Y x что за функция. Функция у = √х, ее свойства и график — Гипермаркет знаний. Степенная функция iv

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f"\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

Пример 3

Исследуем и построим график функции

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Здравствуйте!

Сегодня у нас необычное занятие. Мы проведем математический урок здоровья.

Вместе с «закреплением» математических знаний мы вспомним основные секреты здоровья.

А эпиграфом урока будут слова «Великая книга здоровья написана математическими символами»

Как вы понимаете эти слова?

Без математических знаний невозможна ни одна наука и даже такая, как наука о здоровье. И в этом мы сегодня убедимся.

Итак, на прошлом уроке мы познакомились с функцией

, её свойствами и графиком.

Подпишите число и тему урока.

Предлагаю вам в процессе опроса определить, какие знания вам сегодня необходимо вспомнить и применить?

2. Актуализация теоретических знаний (фронтальный опрос) (5 мин.)

Задание: Дополнить фразы.

А) Арифметическим квадратным корнем из числа а называется…

В) Выражение не имеет смысла при …

С) Графиком функции является…

D ) Функция имеет отличительные…

E ) По графику функцииможно определить…

Какие мы для себя поставим задачи?

Задачи: совершенствовать умение строить график функции вида y=
, повторить свойства этой функции, проверить усвоение материала по нахождению квадратных корней, через решение выражений и уравнений.

Как вы заметили буквы, обозначающие последовательность фраз - заглавные латинские. В медицине так обозначаются витамины. В данном перечне представлена группа витаминов, которые присутствуют во многих продуктах питания и помогают вам хорошо видеть, быть стойкими перед простудными заболеваниями и стрессовыми ситуациями.

Поэтому, первое правило здоровья - это здоровое и правильное питание.

- Чтобы открыть второй секрет здоровья, сядем правильно и вместе поиграем в математическое лото.

Вычислительная разминка. (8 мин.)

Игра «Математическое лото»

Вычислить

Вычислите, укажите правильный ответ

Какое целое число заключено между
и

Что больше ,
; 3,2 ?

Найти наибольшее значение функции y= на отрезке от 1 до 25

Решить уравнение
=4

Найти наибольший корень уравнения x2 = 4

Вычислить

Вычислить
+

Вычислить

Найти сторону квадрата, если его площадь равна 64 см2

Найти периметр квадрата, если его площадь равна 9 см2

-Второй секрет здоровья - режим дня . Это правильное сочетание и чередование труда, занятий и отдыха. В рубрике «Это интересно!» мы узнаем о режиме дня известного математика.

4. Это интересно! (3 мин.)

Пифагор едва ли не самый популярный ученый за всю историю человечества. Математик, механик, музыкант, олимпийски чемпион древности, имя ни одного ученого не повторяется так часто. Он учредил свою школу, учеников школы называли пифагорейцами. Попасть в пифагорейскую школу было очень трудно. Пифагор выработал для себя и своих учеников особый распорядок дня. Встав до восхода солнца, пифагорейцы шли на морской берег встречать рассвет, делали гимнастические упражнения, завтракали. В конце дня совершали совместные прогулки, морское купание и ужинали, а после ужина - молились богам и читали.

И мы с вами не будем нарушать режим и немного отдохнём. Сядем удобно и следим глазами за шайбой.

5.Физминутка для глаз (2 мин.)

Эта физминутка даёт подсказку о третьем секрете здоровья. О каком?

- Занятие спортом, постоянное движение.

И сейчас мы устроим своеобразное математическое соревнование между парами по проверке ваших знаний по теме урока.

6. Отработка знаний, умений, навыков (10 мин.)

1. Работа в парах (формирование 3 пар).

Задание: найти неточность в предложенных свойствах функции
, отметить выбранный вариант флажком вашей пары, по возможности первыми, и обязательно дать правильную формулировку свойства, иначе ответ переходит следующей паре:

Область определения функции - множество неотрицательных чисел (х≥0).

Область значений функции - множество Z.

3. Функция возрастает.

4. y=0 при x=0; y<0 при x<0; y>0 при x>0

5.Нет наибольшего и наименьшего значения функции.

6. График функции симметричен графику функции у = х², где х≥0 относительно прямой у = х.

7. Практическое применение знаний (10 мин.)

Задание в учебнике № 357 с.84:

Решить графически уравнение один обучающийся у доски с устным объяснением этапов решения.

8. Рефлексия (3 мин.)

Заканчивается наш урок, подведем итоги.

Вам было интересно?

Какие знания и умения должны были применить на уроке?

