Большая энциклопедия нефти и газа. Квантовый выход люминесценции. Основные характеристики люминофоров

Несомненно, все новое привлекательное и манящее. Сегодня все популярнее становится применение элементов светонакопительной энергии, так называемых люминофоров. Такие элементы активно используются на обозначениях в населенных пунктах, на и т.д., все чаще их стали применять в интерьерах, выделяя определенные предметы или целые экспозиции. Естественно у многих возникает вопрос о том, что такое люминофор.

Люминофор - специальный химический состав, обладающий светонакопительной памятью. Свет поглощается из окружающей среды и выделяется в виде световой энергии в условиях затемнения. Люминофоры в готовом виде существуют в природе. По классификации они бывают органического и неорганического происхождения. При наличии необходимых веществ можно приготовить люминофор своими руками.

В производстве и быту чаще применяются фотолюминофоры. Они не растворяются в воде, прекрасно переносят ультрафиолет, не выделяют вредных для здоровья испарений и излучений. Люминофоры такого типа пожаробезопасны, легки в применении и эксплуатации. Свечение выделяемое такими препаратами удерживается в течение суток. Безусловно, заинтересованные пользователи задаются вопросом о том, где купить люминофор. Приобрести люминофоры необходимой расцветки можно у поставщиков различных промышленных товаров, либо в специализированных интернет-магазинах.

Обладают неограниченной сферой применения, начиная от искусства боди-арта и заканчивая оформлением интерьеров и тюнингованием автомобилей. Следуя моде, безусловно, многие попытаются украсить окружающие предметы интересными свечениями, попытавшись сделать люминофор своими руками. Теоритически это возможно. Главное правильно подобрать пропорции расходных материалов и создать оптимальные условия для химической реакции.

Для того чтобы сделать люминофор своими руками, необходимо иметь в наличии и хвойный концентрат.

Для того чтобы был результат, все элементы необходимо брать в чистом виде без примесей. Их можно приобрести в нужном количестве в аптеках. Концентрат растворяют в чистой воде в соотношении 1 г на 50 мл. Определить, что хвойного концентрата достаточно, можно по цвету - он должен быть ярко-желтым. Отдельно необходимо взвесить одинаковые нормы борной кислоты, примерно по 2 грамма. Это можно сделать при помощи весов или чайной ложки.

На заранее подготовленную пластинку алюминия наносится порция борной кислоты, смешивается с хвойным раствором (10 кап.), выравнивается по поверхности (примерно, слой смеси должен быть около 2-3 мм). Пластинку помещают на плитку для прогрева. Важно, чтобы полностью образующиеся пузырьки необходимо аккуратно прокалывать, используя иглу. Сделанный таким образом люминофор своими руками после полного затвердевания будет светиться в темноте.

Здесь представлен один способ изготовления люминофора. На самом деле существует порядка десятка рецептов, некоторые из них представляют собой сложный технологический процесс, требующий специального оборудования и условий.

В физике свечение люминесценции определяется как излуче-ние, избыточное над тепловым излучением тела.

Длительность лю-минесцентного свечения значительно превышает период колебаний световой электромагнитной волны. Вещества, способные генерировать свечение люминесценции («холодный свет»), называют люминофорами. Свечение люминофоров возникает без наг-рева, длительность отличает люминесценцию от других видов хо-лодного излучения (отражение и рассеяние света, свечение Вавилова-Черенкова и др. )

В техническом применении люминесценцию разделяют на два типа: фосфорес-ценцию и флуоресценцию.

Первый вид представляет собой длительное "послесвечение", второй - свечение непосредственно при возбуждении. Резкой гра-ницы между ними нет; так, экран телевизора ярко светится при воз-действии на него электронного луча (флуоресценция) и слабо све-рится еще некоторое время после выключения телевизора (фосфо-ресценция); в абсолютной темноте человеческий глаз способен заметить фосфоресценцию «телевизионного» люминофора через нес-колько часов после выключения.

В физике виды люминесценции различают по способу возбуж-дения люминофора, то есть того вещества, которое мы хотим заставить светиться.

