Почему волчок не падает. Земное притяжение: почему люди не падают с поверхности Земли? Все ли падает вниз: небольшой эксперимент

Джозеф Редьярд Киплинг – английский писатель и поэт, получивший широкую известность благодаря произведениям «Книга джунглей» и «Ким», а также многочисленным стихотворениям.

Киплинг родился в Бомбее 30 декабря 1865 года. Отец его был художником и профессором в школе искусств. Когда Киплинг исполнилось 5 лет, его родители решают отправить его в английский частный пансион.

Уже в юном возрасте Киплинг начинает писать свои первые рассказы. В это время он уже учится Девонском училище. В 1883 году «Гражданская военная газета» начинает публиковать произведения писателя.

В конце 80-х годов Киплинг работает репортером и решает предпринять поездки в Соединенные штаты Америки, попутно делая путевые очерки, которые принесли ему немалую популярность.

В 1989 году Редьярд Киплинг публикует свой первый роман под названием «Свет погас». В эти годы он решает обосноваться в Англии, где создает прекрасные детские романы «Книга джунглей» и «Вторая книга джунглей».

После того, как в 1899 года, будучи в Южной Африке, Киплинг встречает Сесила Родса, произведшего на него большое впечатление, он пишет один из лучших своих романов «Ким». В Африке тем временем идет англо-бурская война. Писатель выпускает военную газету, находясь в действующей армии. Также он посылает репортажи о войне в Англию.

Писатель интересуется политикой, у него аналитический и острый ум. Тем самым он предполагает о возможности войны с Германией, и оказывается прав.

В 1892 году Киплинг женится на Каролине Бейлстир. Вскоре у них появляется двое детей – Жозефина и Джон. Но, к сожалению, судьба писателя и его семьи подвергалась трагическим ударам. Будучи еще ребенком, дочь писателя умирает от воспаления легких. А во время войны с Германией погибает и его сын.

До 1930-х годов Киплинг продолжает писать рассказы, но они не пользуются уже такой популярностью, как ранние произведения. После войны он много путешествует. Писатель умирает в 1936 году в Лондоне в возрасте 70 лет. Его хоронят в Вестминстерском аббатстве.

Редьярд Киплинг привнес немалый вклад в развитие английской литературы. Его произведения широко известны и по сей день.

Биография 2

Джозеф Редьярд Киплинг появился на свет в Индии в 1865 году. Его отец работал в школе искусств профессором. До пяти лет писатель жил вместе с младшей сестрой в Индии, но потом детей отправили в Англию, в частный пансион. Супружеская пара, содержавшая пансион, плохо обращалась с мальчиком, часто наказывали. Все это оказало сильное влияние на Редъярда. Позже, его мать, узнав, как плохо обращаются с ее детьми, забрала их обратно в Индию, но ненадолго.

В возрасте 12 лет юный писатель поступает в частное училище и готовится к поступлению в военную академию. Этот период стал испытанием для мальчика в очках, небольшого роста. Обучение, воспитание было построено на жесткой дисциплине. Именно здесь будущий писатель сформировался как личность. Но близорукость не позволила Киплингу стать военным. Директор училища, знакомый отца, поощрял в молодом человеке увлечение литературой. И после училища, Киплинг при поддержке своего отца становится журналистом в Индии. Работая репортером, писатель так же публикует небольшие рассказы и стихотворения.

В 1888-1889 годах Киплинг путешествует по Азии, США и Англии, активно публикуются его рассказы и стихи. В Англии он решает задержаться, публикует свой первый роман и знакомится с издателем У. Бейлстиром. Молодой человек умирает от тифа, а Редъярд позже женится на сестре покойного, Каролине. Они живут несколько лет в Вермонте (США), в 1894-1895 годах публикуются «Книга джунглей» и «Вторая книга джунглей». После, писатель с семьей возвращается в Англию.