Что нового открыли для себя на уроке.

А как настроение? Влияет ли настроение на здоровье? Вот и последний секрет - «хорошее настроение».

Положительные эмоции тоже необходимы для здорового образа жизни. Сегодня на занятии вы испытали радость познания, удовлетворенность своими успехами, доброжелательность в общении. Здоровье - это бесценное достояние не только каждого отдельно взятого человека, но и всего общества.

Давайте посмотрим друг на друга, улыбнёмся и этот положительный заряд эмоции возьмём с собой на следующий урок.

Берегите себя, свое здоровье и тогда математические задачи будут решаться быстрей и легче.

9. Домашнее задание (1 мин.)

п.15 № 365; № 367;
№ 344(а).

Спасибо за урок!

Дадим, как обычно, независимой переменной х несколько конкретных значений (неотрицательных, поскольку при х < 0 выражение не имеет смысла) и вычислим соответствующие значения зависимой переменной у. Разумеется, мы будем давать х такие значения, для которых известно точное значение квадратного корня. Итак:

Итак, мы составили таблицу значений функции:

x
0
1
4
6,25 9
y
0
1
2
2,5 3

Построим найденные точки (0; 0), (1;1), (4; 2), (6,25; 2,5), (0;3) на координатной плоскости (рис. 78). Они располагаются некоторой линии, начертим ее (рис. 79). Получили график функции . Обратите внимание: график касается оси у в точке (0; 0). Заметим, что, имея шаблон параболы у = х 2 , можно без труда с его помощью построить график функции , ведь это - ветвь той же параболы, только ориентированная не вверх, а вправо.

Свойства функции
Описывая свойства этой функции, мы, как обычно, будем опираться на ее геометрическую модель - ветвь параболы (рис. 79).

1. Область определения функции - луч ; б) .

Решение, а) Построим график функции у = и выделим его часть на отрезке (рис. 83). Замечаем, что У наим. = 0 (достигается при х = 0), а у наи6 = 2 (достигается при х = 4).

б) Построим график функции у = и выделим его часть на отрезке (рис. 84). Замечаем, что у наим = 1 (достигается при х = 1), а у наиб = (достигается при х = 5).
О т в е т: а) у наим. = 0; у наиб = 2; б) у наим. = 1; ушиб =


Пример 2. Решить уравнение = 6 - х.
Решение.

1) Рассмотрим две функции у = 6 - x и y =
2) Построим график функции у = (рис. 85).
3) Построим график линейной функции у = 6 - х.
Это - прямая, которую можно построить по двум точкам (0; 6) и (6; 0). Прямая изображена на том же чертеже (рис. 85).
4) По чертежу устанавливаем, что графики пересекаются в одной точке А (4; 2). Так ли это на самом деле? Проверим: пара (4; 2) удовлетворяет и уравнению у = и уравнению у = 6 - х.
Это значит, что точка (4; 2) на самом деле служит точкой пересечения построенных графиков. Заданное уравнение имеет один корень 4 - это абсцисса точки А.
Ответ: 4.
Пример 3. Построить график функции
Решение. 1) Перейдем к вспомогательной системе координат с началом в точке (1; -2) (пунктирные прямые х = 1 и у = - 2 на рис. 86).


2) Привяжем функцию у = к новой системе координат.
Для этого выберем контрольные точки для функции у = . , например (0; 0), (1; 1), (4; 2), (9; 3), но строить их будем не в старой, а в новой системе координат (эти точки отмечены на рис. 86). Построим ветвь параболы, проходящую через выбранные точки, - это и есть требуемый график (рис. 87).

Пример 4 . Построить и прочитать график функции y = -
Решение. Выше, в § 8, мы заметили, что график функции у = - f (х) получается из графика функции у = f (x) с помощью преобразования симметрии относительно оси х.
Воспользовавшись этим, построим график функции у = и отобразим его симметрично относительно оси х (рис. 88). Это и будет график функции у = - .

Перечислим свойства функции у = - (по графику):
1. Область определения функции - луч .
8. Функция выпукла вниз.

Решение. Сначала построим график функции у = и выделим его часть на отрезке (рис. 89). Затем построим гиперболу и выделим ее часть на открытом луче (4, + оо) (рис. 90). Наконец, оба «кусочка» изобразим в одной системе координат - это и есть график функции у = f(x) (рис. 91).
Перечислим свойства функции у - f(x), т.е. прочитаем график.

1. Область определения функции - луч и убывает на луче .
8. Функция выпукла вверх на отрезке и выпукла вниз на луче }