Определение двугранного и многогранного угла. Понятие о многогранном угле. Трехгранный угол. Симметричные многогранные углы

20. Разноуровневое изучение многогранных углов, свойств плоских углов трехгранного угла и многогранного угла.

Базовый уровень:

Атанасян

Рассматривает только Двугранный угол.

Погорелов

Сначала рассматривает двугранный угол и затем сразу трехгранный и многогранный.

Рассмотрим три луча а, b, с, исходящие из одной точки лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная из трех плоских углов (ab), (bc) и (ac) (рис. 400). Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично вводится понятие многогранного угла(рис.401).

рис 400 и рис.401

Профильный уровень (А.Д.Алексндров, А.Л.Вернер, В.И.Рыжих):

Оставляя определение и изучение произвольных многогранных углов до § 31, мы рассмотрим сейчас простейшие из них - трех­гранные углы. Если в стереометрии аналогами плоских углов мож­но считать двугранные углы, то трехгранные углы можно рас­сматривать как аналоги плоских треугольников , а в следующих параграфах увидим, как они естественно связаны со сферически­ми треугольниками.

Построить (а значит, и конструктивно определить) трехгран­ный угол можно так. Возьмем любые три луча а, b,c, имеющие общее начало О и не лежащие в одной плоскости (рис. 150). Эти лучи являются сторонами трех выпуклых плоских углов: угла α со сто­ронамиb, с, угла β со сторонами а, с и угла γ со сторонами а,b. Объединение этих трех углов α, β, γ и называется трехгранным углом Оabc(или, короче, трехгранным углом О). Лучи а,b, с называются ребрами трехгранного угла Оаbс, а плоские углы α, β, γ - его гранями. Точка О называется вершиной трехгран­ного угла.

3 а м е ч а н и е. Можно было бы определить трехгранный угол и с невыпуклой гранью (рис. 151), но мы такие трехгранные углы рассматривать не будем.

При каждом из ребер трехгранного угла определяется соот­ветствующий двугранный угол, такой, ребро которого содержит соответствующее ребро трехгранного угла, а грани которого содер­жат прилежащие к этому ребру грани трехгранного угла.

Величины двугранных углов трехгранного угла Оаbс при реб­рах а,b, с будем соответственно обозначать через а^,b^, с^(крышечки непосредственно над буквами).

Три грани α, β, γ трехгранного угла Оаbс и три его двугранных угла при ребрах а,b, с, а также велbчины α, β, γ и а^,b^, с^ будем называть элементами трехгранного угла. (Вспомните, что элемен­ты плоского треугольника - это его стороны и его углы.)

Наша задача - Выразить одни элементы трехгранного угла через другие его элементы, т. е. построить «тригонометрию» трех­гранных углов.

1) Начнем с вывода аналога теоремы косинусов. Сначала рассмотрим такой трехгранный угол Оаbс, у которого хотя бы две грани, например α и β являются острыми углами. Возьмем на его ребре с точку С и проведем из нее в гранях α и β перпендикуля­ры СВ и СА к ребру с до пересечения с ребрами а иbв точках А и В (рис. 152). Выразим расстояние АВ из треугольников ОАВ и САВ по теореме косинусов.

АВ 2 =АС 2 +ВС 2 -2АС*ВС*Cos(c^) и АВ 2 =ОА 2 +ОВ 2 -2АО*ВО*Cosγ.

Вычитая из второго равенства первое, получим:

ОА 2 -АС 2 +ОВ 2 -ВС 2 +2АС*ВС*Cos(c^)-2АО*ВО*Cosγ=0 (1). Т.к. треугольники ОСВ и ОСА прямоугольные, то АС 2 -АС 2 =ОС 2 и ОВ 2 -ВС 2 =ОС 2 (2)

Поэтому из (1) и (2) следует, что ОА*ОВ*Cosγ=ОС 2 +АС*ВС*Cos(c^)

т.е.

Но
,
,
,
. Поэтому

(3) – аналог теоремы косинусов для трехгранных углов-формула косинусов .

    Обе грани α и β – тупые углы.

    Один из углов α и β, например α, острый, а другой – β- тупой.

    Хоты бы 1 из углов α или β прямой.

Признаки равенства трехгранных углов похожи на признаки равенства треугольников. Но есть отличие: например, два трех­гранных угла равны, если соответственно равны их двугранные углы. Вспомните, что два плоских треугольника, у которых соот­ветственные углы равны, подобны. А для трехгранных углов ана­логичное условие приводит не к подобию, а к равенству.

