Возгорание серы. Большая энциклопедия нефти и газа. Вопросы к разделу

Cтраница 1


Получение гексахлорциклогексана, ГХЦГ, проводят в колонном аппарате, по высоте которого помещаются кварцевые лампы, заключенные в защитные футляры из тугоплавкого стекла. Реактор изнутри покрыт свинцом для предотвращения каталитического действия железа и стимулирования реакций замещения; реакционное тепло отводится посредством холодильников. Реакция присоединения хлора, растворенного в бензоле, под действием ультрафиолетового облучения начинается спустя 5 - 10 мин. Скорость реакции пропорциональна корню квадратному из интенсивности облучения.  

Получение гексахлорциклогексана (ГХЦГ) проводят в колонном аппарате, по высоте которого помещают кварцевые лампы в защитных футлярах из тугоплавкого стекла. Реактор изнутри покрыт свинцом для предотвращения каталитического действия железа, стимулирующего нежелательные в данном случае реакции замещения; выделяющееся тепло отводится посредством холодильников. Реакция присоединения хлора, растворенного в бензоле, под действием УФ-излучения начинается спустя 5 - 10 мин после начала облучения; скорость реакции пропорциональна квадратному корню из интенсивности излучения.  

Получение гексахлорциклогексана (ГХЦГ) проводят в колонном аппарате, по высоте которого помещают кварцевые лампы в защитных футлярах из тугоплавкого стекла. Реактор изнутри покрыт свинцом для предотвращения каталитического действия железа, стимулирующего нежелательные в данном случае реакции замещения; выделяющееся тепло отводится посредством холодиль-ликов. Реакция присоединения хлора, растворенного в бензоле, под действием УФ-света, начинается спустя 5 - 10 мин после начала облучения; скорость реакции пропорциональна квадратному корню из интенсивности излучения.  

Для получения гексахлорциклогексана в оптически активной форме была использована способность гексахлорциклогекса-нов под действием оснований отщеплять хлористый водород с переходом в 1 3 5-трихлорбензол. В кислой среде полученная оптически активная форма устойчива, ее можно, например, перекристаллизовать из конц.  

Для получения гексахлорциклогексана в оптически активной форме была использована способность гексахлорцикло-гексанов под действием оснований отщеплять хлористый водород с переходом в 1 3 5-трихлорбензол. Полученная оптически активная форма устойчива в кислой среде; ее можно, например, перекристаллизовать из концентрированной азотной кислоты, однако уже в слабощелочной среде идет быстрая рацемизация.  

Для получения гексахлорциклогексана фотохимическим путем применяется реактор непрерывного действия, состоящий из графитовой трубы, в которую помещена стеклянная труба с источником света. Реакционная жидкость циркулирует в кольцевом зазоре между трубами. Снаружи графитовая труба омывается охлаждающей водой.  

Каталитический процесс получения гексахлорциклогексана хлорированием бензола проводят без освещения, в присутствии перекисей, оснований (щелочи, гидроокись кальция) или других веществ. В присутствии оснований процесс протекает при низкой температуре.  

Зависимость содержания у-изо-мера гексахлорциклогексана в техническом продукте от температуры хлорирования бензола.  

Оптимальная температура процесса получения гексахлорциклогексана с максимально возможным содержанием уизо-мера зависит от выбора растворителя. Следует иметь в виду, что при низкой температуре (ниже оптимальной) значительно уменьшается скорость реакции и, следовательно, снижается производительность аппаратуры. На рис. 5.1 приведена зависимость выхода у-изомера от температуры хлорирования бензола.  

Первые два способа получения гексахлорциклогексана не нашли практического применения и имеют чисто теоретическое значение, тогда как последняя реакция широко используется в промышленности.  

Способ получения гексахлорциклогексана путем хлорирования бензола в присутствии инициаторов, отличающийся тем, что с целью получения гексахлорциклогексана с повышенным (15 - 16 %) содержанием - f - изомера процесс хлорирования инициируют у-излуче-нием радиоактивных веществ.  

Фотохимическое хлорирование в промышленности применяется главным образом в жидкофазных процессах, к которым относятся хлорирование бензола с получением гексахлорциклогексана, хлорирование метиленхло-рида до хлороформа и четыреххлористого углерода и др. Фотохимическое хлорирование используется также и для аддитивного хлорирования олефи-яовых соединений.  

