смазка уменьшает трение, и заменить скольжение тела качением. Сила трения качения меньше силы трения скольжения.
  • Как увеличить трение?
    Ответ: Сделать поверхность неровной (шероховатой) или увеличить силу давления.
  1. Объясните поговорки о трении:
  • “Не подмажешь – не поедешь”.
  • “Пошло дело как по маслу”.
  • “Что кругло – легко катится”.
  • “Лыжи скользят по погоде”.
  • “Коси, коса, пока роса, роса долой - и мы домой”
  1. Давайте подведем итог нашего урока:
  • Какое явление мы изучили?
  • Каковы причины возникновения трения?
  • От чего зависит трение?
  • Какие способы уменьшения и увеличения трения существуют?
  • Зависит ли трение от среды, в которой оно возникает?
  • Какие виды трения существуют вокруг нас?
  • Какие физические величины характеризуют каждый из видов трения?
  • Что вам понравилось на уроке? (слайд12)
  • Что было трудным?
  1. Домашнее задание:
  1. §16-17; вопросы к параграфу; 10 примеров различного проявления силы трения (найти из дополнительной литературы). Написать сочинение на тему: “Если не было силы трения”.
  2. Высокий уровень. Задачи на смекалку:
  • На столе лежит стопка книг. Что легче: вытянуть нижнюю книгу, придерживая остальные, или привести в движение всю стопку, потянув за нижнюю книжку?
  • Чему равен коэффициент трения колёс о дорогу, если сила тяги машины массой 1т равна 500Н.

Трение играет важную роль в повседневной жизни. Эту силу приходится учитывать при проектировании самых различных технических систем, принцип действия которых основан на непосредственном соприкосновении движущихся частей. Не всегда трение является вредным фактором, но все же в большинстве случаев разработчики стараются самыми разнообразными способами уменьшить .

Инструкция

В самом простом случае постарайтесь изменить степень шероховатости поверхностей соприкасающихся объектов. Этого можно добиться путем шлифовки. Тела, взаимодействующие поверхности которых являются гладкими, доведенными до глянца, будут двигаться друг относительно друга значительно легче.

По возможности замените одну из соприкасающихся поверхностей на ту, которая имеет более низкий коэффициент трения. Это может быть искусственное покрытие- так, тефлон имеет один из самых низких коэффициентов трения, равный 0,02. Изменить проще тот элемент системы, который играет роль инструмента.

Используйте смазочные материалы, введя их между трущимися поверхностями. Этот способ применяется, например, в лыжном спорте, когда на рабочую поверхность лыж наносится специальная парафиновая смазка, соответствующая температуре снега. Смазки, применяемые в других технических системах, могут быть жидкими (масло) или сухими (графитовый порошок).

Рассмотрите возможность применения «газообразной смазки». Речь идет о так называемой «воздушной подушке». Уменьшение силы трения происходит в этом случае за счет создания потока воздуха между соприкасавшимися ранее поверхностями. Метод используется при проектировании вездеходов, предназначенных для преодоления труднопроходимых местностей.

Если в рассматриваемой системе используется трение скольжения, замените его на трение качения. Проделайте простой эксперимент. Поставьте на ровную поверхность стола обычный стакан и рукой попытайтесь его сдвинуть. Теперь положите стакан на бок и сделайте то же самое. Во втором случае сдвинуть предмет с места будет значительно легче, поскольку вид трения изменился.

Используйте подшипники в узлах, где происходит трение. Эти элементы позволяют преобразовать вид движения, тем самым существенно снизить потери на трение, уменьшив его силу. Этот способ наиболее широко применяется в технике.

На первый взгляд, излишняя сила трения вредна. Она уменьшает КПД механизмов, изнашивает детали. Но есть случаи, когда силу трения необходимо увеличить. Например, при качении колес необходимо улучшить их сцепление с дорогой. Посмотрите, каким образом это можно сделать.

Инструкция

Чтобы понять, как увеличить силу трения, вспомните, от чего она зависит. Рассмотрите формулу: Fтр=мN, где м – коэффициент трения, N – сила реакции опоры, Н. Сила реакции опоры, в свою очередь, зависит от массы: N=G=mg, где G - вес тела, Н- m – масса тела, кг- g – ускорение свободного падения, м/с2.