У Киплинга было трое детей, две дочери и один сын. В 1899 году Джозефина умирает от воспаления легких, его старшая дочь. Для писателя это было тяжелое время, он уезжает на некоторое время в Южную Африку, пишет роман «Ким». В этом же году писатель приобретает домик в Англии. В этом загородном доме он пишет книги «Пак с Холмов» и «Награды и феи». Киплинг начинает писать на политические темы. В 1915 году погибает в войне единственный сын писателя, Джон. Его тело так и не нашли. Для Редъярда это стало большой трагедией. Еще четыре года после этого, он надеялся, что его сын еще жив. В 2007 году вышел фильм «Мой мальчик Джек», на основе истории о гибели сына писателя. Дочь Элси прожила долгую жизнь, единственная из трех детей писателя.

Киплинг продолжал писать до самой смерти, но его произведения пользовались все меньшим успехом. В 1922 году писатель путешествует по Франции и знакомится с королем Англии Георгом V, между ними завязывается дружба. В 1936 году Киплинг умирает от прободения язвы. При жизни, из-за неверного диагноза он лечился от гастрита. После смерти писателя, его произведения переосмысливаются и получают вторую жизнь.

Биография по датам и интересные факты. Самое главное.

Наверное, у каждого из нас в детстве была игрушка юла. До чего же интересно было наблюдать за её вращением! И очень хотелось понять, почему неподвижная юла не может стоять вертикально, а когда её запускаешь, она начинает вращаться и не падает, сохраняя устойчивость на одной опоре.

Хотя юла – всего лишь игрушка, она привлекла пристальное внимание физиков. Юла представляет собой один из видов тела, которое в физике называется волчком. Как игрушка, чаще всего она имеет конструкцию, состоящую из двух полуконусов, соединённых вместе, по центру которых проходит ось. Но волчок может иметь и другую форму. Например, шестерёнка часового механизма тоже является волчком, как и гироскоп - насаженный на стержень массивный диск. Простейший волчок состоит из диска, в центр которого вставлена ось.

Ничто не может заставить волчок сохранять вертикальное положение, когда он неподвижен. Но стоит только раскрутить его, как он будет прочно стоять на остром конце. И чем быстрее скорость его вращения, тем устойчивее его положение.

Почему не падает вращающийся волчок

Нажать на картинку

Согласно закону инерции, открытому Ньютоном, все тела, находящиеся в движении, стремятся сохранить направление движения и величину скорости. Соответственно, подчиняется этому закону и вращающийся волчок. Сила инерции препятствует падению волчка, пытаясь сохранить первоначальный характер движения. Конечно, сила тяжести пытается свалить волчок, но чем быстрее он вращается, тем труднее преодолеть силу инерции.

Прецессия волчка

Толкнём волчок, вращающийся против часовой стрелки в направлении, показанном на рисунке. Под воздействием приложенной силы он наклонится влево. Точка А при этом двигается вниз, а точка В вверх. Обе точки согласно закону инерции окажут сопротивление толчку, пытаясь вернуться в исходное положение. В результате возникнет прецессионная сила, направленная перпендикулярно направлению толчка. Волчок отвернёт влево под углом 90 о по отношению к приложенной к нему силе. Если вращение происходило бы по часовой стрелке, он отвернул бы вправо под таким же углом.

Если бы волчок не вращался, то под действием силы тяжести он сразу же упал бы на поверхность, на которой он находится. Но, вращаясь, он не падает, а аналогично другим вращающимся телам получает момент количества движения (угловой момент). Величина этого момента зависит от массы волчка и скорости вращения. Возникает вращающая сила, которая заставляет ось волчка при вращении сохранять угол наклона относительно вертикали.

Со временем скорость вращения волчка снижается, и его движение начинает замедляться. Верхняя его точка постепенно отклоняется от первоначального положения в стороны. Её движение проходит по расходящейся спирали. Это и есть прецессия оси волчка.

Эффект прецессии можно также наблюдать, если, не дожидаясь замедления его вращения, просто толкнуть волчок, т. е. приложить к нему внешнюю силу. Момент приложенной силы изменяет направление момента импульса оси волчка.

Экспериментально подтверждено, что скорость изменения момента импульса вращающегося тела прямо пропорциональна величине приложенного к телу момента силы .