Катодолюминесценция: люминофор возбуждается под действием ударов электронов, сформированных в пучок. Используется она в осциллографических и радиолокационных трубках. Под воздействием управляемого электронного луча светятся экраны наших телевизоров и компьютерных мониторов. Эти же люминофоры реагируют на воздействие «бета-излучение», то есть на электроны, испускаемые радиоактивными веществами при бета-распаде ядер. Люминофоры, чувствительные к электронным ударам, обычно светятся также и под действием альфа-частиц. Следовательно, явление катодолюминесценции может использоваться в технических устройствах для обнаружения ядерных излучений (радиолюминесценция).

Рентгенолюминесценция и Радиолюминесценция. Уже сравнительно давно выпускаются не требующие внешнего питания автономные люминесцентные светильники. Они сделаны в виде запаянных отрезков стеклянных трубок, внутренняя поверхность которых покрыта радиолюминофором , а сама трубка заполнена радиоактивным изотопом водорода - тритием. Тритий испускает электроны с энергией примерно в 5000 электронвольт, которые очень быстро поглощаются воздухом. Поэтому тритиевые светознаки относительно безопасны (пока не нарушена герметичность трубки), а служить могут свыше 10 лет.

Фотолюминесценция. В данном случае люминофор возбуждается:

а) видимым (дневным) светом (наблюдается самостоятельное длительное послесвечение в условиях отсутствия любого излучения, т.е. в условиях темноты),

б) ультрафиолетовым (УФ) светом (флуоресценция - постоянное свечение в видимом диапазоне наблюдается, пока действует источник ультрафиолетового света),

в) инфракрасным (ИК) излучением (фотолюминесцентное свечение в видимом диапазоне наблюдается пока действует источник инфракрасного излучения - например светодиода от дистанционного телевизионного пульта). Одно из технических применений этого эффекта известно всем - это люминесцентные лампы дневного света. Фотолюминесценция при ИК-излучении составляет физическую основу приборов ночного видения, систем для защиты ценных бумаг, а также индикаторов ИК, УФ и рентгеновского излучения.

Электролюминесценция: люминофор возбуждается под дей-ствием постоянного и переменного электрического поля (электролюминесцентные конденсаторы и панели, индикаторы электрическо-го поля). Очень близко по физической сути к явлению электролю-минесценции примыкает излучение светодиодов, так называемая инжекционная электролюминесценция. Светодиоды - полупроводни-ковые точечные источники света, используемые в цифровых инди-каторах и устройствах для воспроизведения изображения. Они дают довольно яркое свечение в красной и зеленой областях спектра.

Другие. Существует еще целый ряд специфических видов люминесценции: хеми-трибо-кандо (пламя), ионо, термолюминесценция. Их физическая сущность ясна из названий. Не опи-сывая их подробно (это сделано в «Физико-энциклопедическом словаре» и подробно - в «Физической энциклопедии» ), отметим лишь, что многие виды люминесценции уси-ливаются при воздействии электрического поля.

Во многих слу-чаях интенсивность люминесценции повышается при применении комбинированных способов возбуждения, как, например, в слу-чае радиотермолюминесценции и электролюминесценции. А инфракрасное излучение (ИК) в момент светоотдачи фотолюминофоров способно значительно повысить затухание их послесвечения.

Биолюминесценция получила свое название не по виду возбуждения, а по самим светящимся объектам. Биолюминесценция - это свечение биологических объектов: светляч-ков, растений и т.д.. Во многих случаях это свечение бактерий. Некоторые типы бактерий светятся за счет хемилюминесценции (в результате естественных процессов окисления); отдельные классы обладают своего рода фотолюминесценцией, при-чем каждый класс характеризуется собственным спектром излуча-емого света, по которому их можно определить.

На этом свой-стве основаны, например, способ и устройство для обнаружения бактерий в атмосфере при облучении ультрафиолетовым светом.

Очень характерно также для практических приложений биолюминесценции изобретение по а.с. № 559695 «Способ диагностики инфекционного гепатита путем исследования сыворотки крови, отличающийся тем, что, с целью повышения точности и сокращения времени исследования, сыворотку крови облучают светом с длиной вол-н 306-315 нм (УФ-диапазон), и регистрируют люминесценцию в области длин волн 320-600 нм (видимый диапазон), и по положению длинноволнового максимума в интервале 485-605 нм устанавливают наличие патологии» (БИ, 1977, № 20). Очевидно, при патологических изменениях в сыворотке крови образуются какие-то микробы (вирусы), излучающие свет с определенной длиной волны; этот факт и использован для и экспресс-анализа.