Страницы:      1

Гексахлорциклогексан (ГХЦГ) - один из наиболее важных современных инсектицидов. По масштабам применения уступа-ет разве только ДДТ.

Гексахлорциклогексан (гексахлоран) получают при фитохими-ческом хлорировании бензола:

С 6 Н 6 + ЗС l 2 » С 6 Н 0 С1 6

Реакция носит цепной характер.

Технический продукт представляет собой довольно сложную смесь изомеров гексахлорциклогексана с некоторой примесью гепта- и октахлорциклогексана и других соединений. Все изоме-ры гексахлорана - кристалические вещества с различной тем-пературой плавления и неодинаковой растворимостью в органи-ческих растворителях. Лучшими растворителями для изомеров гексахлорана являются бензол, толуол, ксилолы, метиловый и этиловый спирты, хлороформ, хлористый этилен, ацетон и эфир. Все изомеры гексахлорана устойчивы по отношению к концентрированным серной, азотной и соляной кислотам и окис-лителям.

Наибольшую ценность представляет γ-изомер- линдан, содер-жащий 99-100% γ-изомера ГХЦГ. Используется главным об-разом для борьбы с вредителями растений.

Гамма-изомер - кристаллический продукт. Температура плав-ления 112,8°. Нерастворим в воде и хорошо растворим в органи-ческих растворителях. Запах (особенно при хранении) неприят-ный - напоминающий запах плесени.

ГХЦГ используется как контактный и кишечный инсектицид я как фумигант. Входит в состав протравителей (для семян) комплексного действия: меркуран - смесь уГХЦГ и этилмеркур-хлорида; гексагамма - смесь γГХЦГ и гексахлорбензола; фен-тиурам - смесь уГХЦГ, тетраметилтиурамдисульфида (тиура-ма) и трихлорфенолята меди и др.

ГХЦГ, кроме инсектицидных свойств, обладает способностью стимулировать рост растений.

ЛД 50 ГХЦГ для крыс per os составляет 400 мг/кг; ЛД 50 γ-изомера 200 мг/кг.

Изолирование гексахлорана. Тщательно измельчен-ный исследуемый материал смешивают в колбе емкостью 750- 1000 мл с дистиллированной водой до образования кашицеоб-разной массы, подкисляют до кислой реакции по лакмусу вод-ным раствором щавелевой кислоты и подвергают дистилляции с водяным паром. Дистиллят собирают в количестве 300 мл. Как правило, он содержит твердые частицы белого цвета, на внут-ренней поверхности паровыводящей трубки и холодильника обычно откладываются частицы ГХЦГ.

По окончании дистилляции с водяным паром паровыводящую трубку и внутреннюю поверхность холодильника промывают эфи-ром. Эфирный раствор смешивают с дистиллятом. Дистилляцией с водяным паром удается изолировать гексахлоран при содержа-нии его 25 мг и более в объекте исследования (Рубцов А. Ф.).

Качественное обнаружение. Дистиллят повторно извлекают эфиром, эфирные извлечения соединяют вместе и промывают водой. Эфирный раствор отделяют посредством делительной во-ронки и фильтруют через двойной сухой фильтр. Эфир испаря-ют при комнатной температуре до объема нескольких миллилит-ров и производят следующие реакции.

1. Часть раствора нагревают с водным или спиртовым раство-ром едкой щелочи в течение часа на кипящей водяной бане в колбе, снабженной обратным холодильником.

К жидкости по окончании нагревания (если для реакции при-менялся спиртовой раствор щелочи, то спирт удаляют почти полиостью нагреванием на водяной бане) прибавляют избыток азотной кислоты в разведении 1: 1 до кислой реакции по лакмусу и 10% раствор нитрата серебра. Выделение белого творожисто-го осадка (или белой мути), растворимого в избытке раствора аммиака и вновь выделяющегося при добавлении избытка азот-ной кислоты, является показателем наличия хлорид-иона.

Параллельно ставят контрольный опыт (с теми же реактива-ми, взятыми в тех же количествах). Чувствительность реакции 0,04 мг.