Гироскоп

Нажать на картинку

Если попытаться толкнуть вращающийся волчок, он качнётся и снова примет вертикальное положение. Более того, если его подбросить, то его ось всё равно сохранит своё направление. Это свойство волчка используется в технике.

До того как человечество придумало гироскоп, оно применяло разные способы ориентации в пространстве. Это были отвес и уровень, в основу работы которых была положена гравитация. Позже изобрели компас, который использовал магнетизм Земли, и астролябию, принцип работы которой основан на расположении звёзд. Но в сложных условиях эти приборы не всегда могли работать.

Работа гироскопа, изобретённого в начале XIX века немецким астрономом и математиком Иоганном Боненбергером, не зависела от плохой погоды, тряски, качки или электромагнитных помех. Этот прибор представлял собой тяжёлый металлический диск, через центр которого проходила ось. Вся эта конструкция заключалась в кольцо. Но она имела один существенный недостаток – её работа быстро замедлялась из-за сил трения.

Во второй половине XIX века для разгона и поддержания работы гироскопа было предложено использовать электродвигатель.

В ХХ веке гироскоп заменил компас в самолётах, ракетах, подводных лодках.

В гирокомпасе вращающееся колесо (ротор) устанавливается в кардановом подвесе, представляющем собой универсальную шарнирную опору, в которой закреплённое тело может свободно вращаться одновременно в нескольких плоскостях. Причём направление оси вращения тела останется неизменным независимо от того, как меняется расположение самого подвеса. Такой подвес очень удобно использовать там, где есть качка. Ведь предмет, закреплённый в ней, будет сохранять вертикальное положение несмотря ни на что.

Ротор гироскопа сохраняет свое направление в пространстве. Но Земля вращается. И наблюдателю покажется, что за 24 часа ось ротора делает полный оборот. В гирокомпасе ротор с помощью груза удерживают в горизонтальном положении. Сила тяжести создаёт крутящий момент, и ось ротора всегда направлена строго на север.

Гироскоп стал важнейшим элементом навигационных систем самолетов и морских судов.

В авиации применяется прибор, который называется авиагоризонт. Это гироскопический прибор, с помощью которого определяют углы крена и тангажа.

На основе волчка созданы и гироскопические стабилизаторы. Быстро вращающийся диск препятствует изменению оси вращения, «гасит» качку на кораблях. Такие стабилизаторы используются также в вертолётах для стабилизации их равновесия по вертикали и горизонтали.

Не только волчок может сохранять устойчивое положение относительно оси вращения. Если тело имеет правильную геометрическую форму, при вращении оно также способно сохранять устойчивость.

«Родственники» волчка

У волчка есть «родственники». Это велосипед и винтовочная пуля. На первый взгляд они абсолютно разные. Что же их объединяет?

Каждое из колёс велосипеда можно рассматривать как волчок. Если колёса неподвижны, велосипед валится на бок. А если они катятся, то и он сохраняет равновесие.

А пуля, выпущенная из винтовки, также вертится в полёте, как и волчок. Она ведёт себя так, потому что в стволе винтовки сделаны винтовые нарезы. Проносясь по ним, пуля получает вращательное движение. И в воздухе она сохраняет то же положение, что и в стволе, острым концом вперёд. Точно так же вращаются и пушечные снаряды. В отличие от старых пушек, стрелявших ядрами, дальность полёта и точность попадания таких снарядов выше.

Несмотря на то, что неподвижный волчок невозможно заставить стоять на остром конце, вращающийся волчок может стоять вертикально несколько минут. Вращающиеся волчки, аналогично другим вращающимся телам приобретают так называемый угловой момент (момент количества движения), величина которого зависит от распределения массы волчка и скорости его вращения.

Угловой момент воспроизводит вращающую силу (вращающий момент), которая заставляет ось вращающегося волчка сохранять угол своего наклона относительно вертикали и совершать колебательные движения, называющиеся в технике прецессией. Поскольку трение между опорной поверхностью и волчком вынуждает его терять часть углового момента, волчок постепенно замедляет свое движение и падает.