В технике и лакокрасочной промышленности в основном применяются синтетические (неорганические) люминофоры - синтезированные лабораторным путем вещества, свойства которых наиболее удовлетворяют каким-либо техничес-ким функциям.

Например, для синтеза некоторых видов фотолюминофоров применяются галофосфаты, активированные сурьмой и марганцем . Атомы этих элементов, внедренные в кристаллическую решетку галофосфатов, образуют так называемые люминесцентные центры. Поглощение и излучение энергии, то есть возбуждение и последующее высвечивание связаны с электронными переходами в пределах люминесцентного центра. Соответственно, изменение цвета свечения таких характеристических люмино-форов можно получить, варьируя вид и количество активатора.

Поскольку при возбуждении люминесценции электронами, рентгеновским излучением, альфа-излучением энергия в основном поглощается кристаллической решеткой, то для соот-ветствующих устройств синтезируются такие люминофоры, кристал-лическая решетка которых обладает свойством передавать погло-щенную энергию к люминесцентному центру (рекомбинационные люминофоры). Как правило, в качестве таких люминофоров использу-ются халькогениды металлов второй группы менделеевской табли-цы (халькогениды - химические соединения, имеющие в составе молекулы атомы серы, селена или теллура ).

Например, основу телевизионных лю-минофоров составляют соединения типа сернистого кадмия и сернистого цинка с соответствующими добавками . Этот же тип люминофоров используется и в электролюминесцентных панелях. Цинкосульфидные люминофоры, активированные кобальтом и медью , обла-дают длительным послесвечением (фосфоресценцией), применяются они в различных сигнальных устройствах, указателях, на шкалах приборов и на экранах запоминающих трубок. В светодиодах в основном используются фосфид и арсенид галлия, активированные селеном, теллуром, цинком, кадмием и др.

Особый класс образуют цинкосульфидные и цинк-кадмий-сульфидные люминофоры, активированные серебром . Эти люминофоры в сме-си с прозрачными лаками служат основой люминесцентных самосве-тящихся красок, в последнее время они почти целиком вытеснили недостаточно устойчивые флуоресцентные органические красители типа родамина.

Весьма важны для практических целей антистоксовские лю-минофоры , состоящие из фторидов и окси-хлоридов редкоземельных элементов, активированных ионами эрбия и иттербия. Эти люминофо-ры способны преобразовывать невидимое глазом инфракрасное излучение в видимое разных цветов, например, в зе-леное, красное, голубое и даже близкое ультрафиолетовое излуче-ние. При большой плотности инфракрасного излучения энергети-ческая эффективность преобразования может достигать 90%. Антистоксовские люминофоры составляют основу устройств, предназначенных для визуали-зации инфракрасного излучения, в том числе для визуализации излучения лазеров, работающих в ближней инфракрасной области.

Конечно, запомнить все классы люминофоров вместе с их характерными функциями практически невозможно. Но для этого есть справочники. При анализе задачи важно сформулировать идеальную функцию.

На основании вышеизложенного можно выделить три основных направления практического использования явления люминесценции и люминофоров различного вида.

1. Люминесцентные источники света (например люминесцентные лампы, светодиоды).

2. Индикация различного рода излучений (жидкокристаллические экраны и кинескопы, регистрирующие экраны и т.д.).

3. Использование люминесцирующих добавок для обнаружения различного рода неоднородностей, прежде всего, дефектов типа утечек, методы неразрушающего контроля в металлургии и т.п.

4. Изготовление фотолюминесцентных элементов безопасности (ФЭС).

5. Производство фотолюминесцентных декоративных красящих составов и композиций.

Рассмотрим задачу. Требуется контролировать герметичность сварных изделий. Для определенности допустим, что речь идет о сварке баков, в которых потом будет находиться горячий ядовитый газ. Такие емкости широко применяются в современной химической технологии. Существует множество способов проверки качества швов. Как правило, все они связаны с опрессовкой готовых изде-лий и тем или иным способом визуализации имеющихся дефектов сварки.