2. Вторую часть (равную по объему первой) эфирного извле-
чения помещают в колбу и смешивают с несколькими милли-
литрами этилового спирта. Колбу закрывают пробкой, снабжен-
ной обратным холодильником, нагревают на кипящей водяной
бане. В колбу через холодильник периодически вносят металли-
ческий натрий. Нагревание и прибавление металлического нат-
рия производят в течение (не менее) 30 минут. По окончании на-
гревания основное количество спирта удаляют на водяной бане.
Остаток растворяют в нескольких миллилитрах дистиллирован-
ной воды и прибавляют избыток (по лакмусу) азотной кислоты
в разведении 1: 1 и 10% раствор нитрата серебра - выделяется
осадок белого цвета.

Объем осадка хлорида серебра при этом должен быть прибли-зительно в 2 раза больше объема осадка, полученного при про-ведении реакции отщепления хлора с раствором едкой щелочи. Соотношение этилового спирта и металлического натрия должно быть 1:1.

Уравнение реакции отщепления хлора;

С 6 Н 3 С1 6 + 6Н = С 6 Н 6 + 6HC1

3. Фильтрат после отделения осадка хлорида серебра (см.
реакцию 1) осторожно концентрируют, смешивают с 2 мл кон-
центрированной серной кислоты и 0,1 г нитрата натрия и нагре-
вают при температуре 125-130° в течение 10 минут. Продукт
нитрования извлекают эфиром. Остаток по испарении эфира ис-
следуют реакцией со спиртовым раствором щелочи в присутствии
ацетона. Красно-фиолетовая или розовая окраска указывает на
наличие продуктов нитрования. Реакцией удается обнаруживать
3-4 мг вещества в пробе. Вместо ацетона иногда для этой же
цели рекомендуется метилэтилкетон в присутствии едкого ка-
ли - фиолетовое окрашивание.

Совокупность положительных результатов трех реакций позво-ляет сделать заключение о наличии гексахлорана в исследуемом объекте.

Количественное определение. Количество гексахлорана опре-деляют аргентометрическим способом (индикатор - железо-ам-монийные квасцы) по количеству хлорид-иона, образовавшегося при нагревании гексахлорана на кипящей водяной бане в тече-ние 2 часов с 0,3 н. раствором едкого натра.

Грамм-эквивалент гексахлорана = М/3.

При исследовании порошка ГХЦГ или его дустов целесообраз-но производить отщепление органически связанного хлора дву-мя способами в количественной модификации: при нагревании с раствором едкого натра и при нагревании с металлическим натрием в присутствии этилового спирта. Теоретически при на-

гревании с металлическим натрием в присутствии этилового спирта должны отщепляться все 6 атомов хлора, и соотношение отщепленного хлора должно составлять 1: 2. Практически пол-ного отщепления 6 атомов хлора не достигается и, по данным А. Ф. Рубцова, это соотношение составляет 1: 1,8-1: 1,9.

Колориметрическое и спектрофотометрическое определение ГХЦГ в биологическом материале основано на отщеплении 6 атомов хлора, дальнейшем переведении полученного бензола в мета-динитробензол, который в сильно щелочной среде дает с метилэтилкетоном красно-фиолетовое окрашивание. Последнее колориметрируется или спектрофотометрируется.

Для определения ГХЦГ в крови, моче и каловых массах опи-сана другая методика. Она основана на экстракции пестицида из объекта исследования органическим растворителем (эфир, бензол), хроматографическом отделении от мешающих опреде-лению примесей, восстановлении (после удаления растворителя) ГХЦГ цинком в уксуснокислой среде до бензола, нитровании по-следнего и определении полинитропроизводных по характерной окраске со щелочью в эфирно-спиртовом растворе. Обнаружи-вается 0,01 мг в пробе.

Токсикологическое значение. Токсикологическое значение ГХЦГ определяется широким применением его как инсектицида против большого количества разнообразных насекомых - вре-дителей сельского хозяйства, бытовых вредителей и переносчи-ков болезней, а также против сорных растений. ГХЦГ токсичен при приемах внутрь как для теплокровных животных, так и для человека. Особенно ядовиты масляные растворы гексахлорана. Из изомеров гексахлорана особенно токсичны γ- и γ-изомеры.

Признаки отравления у животных (в эксперименте): возбуж-денное состояние, учащенное дыхание, затем угнетение, некоор-динированные движения, парез задних конечностей, в некоторых случаях судороги и отдельные подергивания. Смерть происходит от остановки дыхания.