Несмотря на всю забавность вращающихся волчков, их свойства приносят огромную пользу в различных областях техники. Наиболее важным техническим приложением этих свойств является гироскоп, который похож на большой волчок, смонтированный на поворотной раме. Чрезвычайно чувствительный к изменению направления, вызывающему его прецессию, гироскоп является важнейшим элементом навигационных систем самолетов и морских судов и сделал возможным дистанционное управление системами ориентации космических кораблей.

Прецессия

Находящийся под постоянным воздействием силы тяжести, вращающийся волчок использует свою угловую скорость и гравитационное притяжение для создания боковой вращающей силы. Эта сила заставляет ось собственного вращения волчка совершать круговые движения (прецессировать) вокруг вертикальной оси OZ. Угол наклона оси волчка во время прецессии увеличивается по мере того как волчок теряет свой угловой момент.

Игрушка-перевертыш

Приведенная во вращение, такая игрушка перевернется и начнет вращаться на своей ручке (правый рисунок над текстом). Секрет этого трюка заключается в расположении центра тяжести. Вращающиеся игрушки наиболее устойчивы, когда их центр тяжести лежит высоко над опорной поверхностью. Когда игрушка-перевертыш начинает вращаться (левый рисунок над текстом), ее центр тяжести расположен рядом с опорной поверхностью. Для подъема своего центра тяжести игрушка поворачивается набок и затем становится на ручку, превращая часть своей кинетической энергии в потенциальную и приобретая гораздо большую устойчивость.

Cтраница 3


Формула (92.1) показывает, что угловая скорость прецессии coj тем меньше, чем больше угловая скорость со вращения волчка вокруг его оси симметрии.  

Формула (92.1) показывает, что угловая скорость прецессии со, тем меньше, чем больше угловая скорость со вращения волчка вокруг его оси симметрии.  

Положение оси фигуры (оси симметрии тела) легко установить у любого волчка и наблюдать за ее перемещениями при вращении волчка. Мгновенная ось вращения, вообще говоря, невидима.  

Метальные группы можно рассматривать как симметрические волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка.  

Метальные группы можно рассматривать как симметрические волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка. Часто в молекуле можно различать жесткую основу, с которой связаны один или несколько жестких волчков.  

Внутреннее вращение / т / 1 / а, (VI. 152.  

Метальные группы можно рассматривать как симметричные волчки, у которых равны два момента инерции относительно осей, перпендикулярных к основной оси вращения волчка. Часто в молекуле можно различить жесткую основу, с которой связаны один или несколько жестких же волчков.  

Центр тяжести волчка, ось которого совершает быструю прецессию, практически останавливался и снова приобретал некоторую скорость лишь в последней стадии движения, когда угловая скорость вращения волчка заметно падала.  

При отсутствии вращения около собственной оси его состояние равновесия при вертикальном направлении оси будет неустойчивым (если центр тяжести выше точки опоры); когда угловая скорость вращения волчка около оси сделается достаточно большой, его состояние меростатического вращения становится устойчивым (не только в линейном, но даже и в строгом смысле), если в качестве действующей силы рассматривается только сила веса. Но если принять во внимание сопротивление воздуха, то в уравнения малых колебаний войдут диссипативные силы, и мы теоретически найдем, как это и имеет место в действительности, что угловая скорость, хотя и медленно, будет убывать, так что в конце концов волчок упадет. Исчерпывающее объяснение этого явления будет дано в гл.  

Примером твердого тела, ну неподвижную точку, может служить волчок, заостренный ножки которого упирается в гнездо, сделанное в подставке, так что этот конец ножки при вращении волчка остается неподвижным.  

Для всей молекулы, имеющей массу М, включая вращающуюся группу в равновесном положении, находятся главные центральные оси инерции 1, 2, 3 и главные моменты инерции относительно этих осей / д, 1В, / с; затем проводятся координатные оси волчка, так чтобы ось 2 совпадала с осью вращения волчка, ось х проходила через центр тяжести волчка и была перпендикулярна оси z и ось у проходила через точку пересечения осей х, z и была бы перпендикулярна к ним. Атомы волчка, лежащие на оси вращения z, из дальнейшего рассмотрения исключаются.  