Трехгранные углы обладают замечательным свойством , кото­рое называется двойственностью. Если в какой-либо теореме о трехгранном угле Оаbс заменить величины а,b, с на π-α, π-β, π-γи, наоборот, заменить α, β, γ на π-a^, π-b^, π-c^, то снова получим верное утверждение о трехгранных углах, двойст­венное исходной теореме. Правда, если такую замену произвести в теореме синусов, то снова придем к теореме синусов (она сама себе двойственна). Но если так сделать в теореме косинусов (3), то получим новую формулу

cosc^= -cosa^ cosb^+sina^ sin b^ cosγ.

Почему имеет место такая двойственность, станет ясно, если для трехгранного угла построить двойственный ему трехгранный угол, ребра которого перпендикулярны граням исходного угла (см. п. 33.3 и рис. 356).

Одними из простейших поверхностей являются многогранные углы . Они составляются из обычных углов (такие углы теперь часто будем называть плоскими углами), подобно тому как замкнутая ломаная составляется из отрезков. А именно дается следующее определение:

Многогранным углом называется фигура, образованная плоскими углами так, что выполнены условия:

1) Никакие два угла не имеют общих точек, кроме их общей вершины или целой стороны.

2) У каждого из этих углов каждая его сторона является общей с одним и только с одним другим таким углом.

3) От каждого угла к каждому можно перейти по углам, имеющим общие стороны.

4) Никакие два угла с общей стороной не лежат в одной плоскости (рис. 324).

При этом условии плоские углы, образующие многогранный угол, называются его гранями, а их стороны - его ребра.

Под данное определение подходит и двугранный угол. Он состав­лен из двух развернутых плоских углов. Вершиной его может считаться любая точка на его ребре, и эта точка разбивает ребро на два ребра, сходящиеся в вершине. Но ввиду этой неопределенности в положении вершины двугранный угол исключают из числа многогранных углов.

П

онятие о многогранном угле важно, в частности, при изуче­нии многогранников - в теории многогранников. Строение много­гранника характеризуется тем, из каких граней он составлен и как они сходятся в вершинах, т. е. какие там оказываются много­гранные углы.

Рассмотрите многогранные углы у разных многогранников.

Обратите внимание, что грани многогранных углов могут быть и невыпуклыми углами.

МАОУ «Лицей инновационных технологий»

Многогранные углы. Выпуклые многогранники

Подготовил ученик 10Б класса: Бурыкин Алексей

Проверил: Дубинская И.А.

Хабаровск


Многогранный угол

Многогранным углом называется фигура, образованная плоскими углами так, что выполняются условия:

1)никакие два угла не имеют общих точек, кроме их общей вершины или целой стороны;

2) у каждого из этих углов каждая его сторона является общей с одним и только одним другим таким углом;

3) от каждого угла к каждому можно перейти по углам, имеющим общую сторону;

4) никакие два угла с общей стороной не лежат в одной плоскости.


  • Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Теорема1.

В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.


Следствие

  • / ASC - / ASB / CSB; / ASC - / CSB / ASB.

В трёхгранном угле каждый плоский угол больше разности двух других углов .


Теорема2.

  • Сумма величин всех трех плоских углов трехгранного угла меньше 360° .

180°, откуда и следует, что α + β + γ " width="640"

Доказательство

Обозначим,

тогда из треугольников ASC, ASB, BSC имеем

Теперь неравенство принимает вид

180° - α + 180° - β + 180° - γ 180°,

откуда и следует, что

α + β + γ

Простейшие случаи равенства трёхгранных углов

  • 1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или 2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

Выпуклый многогранный угол

  • Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной.

Многогранник.

Многогранник , в трехмерном пространстве- совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого, называемого смежным с первым.


Выпуклые многогранники

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы.

Выпуклый многогранник разрезает пространство на две части – внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранна, то соответствующий многогранник –выпуклый.


Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360 градусов.


Свойство 1. В выпуклом многограннике все грани являются выпуклыми многоугольниками.

Свойство2. Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основание которых образует поверхность многогранника.


№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.

Фигура, образованная тремя лучами, исходящими из одной точки О и не лежащими в одной плоскости, и тремя частями плоскостей, заключенных между этими лучами, называется трехгранным углом (рис. 352).

Точка О называется вершиной угла, лучи а, b, с - его ребрами, части плоскостей . Грани суть плоские углы, называемые также плоскими углами данного трехгранного угла. Углы между плоскими гранями называются двугранными углами данного трехгранного угла.

Теорема 1. В трехгранном угле каждый плоский угол меньше суммы двух других.