Различные животные проявляют разную чувствительность. Кошки и лошади особенно чувствительны к ГХЦГ. Общетокси-ческое действие у людей проявляется головной болью, голово-кружением, общей слабостью, тошнотой. В тяжелых случаях наступают обмороки, утрачиваются двигательная и чувствитель-ная функции нервной системы. Индивидуальная чувствитель-ность к препарату различна у разных людей. Описаны случаи отравлений как производственного, так и бытового характера со смертельным исходом. Смерть наступает, вероятно, в результате поражения центральной нервной и сердечно-сосудистой систем. При вскрытии характерных признаков не наблюдается. Отмеча-ются отеки слизистой оболочки пищевода, желудка, кишечника, полнокровие оболочек мозга, печени, почек, сердца, селезенки и других органов. Смертельная доза гексахлорана для человека не установлена. При повторных введениях отмечается кумуляимя. Из организма гексахлоран выделяется медленно. Судьба его в организме животных в достаточной степени еще не изучена.

Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

1. Галогенирование -

a ) бензола

C 6 H 6 + Cl 2 AlCl 3 → C 6 H 5 -Cl + HCl (хлорбензол)

C 6 H 6 + 6Cl 2 t ,AlCl3 →C 6 Cl 6 + 6HCl ( гексахлорбензол )

C 6 H 6 + Br 2 t,FeCl3 → C 6 H 5 -Br + HBr ( бромбензол )

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ

ГЕКСАХЛОРЦИКЛОГЕКСАН

гексахлорциклогекса́н (ГХЦГ), гексахлоран, бензогексахлорид, вермексан, гаммексан, пультокс, препарат 666, хлорорганический инсектицид комплексного действия. Применяется в растениеводстве и животноводстве. Выпускается в форме технического препарата, 12%-ного дуста, 25%-ного порошка на фосфоритной муке, эмульсий, аэрозолей и дымовых шашек. Для теплокровных животных среднетоксичен (ЛД 50 для лабораторных животных 300—500 мг/кг). Минимальная смертельная доза для кроликов 600 мг/кг, овец 500 мг/кг, взрослого крупного рогатого скота 200 мг/кг, лошадей 100,0 мг/кг. Молодняк, особенно телята, значительно чувствительнее взрослых животных. Симптомы острого отравления: нарушение функции центральной нервной системы (беспокойство, саливация, тремор мышц, ), сердечной деятельности, дыхания; угнетение, адинамия. Смерть от паралича дыхательного центра. Специфических противоядий нет. Лечение симптоматическое. Г. обладает выраженным кумулятивным действием (накапливается в организме животного, органах и тканях плода). Выделяется с молоком и яйцами. Содержание остатков Г. в продуктах животного происхождения не допускается. В кормах для молочного, скота и яйценоской птицы допускается содержание Г. не более 0,05 мг/кг, для откормочных животных — не более 0,2 мг/кг. Запрещается обработка препаратами Г. молочного, убойного скота и птицы, а также помещений, где содержится молочный скот. Ботву картофеля и свёклы запрещается скармливать животным ранее чем через 75 суток после обработки Г. Выпас скота и сенокошение на участках, обработанных Г. , разрешаются только через 30 суток.


Ветеринарный энциклопедический словарь. - М.: "Советская Энциклопедия" . Главный редактор В.П. Шишков . 1981 .

Синонимы :

Смотреть что такое "ГЕКСАХЛОРЦИКЛОГЕКСАН" в других словарях:

    гексахлорциклогексан - гексахлорциклогексан … Орфографический словарь-справочник

    гексахлорциклогексан - сущ., кол во синонимов: 2 гексахлоран (2) яд (134) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    ГЕКСАХЛОРЦИКЛОГЕКСАН - (ГХЦГ, гексахлоран), мол. м. 290,83. Имеет 8 стабильных изомеров, различающихся положением (аксиальным а или экваториальным е)атомов С1 по отношению к плоскости цикла: т. пл. 157,5 158,5 … Химическая энциклопедия

    Гексахлорциклогексан - … Википедия

    ГХЦГ - гексахлорциклогексан … Словарь сокращений русского языка

    Гексахлоран - гексахлорциклогексан, химический препарат, смесь 8 изомеров 1, 2, 3, 4, 5, 6 гексахлорциклогексана. Г. один из важных инсектицидов (См. Инсектициды). Препарат, содержащий 99 100% γ изомера, называется «линдан» … Большая советская энциклопедия

