Световая фаза фотосинтеза протекает в. Понятие фотосинтеза, где и что происходит в световую фазу фотосинтеза. Где происходит фотосинтез

Фотосинтез уникальная система процессов создания с помощью хлоро-филла и энергии света органических веществ из неорганических и выделения кислорода в атмосферу, реализуемая в огромных масштабах на суше и в воде.

Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют высокоэнергетические ве-щества (АТФ и НАДФ.Н), образующиеся с участием энергии света, во время световой фазы фотосинтеза. В процессе темновой фазы энергия макроэнергетических связей АТФ преобразуется в химическую энергию органических соединений молекул углеводов. Это значит, что энергия солнечного света как бы консервируется в химических связях между атомами органических ве-ществ, что имеет огромное значение в энергетике биосферы и конкретно для жизнедеятельности всего живого населения нашей планеты.

Фотосинтез происходит в хлоропластах клетки и представляет собой синтез углеводов в хлорофиллоносных клетках, идущий с потреблением энергии сол-нечного света. Различают световую и темповую фазы фотосинтеза. Световая фаза при непосредственном потреблении квантов света обеспечивает про-цесс синтеза необходимой энергией в виде НАДН и АТФ. Темновая фаза — без участия света, но путем многочисленного ряда химических реакций (цикл Кальвина) обеспечивает образование углеводов, главным образом глюкозы. Значение фотосинтеза в биосфере огромно.

На этой странице материал по темам:

  • Фотосинтез световая и темновая фазы реферат

  • Темновая фаза фотосинтеза тест решать

  • Световая фаза и темновая процессы

  • Доклад на тему темновая фаза фотосинтеза

  • Световые реакции фотосинтеза протекают в

Вопросы по этому материалу:

Фотосинтез состоит из двух фаз - световой и темновой.

В световой фазе кванты света (фотоны) взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией- «возбужденное» состояние. Затем избыточная энергия части «возбужденных» молекул преобразуется в теплоту или испускается в виде света. Другая ее часть передается ионам водорода, всегда имеющимся в водном растворе вследствие диссоциации воды. Образовавшиеся атомы водорода непрочно соединяются с органическими молекулами - переносчиками водорода. Ионы гидроксида ОН" отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:

4ОН = О2 + 2Н2О Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является фотолиз - разложение воды под влиянием света. Кроме фотолиза воды энергия солнечного излучения используется в световой фазе для синтеза АТФ и АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путем накапливается энергия, необходимая для процессов в темновой фазе фотосинтеза.

В комплексе химических реакций темновой фазы, для течения которой свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы, и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:

6СО2 + 24Н -» С6Н12О6 + 6НЭО

Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

87. Значение фотосинтеза для растений и для планеты.

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы - биогенного происхождения и является побочным товаром фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу. Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая. Остальные 5-10% приходятся на минеральные соли и азот, полученные из почвы.



Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.

Фотосинтез - один из самых распространенных процессов на Земле, обусловливает круговорот в природе углерода, O2 и др. элементов. Он составляет материальную и энергетическую основу всего живого на планете. Ежегодно в результате фотосинтеза в виде органического вещества связывается около 8 1010 т углерода, образуется до 1011 т целлюлозы. Благодаря фотосинтезу растения суши образуют около 1,8 1011 т сухой биомассы в год; примерно такое же количество биомассы растений образуется ежегодно в Мировом океане. Тропический лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез высших растений и водорослей - единственный источник атмосферного O2. Возникновение на Земле около 2,8 млрд. лет назад механизма окисления воды с образованием O2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником - свободной энергии биосферы, а воду - практически неограниченным источником водорода для синтеза веществ в живых организмах. В результате образовалась атмосфера современного состава, O2 стал доступным для окисления пищи, а это обусловило возникновение высокоорганизованных гетеротрофных организмов (применяют в качестве источника углерода экзогенные органические вещества). Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет около 1,6 1021 кДж в год, что примерно в 10 раз превышает современное энергетическое потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), которая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих организмов (высших растений и водорослей), но используется некоторыми фотосинтезирующими бактериями.



Открытие процесса хемосинтеза С.Н.Виноградским. Характеристика процесса.

Хемосинтез - процесс синтеза из углекислого газа органических веществ, который происходит за счет энергии, выделяемой при окислении аммиака, сероводорода и других химических веществ, в ходе жизнедеятельности микроорганизмов. У хемосинтеза также есть и другое название - хемолитоавтотрофия. Открытие хемосинтеза С. Н. Виноградовским в 1887 году в корне изменило представления науки о типах обмена веществ, являющихся основными для живых организмов. Хемосинтез для многих микроорганизмов является единственным типом питания, так как они способны усваивать углекислый газ как единственный источник углерода. В отличие от фотосинтеза в хемосинтезе вместо энергии света используется энергия, которая образуется в результате окислительно-восстановительных реакций.