При большой скорости со вращения волчка скорость прецессии ничтожна. Когда вращение волчка ослабевает, всегда наблюдается прецессия.  

Включают электромотор и доводят скорость вращения волчка до 8000 об / мин. При вращении волчка тяжелые минералы оседают и застревают в пазах волчка 5, а легкие отбрасываются вместе с жидкостью на стенки делительных воронок 2 и 6 и через отвод 3 попадают в воронку Бюхнера. Так как фильтрование происходит медленно, включают масляный насос.  

Импетус Бенедетти характеризует направлением, рассматривая его как некий прямолинейный элемент. Так, вращение волчка он объясняет прямолинейностью горизонтального и тангенциального импетусов, уравновешивающих тяжесть частей, к которым они приложены. Пока скорость волчка велика, это позволяет ему сохранять свое положение. Расходуясь, импетусы уступают место тяжести, что ведет к падению волчка. Опираясь на эти рассуждения, Бенедетти показывает, что совершенного естественного движения (а им является только вечное и равномерное круговое движение) быть не может.  

Итак, великану Матифу, чтобы совершить свой подвиг, достаточно было тянуть канат с силою всего 24 фунтов!

Не думайте, что эта цифра – 24 фунта – только теоретическая и что на самом деле потребуется гораздо большее усилие. Напротив, у нас получился результат даже чересчур значительный: при пеньковой веревке и деревянной свае усилие потребуется до смешного ничтожное. Лишь бы веревка была достаточно крепка и могла выдержать натяжение, – тогда даже ребенок, благодаря формуле Эйлера, мог бы, навив веревку 3–4 раза, не только повторить подвиг жюль-верновского исполина, но и превзойти его.

От чего зависит крепость узлов?

В обыденной жизни мы часто пользуемся той выгодой, на которую указывает нам формула Эйлера. Что такое, например, любой узел, как не бечевка, навитая на валик, роль которого в данном случае играет другая часть той же бечевки? Крепость всякого рода узлов – обыкновенных, «беседочных», «морских», – всякого рода завязок, бантов и т. п. зависит исключительно от трения, которое здесь усиливается во много раз вследствие того, что шнурок обвивается вокруг самого себя, как веревка вокруг тумбы. В этом не трудно убедиться, если проследить за изгибами шнурка в узле. Чем больше этих изгибов, чем больше раз бечевка обвивается вокруг самой себя – тем больше «угол навивания» в формуле Эйлера, а следовательно, тем крепче узел.

Бессознательно пользуется формулой Эйлера и портной, когда пришивает пуговицу. Он много раз обматывает нить вокруг захваченного стежком участка сукна и затем обрывает нить. За прочность шитья он может быть спокоен: если только нитка крепка, пуговица не отпорется. Здесь применяется уже знакомое нам правило: с увеличением числа оборотов нитки в арифметической прогрессии крепость шитья возрастает в геометрической прогрессии.

Если бы не было трения, мы не могли бы связать двух бечевок или завязать шнурки ботинок; не могли бы мы пользоваться и пуговицами: нитки размотались бы под их тяжестью, и наш костюм остался бы без единой пуговицы.

Глава третья

Вращательное движение. Центробежная сила

Почему не падает вращающийся волчок?

Без преувеличения можно сказать, что из тысячи людей, забавлявшихся в детстве верчением волчка, едва ли хоть один сможет правильно ответить на этот вопрос. В самом деле: не странно ли, что вращающийся волчок, поставленный вертикально или даже наклонно, не опрокидывается вопреки всяким ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть не действует на этот маленький предмет?

Конечно, никакого исключения из законов природы для волчка не делается. Здесь имеет место лишь чрезвычайно любопытное взаимодействие сил.

Рис. 22. Почему волчок не падает?