Из формулы можно сделать вывод, что сила трения зависит от коэффициента трения. Коэффициент трения определяется для каждой пары взаимодействующих материалов и зависит от природы материала и качества поверхности.

Таким образом, первый способ увеличить трение – изменить материал скользящей поверхности. Наверное, вы замечали, что в одной обуви практически невозможно передвигаться по влажному кафельному полу, а в другой вы не ощущаете каких-либо неудобств. Это объясняется тем, что подошвы ботинок сделаны из различных материалов. Скользкая обувь имеет низкий коэффициент трения скольжения подошвы относительно влажного кафеля.

Второй способ – увеличить шероховатость поверхности. Пример - зимние шины для автомобиля имеют более рельефный протектор, чем летние. За счет этого на скользкой зимней дороге автомобиль может уверенно двигаться.

Третий способ – увеличение массы. Как видно из формулы, сила трения напрямую зависит от массы. Это объясняет, почему груженому автомобилю в отдельных случаях легче выбраться из грязи, чем тому, что налегке. Это правило работает при определенном качестве грунта – в вязкую, болотистую почву тяжелая машина просядет больше, чем легкая.

Четвертый способ – удаление смазки. Представьте транспортер технологической линии, состоящий из вращающихся валиков, на которые натянута лента. Валики транспортера начинают проскальзывать по ленте, если они загрязнены. В этом случае грязь действует как смазка. Очистив детали механизма, вы увеличите силу трения и повысите КПД оборудования.

Пятый способ – полировка. Отполировав поверхность, вы можете увеличить силу трения. Это объясняется тем, что при соприкосновении отполированных поверхностей включаются силы межмолекулярного притяжения. Например, очень трудно раздвинуть два листа стекла, сложенных вместе.

Как происходит сложение векторов, не всегда понятно ученикам. Дети не представляют того, что за ними скрывается. Приходится просто запоминать правила, а не вдумываться в суть. Поэтому именно о принципах сложения и вычитания векторных величин требуется много знаний.

В результате сложения двух и более векторов всегда получается еще один. Причем он всегда обязательно будет одинаковым, независимо от приема его нахождения.

Чаще всего в школьном курсе геометрии рассматривается сложение двух векторов. Оно может быть выполнено по правилу треугольника или параллелограмма. Эти рисунки выглядят по-разному, но результат от действия один.

Как происходит сложение по правилу треугольника?

Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных.

В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.

Если векторы коллинеарные, то это правило тоже можно применять. Только рисунок будет расположен вдоль одной линии.

Как выполняется сложение по правилу параллелограмма?

Опять же? применяется только для неколлинеарных векторов. Построение выполняется по другому принципу. Хотя начало такое же. Нужно отложить первый вектор. И от его начала - второй. На их основе достроить параллелограмм и провести диагональ из начала обоих векторов. Она и будет результатом. Так выполняется сложение векторов по правилу параллелограмма.

До сих пор их было два. А как быть, если их 3 или 10? Использовать следующий прием.

Как и когда применяется правило многоугольника?

Если требуется выполнить сложение векторов, число которых — больше двух, пугаться не стоит. Достаточно последовательно отложить их все и соединить начало цепочки с ее концом. Этот вектор и будет искомой суммой.

Какие свойства действительны для действий с векторами?

О нулевом векторе. Которое утверждает, что при сложении с ним получается исходный.

О противоположном векторе. То есть о таком, который имеет противоположное направление и равное по модулю значение. Их сумма будет равна нулю.

О коммутативности сложения. То, что известно еще с начальной школы. Смена мест слагаемых не приводит к изменению результата. Другими словами, неважно какой вектор откладывать сначала. Ответ все равно будет верным и единственным.

Об ассоциативности сложения. Этот закон позволяет складывать попарно любые векторы из тройки и к ним прибавлять третий. Если записать это с помощью знаков, то получится следующее:

первый + (второй + третий) = второй + (первый + третий) = третий + (первый + второй).

Что известно о разности векторов?

Отдельной операции вычитания не существует. Это связано с тем, что оно, по сути, является сложением. Только второму из них задается противоположное направление. А потом все выполняется так, как если бы рассматривалось сложение векторов. Поэтому об их разности практически не говорят.