Не разбирая их подробно, введем ограничение: контроль герметичности нужен непосредственно в процессе сварки. Достоинства такого способа очевидны, поскольку дефект может быть исправлен сразу же по ходу сварки. Будем считать, что нам уже известна сущность изобретения по а.с. № 277805г. «Способ обнаружения неплотностей в холодиль-ных агрегатах, заполненных фреоном и маслом, преимущественно домашних холодильниках, отличающийся тем, что, с целью повыше-ния точности определения мест утечек, в агрегат вместе с мас-лом вводят УФ-люминофор (флуоресцент), освещают агрегат в полузатененном помещении ультрафиолетовыми лучами и определяют место утечек по свечению люминофора в просачивающемся через неплотности масле» (БИ, 1970, № 25).

Изобретение довольно старое и хорошо известное. Попробуем перенести его идею на решение разбираемой задачи. Технические трудности очевидны: шов еще целиком не заварен, поэтому ни о какой опрессовке и речи быть не может.

Контрольный ответ по этой задаче: а.с. № 331271 «Спо-соб контроля герметичности сварных изделий с помощью люмино-фора, при котором на изделие направляют ультрафиолетовые лучи и судят о герметичности по свечению люминофора, отличающихся тем, что с целью повышения производительности путем осуществле-ния контроля непосредственно в процессе сварки, люминофорную суспензию наносят на внутреннюю поверхность свариваемых дета-лей перед сваркой, а в качестве источника ультрафиолетовых лучей используют сварочную дугу».

Идея люминесцирующих добавок позволила улучшить и тра-диционные виды дефектоскопии.

Так, известен способ определения повреждений поверхности (в виде микротрещин) при помощи флу-оресцентного магнитного порошка; порошок концентрируется около краев трещины и после облучения ультрафиолетовым излучением «высвечивает» местонахождение трещины. Та же идея лежит в основе изобретения способа неразрушающего обнаружения дефектов и трещин на поверхности образца путем выявления агломератов частиц, состоящих из органического флуоресцирующего вещества и магнитного порошка.

В заключение этого раздела приведем несколько примеров, иллюстрирующих техническое применение различных видов люми-несценции.

Радиационный дозиметр , который содержит порошок из мате-риала, обладающего термолюминесцентными свойствами, укреплен-ный на основании из графита или другого материала, способного нагреваться (т.е. поглощать энергию) под действием излучения в диапазоне радиочастот.

В а.с. № 459802 предлагается запоминающий элемент , обеспечивающий оптическое считывание ин-формации. Элемент состоит из слоев проводника (электрода), полупроводника, диэлектрика с остаточной поляризацией (электрета) и слоя электролюминофора, покрытого вторым полупрозрачным электродом. Электрический сигнал, приходящий на элемент, вызывает изменение в полупроводнике, которые, в свою очередь, изменяют поляризацию в диэлектрике. Соответствующие изменения электрического поля визуализируются люминофором.

Интересно также а.с.№636513 « Способ определения интен-сивности собственного свечения воздуха, обусловленного хемилюминесценцией веществ, входящих в его состав, отличающийся тем, что, с целью определения токсичности загрязненного воз-духа, регистрируют спектр свечения в области, где хемилюминесценция обуславливается токсичными веществами, входящими в его состав» (БИ, 1978, № 45) .

Эффект электролюминесценции как эффект индикации напряженнос-ти переменного электрического поля использован при разработке принципиально новой конструкции вольтметра для измерения высоких напряжений. Сильная зависимость яркости свечения электролюминофоров (сульфид цинка, активированный медью) от приложенного напряже-ния обеспечивает весьма высокую чувствительность прибора, а ста-бильность характеристик люминофора - рекордную точность измерения (около 0,1 %) даже на верхних пределах измерения.

Светящаяся краска может стать источником вдохновения и материалом для создания уникальных декоративных эффектов. Она светится в темноте, превращая обычное помещение в сказочное место. Но такой краской декорируют не только интерьер. Люминесцентный пигмент поможет придать необычный вид любой поверхности или предмету. И при этом светящийся состав несложно приготовить своими руками в домашних условиях.