Этой энергии должно быть достаточно для синтеза аденозинтрифосфорной кислоты (АТФ), а её количество должно превышать 10 ккал/моль. Некоторые из окисляемых веществ отдают свои электроны в цепь уже на уровне цитохрома, и таким образом создаётся для синтеза восстановителя дополнительный расход энергии. При хемосинтезе биосинтез органических соединений происходит за счет автотрофной ассимиляции углекислого газа, то есть точно таким же образом, как и при фотосинтезе. В результате переноса электронов по цепи дыхательных ферментов бактерий, которые являются встроенными в клеточную мембрану, получается энергия в виде АТФ. Из-за очень большого расхода энергии все хемосинтезирующие бактерии, кроме водородных, образуют довольно мало биомассы, но при этом они окисляют большой объем неорганических веществ. Водородные бактерии используются учеными для получения белка и очистки атмосферы от углекислого газа, особенно это необходимо в замкнутых экологических системах. Существует великое разнообразие хемосинтезирующих бактерий, их большая часть относится к псевдомонадам, также они встречаются среди нитчатых и почкующихся бактерий, лептоспир, спирилл и коринебактерий.

Примеры использования хемосинтеза прокариотами.

Суть хемосинтеза (процесса, открытого российским исследователем Сергеем Николаевичем Виноградским) – получение организмом энергии за счет окислительно-восстановительных реакций, проводимых самим этим организмом с простыми (неорганическими) веществами. Примерами таких реакций может быть окисление аммония до нитрита, или двухвалентного железа до трёхвалентного, сероводорода до серы, и т.п.. Способны к хемосинтезу только определенные группы прокариот (бактерий в широком смысле слова). За счёт хемосинтеза в настоящее время существуют только экосистемы некоторых гидротермалей (мест на дне океана, где есть выходы горячих подземных вод, богатых восстановленными веществами – водородом, сероводородом, сульфидом железа и т.п.), а также крайне простые, состоящие только из бактерий, экосистемы, обнаруженные на большой глубине в разломах горных пород на суше.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света . В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для , независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Фотосинтез – синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света: 6СО 2 +6Н 2 О + Q света →С 6 Н 12 О 6 +6О 2 . Фотосинтез – сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза . Происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента – АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящеёся во внутритилакоидном пространстве. Это приводит к распаду и фотолизу воды: Н 2 О+ Q света →Н + +ОН - . Ионы гидроксида отдают свои электроны, превращаясь в реакционноспособные радикалы ∙ОН: ОН - →∙ОН+е - . Радикалы ∙ОН объединяются, образуя воду и свободный кислород: 4НО∙→ 2Н 2 О+О 2 . Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов – отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идёт на восстановление специфицеского переносчика НАДФ + до НАДФ∙Н 2: 2Н + +2 е - + НАДФ→ НАДФ∙Н 2 . Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1)синтез АТФ; 2) образование НАДФ∙Н 2 ; 3) образование кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ∙Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Темновая фаза . Происходит в строме хлоропласта. Для её реакций нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют цепочку последовательных преобразований углекислого газа (из воздуха), приводящую к образованию глюкозы и других органических веществ. Сначала происходит фиксация СО 2 , акцептором является сахар рибулозобифосфат, катализируется рибулозобифосфаткарбоксилазой. В результате карбоксилирования рибулозобифосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты. Затем происходит цикл реакций, в которых через ряд промежуточных продуктов ФГК преобразуется в глюкозу. Используется энергия АТФ и и НАДФ·Н 2 образованых в световую фазу. (Цикл Кальвина).

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО 2 . Фаза декарбоксилирования - углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.

И НАДФ·H 2 , полученных в световую фазу . Более точно: в темновую фазу происходит связывание углекислого газа (CO 2).

Процесс этот многоступенчатый, в природе существуют два основных пути: C 3 -фотосинтез и C 4 -фотосинтез. Латинская буква C обозначает атом углерода, цифра после нее - количество атомов углерода в первичном органическом продукте темновой фазы фотосинтеза. Так в случае C 3 -пути первичным продуктом считается трехуглеродная фосфоглицериновая кислота, обозначаемая как ФГК. В случае C 4 -пути первым органическим веществом при связывание углекислого газа является четырехуглеродная щавелевоуксусная кислота (оксалоацетат).

C 3 -фотосинтез также называется циклом Кальвина в честь изучившего его ученого. C 4 -фотосинтез включает в себя цикл Кальвина, однако состоит не только из него и называется циклом Хэтча-Слэка. В умеренных широтах обычны C 3 -растения, в тропических - C 4 .

Темновые реакции фотосинтеза протекают в строме хлоропласта .

Цикл Кальвина

Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование - это присоединение молекулы CO 2 , в результате чего образуется карбоксильная группа -COOH. РиБФ - это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):

Химическая формула РиБФ

Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО ). Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии. Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания , что в принципе является вредным для растения.

Катализ реакции присоединения CO 2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты

Химическая формула фосфоглицериновой кислоты

Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H 2 , превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом .

Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала. Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках. Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.

Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.

Цикл Хэтча-Слэка

У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C 4 -фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.

У C 4 -растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO 2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота. Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO 2 , которая далее поступает в цикл Кальвина. Оставшаяся после декарбоксилирования трехуглеродная кислота - пировиноградная - возвращается в клетки мезофилла, где снова превращается в ФЕП.

Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO 2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом. Транспорт CO 2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.