Для того чтобы упростить работу с их вычитанием, видоизменено правило треугольника. Теперь (при вычитании) второй вектор нужно отложить из начала первого. Ответом будет тот, что соединяет конечную точку уменьшаемого с ней же вычитаемого. Хотя можно и откладывать так, как было описано ранее, просто изменив направление второго.

Как найти сумму и разность векторов в координатах?

В задаче даны координаты векторов и требуется узнать их значения для итогового. При этом построений выполнять не нужно. То есть можно воспользоваться несложными формулами, которые описывают правило сложения векторов. Они выглядят так:

а (х, у, z) + в (k, l, m) = с (х+k, y+l, z+m);

а (х, у, z) -в (k, l, m) = с (х-k, y-l, z-m).

Легко заметить, что координаты нужно просто сложить или вычесть в зависимости от конкретного задания.

Первый пример с решением

Условие. Дан прямоугольник АВСД. Его стороны равны 6 и 8 см. Точка пересечения диагоналей обозначена буквой О. Требуется вычислить разность векторов АО и ВО.

Решение. Сначала нужно изобразить эти векторы. Они направлены от вершин прямоугольника к точке пересечения диагоналей.

Если внимательно посмотреть на чертеж, то можно увидеть, что векторы уже совмещены так, чтобы второй из них соприкасался с концом первого. Вот только его направление неверное. Он должен из этой точки начинаться. Это если векторы складываются, а в задаче — вычитание. Стоп. Это действие означает, что нужно прибавить противоположно направленный вектор. Значит, ВО нужно заменить на ОВ. И получится, что два вектора уже образовали пару сторон из правила треугольника. Поэтому результат от их сложения, то есть искомая разность, — вектор АВ.

А он совпадает со стороной прямоугольника. Для того чтобы записать числовой ответ, потребуется следующее. Начертить прямоугольник вдоль так, чтобы большая сторона шла горизонтально. Нумерацию вершин начинать с левой нижней и идти против часовой стрелки. Тогда длина вектора АВ будет равна 8 см.

Ответ. Разность АО и ВО равна 8 см.

Второй пример и его подробное решение

Условие. У ромба АВСД диагонали равны 12 и 16 см. Точка их пересечения обозначена буквой О. Вычислите длину вектора, образованного разностью векторов АО и ВО.

Решение. Пусть обозначение вершин ромба будет таким же, как в предыдущей задаче. Аналогично решению первого примера получается, что искомая разность равна вектору АВ. А его длина неизвестна. Решение задачи свелось к тому, чтобы вычислить одну из сторон ромба.

Для этой цели потребуется рассмотреть треугольник АВО. Он прямоугольный, потому что диагонали ромба пересекаются под углом в 90 градусов. А его катеты равны половинам диагоналей. То есть 6 и 8 см. Искомая в задаче сторона совпадает с гипотенузой в этом треугольнике.

Для ее нахождения потребуется теорема Пифагора. Квадрат гипотенузы будет равен сумме чисел 6 2 и 8 2 . После возведения в квадрат получатся значения: 36 и 64. Их сумма — 100. Отсюда следует, что гипотенуза равна 10 см.

Ответ. Разность векторов АО и ВО составляет 10 см.

Третий пример с детальным решением

Условие. Вычислить разность и сумму двух векторов. Известны их координаты: у первого — 1 и 2, у второго — 4 и 8.

Решение. Для нахождения суммы потребуется сложить попарно первые и вторые координаты. Результатом будут числа 5 и 10. Ответом будет вектор с координатами (5; 10).

Для разности нужно выполнить вычитание координат. После выполнения этого действия получатся числа -3 и -6. Они и будут координатами искомого вектора.

Ответ. Сумма векторов — (5; 10), их разность — (-3; -6).

Четвертый пример

Условие. Длина вектора АВ равна 6 см, ВС — 8 см. Второй отложен от конца первого под углом в 90 градусов. Вычислить: а) разность модулей векторов ВА и ВС и модуль разности ВА и ВС; б) сумму этих же модулей и модуль суммы.

