Что такое катализатор в химии примеры. Применение катализа в промышленности. Катализаторы гетерогенного окисления

Содержание статьи

КАТАЛИЗ, ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.

Важнейшее свойство катализаторов – селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.

Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти , получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.

Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость – объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность – количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия – доля вещества, превращенного в данной реакции. Селективность – отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход – отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность – количество продуктов реакции, образующихся в единице объема в единицу времени.

ТИПЫ КАТАЛИЗАТОРОВ

Катализаторы классифицируют исходя из природы реакции, которую они ускоряют, их химического состава или физических свойств. Каталитическими свойствами обладают в той или иной степени практически все химические элементы и вещества – сами по себе или, чаще, в различных сочетаниях. По своим физическим свойствам катализаторы делятся на гомогенные и гетерогенные. Гетерогенные катализаторы – это твердые вещества, гомогенные диспергированы в той же газовой или жидкой среде, что и реагирующие вещества.

Многие гетерогенные катализаторы содержат металлы. Некоторые металлы, особенно относящиеся к VIII группе периодической системы элементов, обладают каталитической активностью сами по себе; типичный пример – платина. Но большинство металлов проявляют каталитические свойства, находясь в составе соединений; пример – глинозем (оксид алюминия Al 2 O 3).

Необычным свойством многих гетерогенных катализаторов является большая площадь их поверхности. Они пронизаны многочисленными порами, суммарная площадь которых иногда достигает 500 м 2 на 1 г катализатора. Во многих случаях оксиды с большой площадью поверхности служат подложкой, на которой в виде небольших кластеров осаждаются частички металлического катализатора. Это обеспечивает эффективное взаимодействие реагентов в газовой или жидкой фазе с каталитически активным металлом. Особый класс гетерогенных катализаторов составляют цеолиты – кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия). Хотя многие гетерогенные катализаторы обладают большой площадью поверхности, обычно они имеют лишь небольшое число активных центров, на долю которых приходится малая часть суммарной поверхности. Катализаторы могут утрачивать свою активность в присутствии небольших количеств химических соединений, называемых каталитическими ядами. Эти вещества связываются с активными центрами, блокируя их. Определение структуры активных центров является предметом интенсивных исследований.

Гомогенные катализаторы имеют различную химическую природу – кислоты (Н 2 SO 4 или Н 3 РО 4), основания (NaOH), органические амины, металлы, чаще всего переходные (Fe или Rh), в форме солей, металлоорганических соединений или карбонилов. К катализаторам относятся также ферменты – белковые молекулы, регулирующие биохимические реакции. Активный центр некоторых ферментов содержит атом металла (Zn, Cu, Fe или Mo). Металлсодержащие ферменты катализируют реакции с участием малых молекул (О 2 , CO 2 или N 2). Ферменты обладают очень высокой активностью и селективностью, но работают только при определенных условиях, таких, в которых протекают реакции в живых организмах. В промышленности часто используют т.н. иммобилизованные ферменты.

КАК РАБОТАЮТ КАТАЛИЗАТОРЫ

Энергетика.

Любая химическая реакция может протекать лишь при условии, что реагенты преодолеют энергетический барьер, а для этого они должны приобрести определенную энергию. Как мы уже говорили, каталитическая реакция X ® Y состоит из ряда последовательных стадий. Для протекания каждой из них необходима энергия E , называемая энергией активации. Изменение энергии вдоль координаты реакции представлено на рис. 1.

Рассмотрим сначала некаталитический, «тепловой» путь. Чтобы реакция смогла осуществиться, потенциальная энергия молекул X должна превысить энергетический барьер E т. Каталитическая же реакция состоит из трех стадий. Первая – образование комплекса Х-Кат. (хемосорбция), энергия активации которой равна Е адс. Вторая стадия – перегруппировка Х-Кат. ® Y-Кат. с энергией активации Е кат, и наконец, третья – десорбция с энергией активации Е дес; Е адс, Е кат и Е дес много меньше Е т. Поскольку скорость реакции экспоненциально зависит от энергии активации, каталитическая реакция протекает значительно быстрее тепловой при данной температуре.