    Стойкие органические загрязнители - Страны подписавшие и ратифицировавшие Стокгольмскую конвенцию Стойкие органические загрязнители, сокращенно СОЗ, редко «Грязная дюжина» веществ (англ. persistent organic pollutants POP) общее наименование наиболее опасных органических… … Википедия

    ПЕСТИЦИДЫ - (от лат. pestis зараза, caedo убиваю) химические средства борьбы с вредоносными или нежелательными микроорганизмами, растениями, животными; природные синтетические вещества. Позволяют сохранить не менее 1/3 урожая и существенно сократить затраты… … Российская энциклопедия по охране труда

    ХЛОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ - ХЛОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ. см. ХЛОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ. Физико химические свойства и применение. Хлорорганические соединения (ХОС) широко применяют в качестве инсектицидов, акарицидов и фунгицидов для борьбы с вредителями зерновых, зерно… … Болезни рыб: Справочник

    Подкласс Открыточелюстные или Настоящие насекомые (Insectа Ectognatha) - Основные сведения о насекомых Из общего числа видов животных, населяющих Землю, на долю насекомых приходится около 70%. Число уже описанных видов приближается к миллиону, но ежегодно специалисты открывают и описывают все новые и… … Биологическая энциклопедия

Основные направления исследований в области ПГУ

К основным направлениям исследований в области ПГУ следует отнести:

Оценку запасов угля под разработку методом ПГУ;

Поиск путей повышения энергетического и химического к.п.д. процесса подземной газификации углей;

Разработку технологии и технико-экономической оценки комплексного использования газов ПГУ в энергетике и химической промышленности;

Получение газа заданного состава, удовлетворяющего требованиям переработки его на химическую продукцию, разработку методов очистки и обогащения газов для обеспечения более экономичного его использования в химической технологии;

Разработку методов управления и контроля состава газов ПГУ;

Технико-экономическое обоснование целесообразности переработки газов ПГУ на химическую продукцию с учетом роста дефицита и стоимости природного газа и нефти;

Разработку методов очистки и их обогащения, а также разработать методы утилизации тепла и выгазованной зоны и газов ПГУ.

Для решения названных проблем уже сейчас необходимо определить перспективные угольные месторождения под разработку, провести исследования по усовершенствованию технологии (выбор оптимальной сетки скважин, методов сбойки, интенсивности и состава дутья и т.д.), определить пригодность существующих схем технологической переработки газов ПГУ, осуществить выбор и конструирование оборудования для скважин и наземного перерабатывающего комплекса, в том числе подбор термо и коррозионностойких материалов и покрытий для скважин и наземных коммуникаций.

Стратегически газ ПГУ может использоваться как местный промышленный энергоисточник на базе работы комплексного предприятия ≪ПГУ- ТЭС≫.

Исключительно перспективен метод ПГУ для снабжения энергией Приморья, где целесообразно в районе ряда закрытых шахт строительство станций ПГУ.

Вопросы к разделу:

1. Технологическая схема станции подземной газификации угля.

2. Стадии процесса газификации угля.

Подземное сжигание серы - метод разработки месторождений само-

родной серы путем ее высокотемпературного окисления на месте залега-

Идея метода восходит к старинной практике выплавки серы из са-

мородных руд за счет тепла сжигания части серы в специальных пе-

чах - ≪калькаронах≫. Первая попытка получения серы при ее частичном

сжи гании под землей была предпринята в 1910 г. итальянским инженером

Д. Фиори, который предлагал сжигать серу на верхних этажах предвари-

тельно подготовленного вертикальными и горизонтальными выработка ми

рудного блока, с тем чтобы на нижних этажах блока собирать сте кающую



жидкую серу. На практике выяснилось, что полученная таким образом

сера содержит много золы и выход ее незначителен.. В 30-е годы XX века

предложения по осуществлению процесса частичного сжигания серы

на месте залегания через скважины с получением серы в виде жидкости

или паров выдвигались австрийским инженером Г. Шмацелем и итальян-

ским Р. Вердерамо. В 1958 г. итальянский инженер Д. Джорджи опубли-

ковал проект разработки ≪верхней горящей зоны≫ рудника Коццо-Дизи

(Сици лия). В проекте предусматривалось как использование сернистого

газа при производстве кислоты, так и выпуск жидкой серы. В 1962-66 гг.