На рис. 22 изображен волчок, вращающийся в направлении черных стрелок. Обратите внимание на часть А впереди волчка и на часть В , диаметрально противоположную ей. Часть А стремится двигаться справа налево, не падает? часть В – слева направо. Теперь проследите, какое движение получают эти части, когда вы толкаете ось волчка от себя. Таким толчком вы заставляете часть А двигаться вверх, часть В – вниз, т. е. обе части получают толчок под прямым углом к их собственному движению. Но так как при быстро вращающемся волчке первоначальная скорость частей диска очень велика, то вполне понятно, что волчок как бы сопротивляется попытке опрокинуть его. Чем массивнее волчок и чем быстрее он вращается, тем упорнее сопротивляется он опрокидыванию.

Итак, мы уже знаем, какая причина мешает волчку опрокинуться, несмотря на то, что он находится, казалось бы, в неустойчивом положении. Это хорошо знакомая нам инерция – основное свойство материи, состоящее в том, что всякая материальная частица стремится сохранять неизменным направление своего движения. Мы не будем рассматривать здесь всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы очень подробных объяснений, которые, пожалуй, покажутся скучными большинству читателей. Мы хотели лишь разъяснить причину основного стремления всякого вращающегося тела – сохранять неизменным направление оси вращения. Этим свойством объясняется целый ряд явлений, с которыми мы сталкиваемся в обыденной жизни. Самый искусный велосипедист ни минуты не усидел бы на своем стальном коне, если бы быстро вращающиеся колёса не стремились сохранять горизонтальность своих осей: ведь колёса – те же волчки, только оси их не вертикальны, а горизонтальны. И вот почему так трудно ехать на велосипеде медленно: колёса перестают быть волчками. Ребенок, катящий свой обруч, бессознательно пользуется тем же свойством вращающихся тел: пока обруч находится в быстром вращении, он не падает. Игра с диаболо целиком основана на том же принципе: сначала мы с помощью бечевки приводим двойной конус диаболо в быстрое вращательное движете и затем кидаем его высоко вверх; но, летя вверх и падая затем вниз, вращающийся диаболо не перестает сохранять горизонтальность оси вращения – вот почему его так легко поймать на вытянутую бечевку, снова подкинуть, вновь поймать и т. д. Если бы диаболо не вращался, все это было бы неисполнимо даже для самого искусного жонглера.

Рис. 23. Диаболо легко поймать только потому, что он во время взлета и падения не перестает вращаться.

Искусство жонглеров

Кстати о жонглерах: почти все удивительнейшие «номера» их разнообразной программы основаны опять-таки на стремлении вращающихся тел сохранять направление оси вращения. Позволю себе привести здесь выписку из увлекательной книги современного английского физика, проф. Джона Перри «Вращающийся волчок»:

«Однажды я показывал некоторые из моих опытов перед публикой, пившей кофе и курившей табак в великолепном помещении концертной залы «Виктория» в Лондоне. Я старался заинтересовать моих слушателей, насколько мог, и рассказывал о том, что плоскому кольцу надо сообщить вращение, если его желают бросить так, чтобы можно было наперед указать, куда оно упадет; точно так же поступают, если хотят кому-нибудь бросить шляпу так, чтобы он мог поймать этот предмет палкой. Всегда можно рассчитывать на сопротивление, которое оказывает вращающееся тело, когда изменяют направление его оси. Далее я объяснял моим слушателям, что, отполировав гладко дуло пушки, никогда нельзя рассчитывать на точность прицела; что вращение, в которое приходит обыкновенное ядро, зависит прежде всего от того, каким образом ядро коснется отверстия пушки в момент, когда оно из нее вылетает; вследствие этого теперь делают нарезные дула, т. е. вырезывают на внутренней стороне дула пушек спиралеобразные желоба, в которые приходятся выступы ядра или снаряда, так что последний должен получить вращательное движение, когда сила взрыва пороха заставляет его двигаться по дулу пушки. Благодаря этому снаряд покидает пушку с точно определенным вращательным движением, относительно которого не может возникнуть никакого сомнения». Рис. 26 указывает на вид движения, которое затем совершает снаряд: совершенно так же, как у шляпы или кольца, его ось вращения остается почти параллельной сама себе.