Два предложения с разделительными знаками препинания. Разделительные и выделительные знаки препинания между частями сложного предложения. Знаки препинания в сложных предложениях

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Например, выражения:

a - b + c , x 2 - y 2 , 5x - 3y - z - многочлены

Одночлены, входящие в состав многочлена, называются членами многочлена . Рассмотрим многочлен:

7a + 2b - 3c - 11

выражения: 7a , 2b , -3c и -11 - это члены многочлена. Обратите внимание на член -11 он не содержит переменной, такие члены, состоящие только из числа, называются свободными .

Принято считать, что любой одночлен это частный случай многочлена, состоящий из одно члена. В этом случае одночлен является названием для многочлена с одним членом. Для многочленов, состоящих из двух и трёх членов, тоже есть специальные названия - двучлен и трёхчлен соответственно:

7a - одночлен

7a + 2b - двучлен

7a + 2b - 3c - трёхчлен

Подобные члены

Подобные члены - одночлены, входящие в многочлен, которые отличаются друг от друга только коэффициентом , знаком или совсем не отличаются (противоположные одночлены тоже можно назвать подобными). Например, в многочлене:

3a 2 b + 5abc 2 + 2a 2 b - 7abc 2 - 2a 2 b

члены 3a 2 b , 2a 2 b и -2a 2 b , так же как и члены 5abc 2 и -7abc 2 - это подобные члены.

Приведение подобных членов

Если многочлен содержит подобные члены, то его можно привести к более простому виду путём соединения подобных членов в один. Такое действие называется приведением подобных членов . Первым делом заключим в скобки отдельно все подобные члены:

(3a 2 b + 2a 2 b - 2a 2 b ) + (5abc 2 - 7abc 2)

Чтобы соединить несколько подобных одночленов в один, надо сложить их коэффициенты, а буквенные множители оставить без изменений:

((3 + 2 - 2)a 2 b ) + ((5 - 7)abc 2) = (3a 2 b ) + (-2abc 2) = 3a 2 b - 2abc 2

Приведение подобных членов - это операция замены алгебраической суммы нескольких подобных одночленов одним одночленом.

Многочлен стандартного вида

Многочлен стандартного вида - это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.

Чтобы привести многочлен к стандартному виду достаточно сделать приведение подобных членов. Например, представьте в виде многочлена стандартного вида выражение:

3xy + x 3 - 2xy - y + 2x 3

Сначала найдём подобные члены:

Если все члены многочлена стандартного вида содержат одну и ту же переменную, то его члены принято располагать от большей степени к меньшей. Свободный член многочлена, если он есть, ставится на последнее место - справа.

Например, многочлен

3x + x 3 - 2x 2 - 7

должен быть записан так:

x 3 - 2x 2 + 3x - 7