Люминесценция – это способность вещества светиться в темноте за счет накопленной ранее световой энергии. В люминесцентной краске есть такие вещества, как светящиеся пигменты (люминофоры). Они «накапливают свет» за день или в то время, пока включено искусственное освещение. А когда наступает темнота, становится заметно яркое свечение окрашенной поверхности.

Важно! Нельзя путать люминесцентные (люминофорные, самосветящиеся) краски с флуоресцентными. Последние могут светиться только под воздействием ультрафиолетовых лучей (для них нужно покупать специальные лампы).


Люминесцентные краски светятся в темноте за счет накопленной световой энергии

Процесс накапливания и отдачи световой энергии люминофором обратимый, поэтому светящаяся краска будет «работать» годами. Люминофор – физически и химически устойчивое вещество, которое прослужит не менее 30 лет даже снаружи здания. При этом достаточно всего 15–20 минут «подзарядки» ярким светом, чтобы окрашенная поверхность светилась около 8 часов. Яркость свечения зависит от концентрации люминофора в составе краски.

По принципу действия люминесцентные материалы похожи на фосфоресцентные. Но последние содержат опасный для здоровья фосфор. Поэтому их используют очень редко и лишь для наружных работ. А вот материалы на основе люминофора полностью безопасны.

Область применения светящихся красок

Кроме самого люминофора, в светящуюся краску входит прозрачный лак (он выступает основой материала). Именно от свойств лака зависит область применения конкретного состава. Его можно подобрать практически для любой поверхности – металла и пластика, гипсокартона и обоев, бетона и штукатурки, текстиля и древесины, стекла и керамики.

На заметку! Светящийся состав можно наносить на живые цветы и использовать для боди-арта. Но это должна быть акриловая дисперсия на водной основе, безопасная для здоровья.

Часто светящиеся краски используют при выполнении работ по боди-арту

Люминесцентную краску используют:

  • при нанесении дорожной разметки, покраске ограждений и дорожных знаков;
  • для декора внутренних поверхностей (нанесение рисунков на стены, потолки, полы);
  • для покраски мебели и других элементов интерьера;
  • в гриме, сценическом искусстве, при создании театральных костюмов и декораций;
  • во флористике;
  • при изготовлении рекламной продукции (от вывесок до сувениров);
  • в ландшафтном дизайне (от покраски беседок и заборов до создания сложных рисунков на фасадах);
  • в тюнинге автомобилей, велосипедов, мотоциклов (для аэрографии, покраски дисков, колпаков, бамперов, спойлеров);
  • для производства спецодежды работников дорожных и аварийных служб.

Тюнинг автомобиля – одна из сфер применения светящейся краски

Все представленные на рынке составы можно разделить на две большие группы:

  1. Бесцветные (или полупрозрачные). Это лаки, которые при дневном свете практически незаметны. Их можно наносить поверх любого «видимого» рисунка.
  2. Цветные. Эти эмали кроме люминофора имеют в своем составе красящий пигмент (колер). Днем они выглядят как обычные краски, а ночью светятся.

На рынке представлен большой ассортимент люминесцентной краски

Также люминесцентные ЛКМ различаются по составу основы и эксплуатационным свойствам. Среди них есть:

  • Полиуретаново-минеральные эмали. Имеют высокую адгезию и подходят для окрашивания различных пластиков.
  • Водно-дисперсные (акриловые) эмульсии. Безопасны и быстро сохнут.
  • Термостойкие краски. Создают покрытия, которые выдерживают нагрев до +500 °С. Хороши для окрашивания металлических конструкций, стекла, керамики.
  • Водостойкие составы. Создают на окрашенной поверхности тонкую водонепроницаемую пленку. Применяются для окрашивания бассейнов, водоотводов, элементов ванных комнат.

Как приготовить светящуюся краску из порошкового люминофора?

Сделать краску с эффектом свечения можно своими руками. Для этого нужно купить люминофор, подобрать прозрачный лак и растворитель к нему. Также понадобится керамическая или стеклянная посуда для смешивания ингредиентов.