американские инженеры Миллер, а также Уайт и Мосс предложили про-

изводить сжигание ее на месте залегания, подавая воздух для горения и

отводя образованный газообразный сернистый газ через скважины. Дан-

ные эксперименты были проведе ны в США. Метод подземного сжигания

серы с ориентацией на преимущест венное получение сернистого газа

для производства серной кислоты раз рабатывался в 1973-79 гг. МОНИЛ-

Гео ГИГХС. при менительно к необводненной части Гаурдакского серного

месторожде ния (Туркменистан). В 1976-1978 гг. проведены успешные

испытания технологии на опытной установке Гаурдакского серного заво-

да. Показано, что при воз душном дутье температура в очаге горения до-

стигает 1200 °С, при этом в газах сжигания содержится 5-15 % SO2, что

соответствует условиям про изводства серной кислоты. Коэффициент вы-

горания серы в зоне горения превышает в очаге горения 90 %, в среднем

по опытной установке 78,6 %.

Сущность метода заключается в создании в серном пласте управляе-

мого очага горения серы, параметры которого поддерживаются на уровне,

достаточном для получения кондиционного для производства серной кис-

лоты сернистого газа.

Процесс горения серы и обжига серных руд достаточно изучен. Одна-

ко в пластовых условиях этот про цесс осложнен и зависит от структуры

и текстуры серных руд, минералогического и химического состава вме-

щающих пород, от содержания серы в руде, мощности, пористости и про-

ницаемости пласта, от распределения пор и трещин пласта по размерам,

от обводненности пласта, от давления, темпа нагнетания и состава окис-

лителя и др.

Температура воспламенения серы в порах пласта является слож ной

функцией состава реагирующей смеси, характерного диаметра пор, давле-

ния, теплопроводности и наличия примесей в жидкой сере. В част ности,

было показано, что серные пары могут воспламеняться только в порах

размером в несколько миллиметров при температуре свыше темпе ратуры

кипения серы. Таким образом, горение серы происходит только в крупных

порах пласта, не проникая в глубь серных блоков. Образование движуще-

гося внутрипластового очага горения серы приводит к появле нию харак-

терного продольного распределения температуры в виде ≪теп ловой вол-

ны≫, в которой можно выделить зоны предварительного про грева, зону

расплавленной серы, зону горения и зону выгоревшей руды. По мощности

пласта выгорание происходит преимущест венно в верхней части, при этом

у подошвы пласта образуется ≪серная лужа≫. Процесс внутрипластового

сжигания серы происходит в несколь ко стадий. На первой стадии произ-

водится розжиг пласта с поддержани ем температуры очага горения до тех

пор, пока его собственное тепло выделение не превысит тепловые потери.

По мере прогрева пласта сер ные пары из мелкопористых блоков поступа-

ют в более крупные поры и трещины, где происходит их окисление, а часть

серы впереди фронта горения выплавляется из рудных блоков и стекает к

подошве пласта. Та ким образом, на второй стадии процесса очаг горения

продвигается только по наиболее крупным порам и трещинам. При этом

часть не окисленных серных паров

конденсируется в непрогретых зонах, кольматируя пласт. На третьей,

самой длительной стадии процесса происходит догорание серы в блоках

и у подошвы пласта. На каждой из стадий су ществует своя зависимость

между расходом дутья и концентрацией сер нистого газа, что дает возмож-

ность управлять процессом подземного сжигания серы, достигая конди-

ционного состава газов сжигания.

Технология подземного сжигания серы включает в себя следующие

операции:

1. Вскрытие пласта скважинами с обсадкой их металлическими ко-

лоннами труб до кровли пласта. Бурение по пласту производится колон-

ковым способом с отбором керна.

2. Проведение опытных нагнетаний воздуха в скважины с измерени-

ем его давления и расхода во времени для определения фильтрационных

характеристик пласта и его подсушивания. Для выявления возможных

мест утечек газа производится подача в пласт стойких дымов.

3. Розжиг пласта с использованием забойных газовых горелок или пу-

тем спуска в забой горящего кокса. Розжиг прекращается при появлении в

газах сжигания сернистого ангидрида с концентрацией более 3- %.

4. Управление составом газов сжигания путем изменения расхода

воздуха, точки подачи дутья и точки отвода газов.

5. Сбор газов сжигания.

6. Обеспыливание и осушку газов сжигания.

7. Каталитическое доокисление сернистого ангидрида до серного ан-

гидрида, например, в аппаратах двойного контактирования.

8. Получение серной кислоты в олеумном абсорбере.