Решение: а) Длины векторов уже даны в задаче. Поэтому вычислить их разность не составит труда. 6 - 8 = -2. Несколько сложнее обстоит дело с модулем разности. Сначала нужно узнать, какой вектор будет являться результатом вычитания. Для этой цели следует отложить вектор ВА, который направлен в противоположную сторону АВ. Потом от его конца провести вектор ВС, направив его в сторону, противоположную исходному. Результатом вычитания получится вектор СА. Его модуль можно вычислить по теореме Пифагора. Несложные вычисления приводят к значению 10 см.

б) Сумма модулей векторов получается равной 14 см. Для поиска второго ответа потребуется некоторое преобразование. Вектор ВА противоположно направлен тому, который дан — АВ. Оба вектора направлены из одной точки. В этой ситуации можно использовать правило параллелограмма. Результатом сложения будет диагональ, причем не просто параллелограмма, а прямоугольника. Его диагонали равны, значит, модуль суммы такой же, как в предыдущем пункте.

Ответ: а) -2 и 10 см; б) 14 и 10 см.

вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ - ненулевой.

Обозначим точкой $A$ начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Сложение векторов. Правило треугольника

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Суммой векторов $\overrightarrow{a}+\overrightarrow{b}$ называется вектор $\overrightarrow{c}=\overrightarrow{AC}$, построенный следующим образом: От произвольной точки $A$ отклабывается вектор $\overrightarrow{AB}=\overrightarrow{a}$, затем от полученной точки $B$ откладывается вектор $\overrightarrow{BC}=\overrightarrow{b}$ и соединяют точку $A$ c точкой $C$ (рис. 3).

Рисунок 3. Сумма векторов

Замечание 1

Иначе, определение 2, еще называют правилом треугольника для сложения двух векторов.

Из этого правила следует несколько свойств сложения двух векторов:

    Для любого вектора $\overrightarrow{a}$ выполняется равенство

    \[\overrightarrow{a}+\overrightarrow{0}=\overrightarrow{a}\]

    Для любых произвольных точек $A,\ B\ и\ C$ выполняется равенство

    \[\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\]

Замечание 2

Аналогично правилу треугольника можно строить сумму любого количества векторов. Такое правило сложения называется правилом многоугольника.

Правило параллелограмма

Помимо правила треугольника для сложения двух векторов, есть еще правило параллелограмма для сложения двух векторов. Сформулируем и докажем для начала следующую теорему.

Теорема 2

Для любых треух векторов $\overrightarrow{a},\ \overrightarrow{b}\ и\ \overrightarrow{c}$ справедливы следующие два закона:

  1. Переместительный закон:
\[\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\]
  1. Сочетательный закон:
\[\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}=\overrightarrow{a}+\left(\overrightarrow{b}+\overrightarrow{c}\right)\]

Доказательство.

Переместительный закон:

Сочетательный закон:

Построим следующий рисунок: Отложим от произвольной точки $A$ вектор $\overrightarrow{AB}=\overrightarrow{a}$, от полученной точки $B$ -- вектор $\overrightarrow{BC}=\overrightarrow{b}$ и от точки $C$ -- вектор $\overrightarrow{CD}=\overrightarrow{c}$ (Рис. 5).

Рисунок 5. Иллюстрация сочетательного закона

Из свойства правила треугольника $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$, получим:

Следовательно, $\left(\overrightarrow{a}+\overrightarrow{b}\right)+\overrightarrow{c}=\overrightarrow{a}+\left(\overrightarrow{b}+\overrightarrow{c}\right)$.

Теорема доказана.

Из этой теоремы мы теперь можем выделить правило параллелограмма для суммы двух неколлинеарных векторов: чтобы сложить два неколлинеарных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$, нужно отложить от произвольной точки $A$ векторы $\overrightarrow{AB}=\overrightarrow{a}$ и $\overrightarrow{AD}=\overrightarrow{b}$ и построить параллелограмм $ABCD$. Тогда $\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{AC}$.

Пример задачи на сложение векторов

Пример 1

Дан четырехугольник $ABCD$. Доказать, что $\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AD}$

Рисунок 6.

Доказательство.

Воспользуемся свойством правила треугольника $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$, получим:

\[\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\]