Люминофор нужного цвета можно найти в интернете или магазине стройматериалов. Он довольно дорогой, но 100 г этого порошка хватает для сплошного окрашивания около 8 кв. м поверхности. Цена зависит от цвета свечения: пигменты салатовых, голубых и белых оттенков стоят дешевле, а вот более яркие – красные, оранжевые, синие, зеленые – дороже.


Люминофор – светящийся порошок для изготовления люминесцентной краски

Важно! Лак следует выбирать под ту поверхность, которая будет окрашиваться. Только так готовая краска будет хорошо держаться.

Как сделать светящуюся краску в домашних условиях:

  1. Налить в посуду лак.
  2. Досыпать порошковый люминофор (идеальным считается соотношение, когда состав на 70 % состоит из лака и на 30 % – из светящегося пигмента).
  3. Добавить в смесь немного растворителя (до 1 % от общей массы).
  4. Тщательно размешать.
  5. Если нужно получить окрашенный состав, в посуду добавляют также колер.

Материалы и инструменты, необходимые для приготовления люминесцентной краски

Сделанную таким образом краску используют и хранят так же, как обычный лак аналогичного типа.

При большом желании можно приготовить люминофор своими руками. Правда, для этого понадобится больше стараний и специальные реактивы. Что нужно делать:


Перед тем как сделать люминофор, следует рассчитать необходимый объем светящейся краски. Вполне возможно, что проще и дешевле будет купить в магазине готовый материал. К тому же, «фирменная» краска всегда будет качественнее кустарной, и цвет свечения можно подобрать сразу, без длительных экспериментов. А имея в своем арсенале одну или несколько баночек люминесцентной краски, легко создать необычную вещь, стильный тюнинг или уникальный интерьер.

Люминофор - это вещество, которое способно преобразовывать поглощаемую им энергию в световое излучение. По своей химической природе все люминофоры разделяются на неорганические, большинство из которых относится к кристаллофосфорам, и органические. Самосвечение неорганических люминофоров обусловлено в большинстве случаев присутствием посторонних катионов, которые содержаться в малых количествах (приблизительно до 0,001 %).

Наибольшее распространение на рынке получили фотолюминофоры и электролюминофоры. Они представляют собой смесь очень сложного состава: алюминат стронция, активированный европием, диспрозием, иттрием. Их химическая формула такова: (SrAl2O4):Eu,Dy,Y

Фотолюминофоры на основе алюминатов инертны к водным и сольвентным средам, устойчивы к различным облучениям и обладают послесвечением до 20 часов. Люминофоры по своей природе нетоксичны, пожаровзрывобезопасны, опасное радиоактивное излучение отсутствует.

Фотолюминофор является неопасным веществом по воздействию на организм, класс опасности по компонентам - 4. Люминофор не загрязняет окружающую среду и обладает высокой стабильностью химических реакций.

На этой страничке мы бы хотели показать Вам сравнительные характеристики Люминофоров на основе цинка и алюминат стронциевых люминофоров длительного послесвечения. За основу была взята марка DLO-7D и цинковый люминофор.

Cветящийся в темноте люминисцентный пигмент (люминофор), характеризующийся своей особенностью поглощать энергию естественных/искусственных источников света и выделять ее в форме видимого свечения в темноте. Цикл поглощения света, его сохранения и выделения повторяется многократно на протяжении 30 лет. Пигмент марки DLO-7D состоит из очень тонких кристаллов в основе своей имеющий молекулу алюмината стронция SrAl2O4:Eu,Dy, радикально отличающийся от обычного фосфоресцентного пигмента, который имеет в своей основе сульфид цинка или радиоизотопы с их свойствами самосвечения.

Некоторые преимущества и отличия пигментов Люминофора:

    Период свечения в темноте в 50 раз больше, чем у обычного пигмента, основанного на ZnS

    Активация волнами разной длины (200-450 nm) но лучший результат получается с энергией активации выше 350 nm.

    Не загрязняет окружающую среду, (см.протоколы испытаний, паспорт безопасности и радиалогический протокол) и обладает высокой химической стабильностью.

    Отсутствие опасных для здоровья и радиоактивных веществ.

    Начальная яркость послесвечения как минимум в 10 раз длиннее, чем у радиолюминисцентных и фотолюминесцентных пигментов.