9. Нейтрализация и утилизация кислых стоков и шламов.

Выполненные исследования показали: что экономич ес ки е п ок аз ат ел и

технологии ПСС могут быть при няты по аналогии с ПГУ в части газифи-

кации и по аналогии переработки сернистых газов цветной металлургии в

части производства серной ки слоты. Расчеты показывают, что по сравне-

нию с базовыми методами производства кислоты из серы и колчедана тех-

нология ПСС экономически выгодна при минимальной производитель-

ности пред приятия 100 тыс. т серной кислоты в год.

Экологические аспекты П СС связаны с гарантией нераспро странения

очага горения за контуры отрабатываемого участка и прорыва токсичных

продуктов сжигания на поверхность. Практика тушения по жаров на сер-

ных рудниках свидетельствует, что существует два основ ных принципа

успешного решения проблемы -прекращение притока воздуха и сниже-

ние температуры очага горения. При случайных пожарах вблизи откры-

той поверхности оба принципа осуществить удается с большим трудом.

При целенаправленной организации очага горения на большой глубине,

как показали опыты, проблема изоляции очага существенно облегчает-

ся. Перерывы в подаче окислителя приводят к значительной кольматации

периферийных зон сконденсированной серой и к самоизоляции участка

сжигания. Подача воды непосредственно в очаг нецелесообразна, так как

вследствие высо ких температур в пласте развивается высокое давление

пара, которое может привести к образованию разрыва пород пласта и

кровли. Наиболее рациональным является законтурное заводнение при

наличии системы соответствующих контрольных скважин.

П ер сп ек ти выП ССиз ад ач и д ал ьн ей ши х и сс ле до ва ни й. Пер-

спективны для ПСС, как показано выше, высокопроницаемые богатые

серные залежи, но их доля в общих ресурсах самородной серы невелика.

Поэтому представляется наиболее целесообразным развитие модифика-

ций метода применительно к малопроницаемым серным рудам и другим

нитам. В частности, показано, что может быть успешно реализован вари-

ант, предусматривающий первоначальное ведение процесса в двух близко

расположенных изолированных скважи нах. После соединения зон плав-

ления вокруг этих скважин образуется сбоечный канал, интенсивность

процесса увеличивается и постепенно в него вовлекаются скважины на

большем расстоянии.

В области получения товарной продукции перспективен поиск техно-

логических схем сернокислотного производства при низкой кон центрации

сернистого газа, схем с восстановлением элементарной серы, например с

использованием образующегося в бескислородных зонах се роводорода.

В целом, метод ПСС является весьма перспективным в качестве воз-

можной альтернативы существующим технологиям производства се ры и

серной кислоты и для восполнения возможного дефицита в этих видах

продукции.

Литература

1. Гридин О.М. Подземное сжигание серы. Дисс. на соиск. ученой степ.

канд. техн. наук М.,ГИГХС,1979.

2. Методические вопросы исследовании в геотехнологии. (Вып.З). Под

ред. В.Ж. Арен-са, ГИГХС, Люберцы, 1979.

3. Гридин О.М., Курицына Л.И., Гвоздев Н.В. Лабораторные исследова-

ния метода под земного сжигания серы. //Бесшахтная добыча горно-хими-

ческого сырья. Тр. ГИГХС, вып. 33, Люберцы, 1975.

4. Аренс В.Ж. , Гридин О.М., Курицына Л.И., Хчеян Г.Х. Основные

закономерности процесса внутрипластового горения серы. Ж. Физи-

ко-технические проблемы разра ботки полезных ископаемых, СО АН

СССР,№3,1980.

5. Шварцштейн Я.В, Кузьмин Г.А. Получение сернистого газа из эле-

ментарной серы., М, Химия, 1972.

6. Miller Wendell S. Burning process for recovering sulfur from the earth.

Pat. USA N 3131919,05.04.1962.

7. White Philip D., Moss John T. In-situ oxidation reaction within a sulfur

formation, contain ing sulfur. Pat. USAN 3410604, 01.12.1966.

8. Цейтлин А.Н. О закономерностях горения серы. Тр. НИОХИМ, т.

12, Л., Госхимиздат, 1959.

9. Г’угель Б.М. Верхние пределы воспламенения серы в кислороде и в

смесях с инертны ми газами. ЖФХ, т. 14, вып. 1, АН СССР, М., 1941.__