Доказательство. Достаточно доказать теорему для наибольшего из плоских углов. Пусть наибольший плоский угол трехгранного угла на рис. 353. Построим в плоскости угол , равный углу его сторона b пройдет внутри угла угол наибольший из плоских углов!).

Отложим на прямых с и b какие-либо равные отрезки Проведем через точки произвольную плоскость, пересекающую лучи а и b в точках N и М соответственно.

Треугольники равны, как имеющие равные углы, заключенные между равными сторонами. Покажем, что угол с вершиной О в больше угла с той же вершиной в . Действительно, эти углы заключены между парами равных сторон, третья же сторона больше в треугольнике

Отсюда видно, что сумма двух плоских углов больше третьего плоского угла что и требовалось доказать.

Теорема 2. Сумма плоских углов трехгранного угла меньше четыре прямых.

Доказательство. Возьмем три точки А, В и С на ребрах трехгранного угла и проведем через них секущую плоскость, как показано на рис. 354. Сумма углов треугольника ABC равна Следовательно, сумма шести углов ОАС, ОАВ, ОСА, ОСВ, ОВС, ОВА больше, чем как по предыдуще теореме . Но сумма углов трех треугольников ОАВ, ОВС, ОСА в гранях трехгранного угла равна . Таким образом, на долю плоских углов трехгранного угла остается меньше четырех прямых: . Эта сумма может быть сколь угодно малой («трехгранный шпиль») или сколь угодно близкой к если уменьшать высоту пирамиды SABC на рис. 355, сохраняя ее основание, то сумма плоских углов при вершине S будет стремиться к

Сумма двугранных углов трехгранного угла также имеет границы. Ясно, что каждый из двугранных углов и потому сумма их менее . Для той же пирамиды на рис. 355 эта сумма по мере уменьшения высоты пирамиды приближается к своей границе Можно также показать, что сумма эта всегда хотя может отличаться от сколь угодно мало.

Таким образом, для плоских и двугранных углов трехгранного угла имеют место неравенства

Имеется существенное сходство между геометрией треугольника на плоскости и геометрией трехгранного угла. При этом можно проводить аналогию между углами треугольника и двугранными углами трехгранного угла, с одной стороны, и между сторонами треугольника и плоскими углами трехгранного угла - с другой. Например, при указанной замене понятий сохраняют силу теоремы о равенстве треугольников. Приведем соответствующие формулировки параллельно:

Однако два трехгранных угла, у которых равны соответственные двугранные углы, равны между собой. Между тем два треугольника, углы которых соответственно равны, подобны, но не обязательно равны. Для трехгранных углов, как и для треугольников, ставится задача решения трехгранного угла, т. е. задача отыскания одних его элементов по другим заданным. Приведем пример подобной задачи.

Задача. Даны плоские углы трехгранного угла. Найти его двугранные углы.

Решение. Отложим на ребре а отрезок и проведем нормальное сечение ABC двугранного угла а. Из прямоугольного треугольника ОАВ находим Также имеем

Для ВС находим по теореме косинусов примененной к треугольнику ВАС (для краткости плоские углы обозначаем просто ab, ас, bс, двугранные - а, b, с)

Теперь применим теорему косинусов к треугольнику ВОС:

Отсюда находим

и аналогично

По этим формулам можно найти двугранные углы, зная плоские углы. Отметим еще без доказательства замечательное соотношение

называемое теоремой синусов.

Объяснение глубокой аналогии между геометрией трехгранного угла и геометрией треугольника нетрудно получить, если провести следующее построение. Поместим в вершину трехгранного угла О центр сферы единичного радиуса (рис. 357).

Тогда ребра пересекут поверхность сферы втрехточках А, В, С, грани угла высекут на сфере дуги больших кругов АС, АВ, ВС. На сфере образуется фигура ABC, называемая сферическим треугольником. Дуги («стороны» треугольника) измеряются плоскими углами трехгранного угла, углы при вершинах суть плоские углы двугранных углов. Поэтому решение трехгранных углов есть не что иное, как решение сферических треугольников, которое составляет предмет сферической тригонометрии. Соотношения (243.1) и (243.2) относятся к числу основных соотношений сферической тригонометрии. Сферическая тригонометрия имеет важное значение для астрономии. Таким образом, теория трехгранных углов есть теория сферических треугольников и потому во многом сходна с теорией треугольника на плоскости. Различие этих теорий состоит в том, что: 1) у сферического треугольника и углы и стороны измеряются в угловой мере, поэтому, напрнмер, в теореме синусов фигурируют не стороны, а синусы сторон АВ, АС, ВС;