    Увеличение люминесценции и послесвечения с увеличением времени активации

    Превосходные погодная и световая устойчивость пигмента.

Возможности и свойства алюминат стронциевого люминофора марки DLO-7D .

Люминофор DLO-7D продолжает накапливать и сохранять световую энергию, не достигая точки насыщения, гораздо дольше, чем классический фосфоресцентный пигмент. Вышележащий график показывает результаты, когда оба типа пигментов были активированы с помощью D65 источника света интенсивности 200 Lux.

Светостойкость

Алюминат-стронциевый люминофор марки DLO-7D и пигменты основанные на сульфиде цинка-меди были протестированы описанным выше образом и результаты помещены в следующую таблицу.

Возможности и свойства Алюминат стронциевого люминофора марки DLO-7D

Яркость, послесвечение и распространение цвета. При активации, наиболее действенное энергетическое насыщение может быть получено? когда незащищенный пигмент подвергается действию направленного ультрафиолетового луча (UV) солнца, галогеновой лампы, газоразрядной лампы и других световых источников, богатых ультрафиолетом (это можно увидеть также из Кривой Активации и Выделения). Вольфрамовые лампы не очень эффективные активаторы, т.к. выделяют слабый свет в области дальнего УФ-излучения. С другой стороны, т.к. обычные флуоресцентные лампы богаты ультрафиолетовым светом, возможна быстрая активация, если разместить пигмент рядом с ними. Яркость послесвечения также пропорциональна интенсивности ультрафиолета, содержащегося в активирующем свете и времени активации. Источники активирующей энергии.

Характеристики послесвечения

Яркость, послесвечение и распространение цвета
При активации наиболее действенное энергетическое насыщение может быть получено, когда незащищенный пигмент подвергается действию направленного ультрафиолетового луча (UV) солнца, галогеновой лампы, газорязрядной лампы и других световых источников, богатых ультрафиолетом (это можно увидеть также из Кривой Активации и Выделения). Вольфрамовые лампы не очень эффективные активаторы, т.к. выделяют слабый свет в области дальнего УФ-излучения. С другой стороны, т.к. обычные флуоресцентные лампы богаты ультрафиолетовым светом, возможна быстрая активация, если разместить пигмент рядом с ними. Яркость послесвечения так же пропорциональна интенсивности ультрафиолета, содержащегося в активирующем свете и времени активации.

Верхняя кривая показывает характеристики послесвечения Алюминат-стронциевого люминофора SrAl2O4:Eu,Dy в сравнении с пигментом, базирующемся на сульфиде цинка.

Измерения взяты с экранирующих шелковистых поверхностей, которые были активированы 200-люксовым источником света в течение 4 минут.

Как можно видеть из этого графика, SrAl2O4:Eu,Dy в 10 раз ярче и имеет приблизительно в 10 раз более длительное послесвечение, чем пигмент, базирующийся на сульфиде Zn:Cu.

Время активации и яркость послесвечения
SrAl2O4:Eu,Dy продолжает накапливать и сохранять световую энергию (не достигая точки насыщения) гораздо дольше, чем классический фосфоресцентный пигмент. Вышележащий график показывает результаты, когда оба типа пигментов были активированы с использованием D65 источника света интенсивности 200 Lux.

Cтраница 1


Люминофор типа Р15 оказывается малопригодным вследствие особенностей его характеристики спадания послесвечения.  

Пластмассовые люминофоры типа Р - терфинила можно изготовить сколь угодно больших объемов, но они имеют низкую плотность и малый средний атомный номер, а следовательно, пониженную эффективность.  

У люминофоров рекомбинационного типа зависимость между интенсивно-стями излучения и возбуждения является более сложной [ 4, с. Последнее обусловлено тем, что при возбуждении подобных люминофоров центры свечения и элементы решетки основы ионизуются. При этом электроны могут захватываться ловушками, освобождаться и рекомбинировать с центрами свечения, дырками или повторно захватываться ловушками.  

