Определение рациональных чисел. Рациональные числа, определение, примеры. Определение и примеры рациональных чисел

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n — натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n — натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

Рациональные числа

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b - отрицательно, то a > b . src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435">Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i - номер строки таблицы, в которой располагается ячейка, а j - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Ссылки

Wikimedia Foundation . 2010 .