Кроме вышеуказанных, был также исследован люминофор типа Ferrarti L-3. Этот люминофор имеет очень хорошую кривую послесвечения - в виде прямоугольной гистерезисной петли. Такая характеристика позволяет получать свободные от мельканий изображения при очень низкой частоте обновления изображений. Так, например, свободные от мельканий изображения наблюдались при частоте обновления 8 гц. Главным недостатком люминофора L-3 является его склонность к выгоранию при низкой плотности мощности. Несмотря на большое увеличение времени послесвечения, частота обновления, требуемая для получения свободных от мельканий изображений, изменилась незначительно.  

По выключении возбуждающего света затухание свечения люминофоров рекомбинационного типа носит сложный характер [ 2, с. После возбуждения электрон покидает центр свечения и может либо рекомби-нировать с каким-нибудь ионизованным центром, либо быть захваченным ловушкой. Послесвечение обусловлено тем, что электроны могут теплом освобождаться пз ловушек и рекомбинировать с ионизованными центрами до тех пор, пока не опустошатся все ловушки. Следует отметить, что послесвечение у таких люминофоров как ZnS - Cu, ZnS - Си - Со, SrS - Си - Bi может длиться часами после выключения возбуждения.  

В цветной трубке Гудмана проволочные индикаторные полоски предложено заменить люминофором типа Р-16 , дающим ультрафиолетовое излучение. В таком варианте трубки сцинтиллятор не требуется: ультрафиалетовое излучение просто проходит через световод и детектируется.  

Перечень наиболее известных люминофоров и их общих характеристик дан в табл. 8.1. Из этой группы люминофоров наиболее полно были изучены люминофоры типов Р-1 , Р-7 А, P - 7N, Р-19, Р-25, Р-26 и Р-31. Последний люминофор Р-31 (зеленый) в таблицу не включен.  

За последние годы во Всесоюзном научно-исследовательском светотехническом институте (ВНИСИ) в ряде разработок ламп, обладающих высокой световой отдачей и обеспечивающих хорошую цветопередачу, используется ортофосфатный люминофор типа Л-42 ДН.  

Цвет является важным фактором повышения информационной емкости индикаторов. Практически используются двухцветные экраны типа Е, состоящие из перемещающихся полосок люминофора типов Д и С.  

Многие частные вопросы, например, такие, как природа центров свечения самоактивированных люминофоров типа CaWO4 и MgWCU, еще ждут своего решения. Некоторые из господствующих в настоящее время взглядов будут, видимо, постепенно в той или иной мере видоизменяться. Ознакомление будущих специалистов с этими представлениями, с их экспериментальным и логическим обоснованием и составляет задачу дайной книги.  


Необходимость поиска новой более эффективной зеленой компоненты возникла лишь в связи с разработкой эффективных красных люминофоров редкоземельного типа, в результате чего для получения белого цвета в трехцветных приемных трубках большая часть тока луча стала приходиться на зеленый люминофор. Поэтому были исследованы люминофоры, полученные путем активации YVO4 и YP04 этими элементами.  

Скважинная измерительная установка метода ННМ-НТ отличается от скважинного прибора ННМ-Т счетчиками регистрируемых частиц. Индикаторами иадтепловых нейтронов служат пропорциональные борфтористые газоразрядные счетчики и сцинтилляционные счетчики тепловых нейтронов (люминофоры типа ЛДН), окруженные снаружи парафин-кадмиевым или парафин-борным фильтром. Принцип работы таких счетчиков состоит в следующем. Из окружающей среды на скважшгаый прибор поступают нейтроны тепловых и лад-тепловых энергий.  


Фотоэлектрояные умножители монохромных и цветных систем с разверткой бегущим лучом должны иметь конструкцию, обеспечивающую попадание максимального количества света на них и высокую чувствительность. Спектральная чувствительность фотоумножителя должна быть согласована с падающим на него светом. В монохромной системе с люминофором типа Р16 фотоумножитель должен иметь максимальную чувствительность в ультрафиолетовой области, а баллон его должен быть сделан из стекла, пропускающего ультрафиолетовые лучи. В цветных системах спектральные характеристики красного, синего и зеленого фотоумножителей должны быть согласованы со спектром падающего на каждый из них света. Особенно критичным является согласование характеристик фотоумножителя красного канала, так как люминофоры, обычно применяемые в системах с разверткой бегущим лучом, излучают недостаточно энергии в красной области спектра.