Катализатор можно уподобить инструктору-проводнику, который ведет альпинистов (реагирующие молекулы) через горный хребет. Он проводит одну группу через перевал и затем возвращается за следующей. Путь через перевал лежит значительно ниже того, который лежит через вершину (тепловой канал реакции), и группа совершает переход быстрее, чем без проводника (катализатора). Возможно даже, что самостоятельно группа вообще не смогла бы преодолеть хребет.

Теории катализа.

Для объяснения механизма каталитических реакций были предложены три группы теорий: геометрические, электронные и химическая. В геометрических теориях основное внимание обращено на соответствие между геометрической конфигурацией атомов активных центров катализатора и атомов той части реагирующих молекул, которая ответственна за связывание с катализатором. Электронные теории исходят из представления, что хемосорбция обусловливается электронным взаимодействием, связанным с переносом заряда, т.е. эти теории связывают каталитическую активность с электронными свойствами катализатора. Химическая теория рассматривает катализатор как химическое соединение с характерными свойствами, которое образует химические связи с реагентами, в результате чего формируется нестабильный переходный комплекс. После распада комплекса с высвобождением продуктов катализатор возвращается в исходное состояние. Последняя теория считается сейчас наиболее адекватной.

На молекулярном уровне каталитическую газофазную реакцию можно представить следующим образом. Одна реагирующая молекула связывается с активным центром катализатора, а другая взаимодействует с ней, находясь непосредственно в газовой фазе. Возможен и альтернативный механизм: реагирующие молекулы адсорбируются на соседних активных центрах катализатора, а потом взаимодействуют друг с другом. По-видимому, именно таким образом протекает большинство каталитических реакций.

Другая концепция предполагает, что существует связь между пространственным расположением атомов на поверхности катализатора и его каталитической активностью. Скорость одних каталитических процессов, в том числе многих реакций гидрирования, не зависит от взаимного расположения каталитически активных атомов на поверхности; скорость других, напротив, существенно изменяется при изменении пространственной конфигурации поверхностных атомов. В качестве примера можно привести изомеризацию неопентана в изопентан и одновременный крекинг последнего до изобутана и метана на поверхности катализатора Pt-Al 2 O 3 .

ПРИМЕНЕНИЕ КАТАЛИЗА В ПРОМЫШЛЕННОСТИ

Тот бурный промышленный рост, который мы сейчас переживаем, был бы невозможен без развития новых химических технологий. В значительной мере этот прогресс определяется широким применением катализаторов, с помощью которых низкосортное сырье превращается в высокоценные продукты. Образно говоря, катализатор – это философский камень современного алхимика, только он превращает не свинец в золото, а сырье в лекарства, пластмассы, химические реактивы, топливо, удобрения и другие полезные продукты.

Пожалуй, самый первый каталитический процесс, который человек научился использовать, – это брожение. Рецепты приготовления алкогольных напитков были известны шумерам еще за 3500 до н.э. См . ВИНО; ПИВО.

Значительной вехой в практическом применении катализа стало производство маргарина каталитическим гидрированием растительного масла. Впервые эта реакция в промышленном масштабе была осуществлена примерно в 1900. А начиная с 1920-х годов один за другим были разработаны каталитические способы получения новых органических материалов, прежде всего пластмасс. Ключевым моментом стало каталитическое получение олефинов, нитрилов, эфиров, кислот и т.д. – «кирпичиков» для химического «строительства» пластмасс.

Третья волна промышленного использования каталитических процессов приходится на 1930-е годы и связана с переработкой нефти. По своему объему это производство вскоре оставило далеко позади все другие. Переработка нефти состоит из нескольких каталитических процессов: крекинга, риформинга, гидросульфирования, гидрокрекинга, изомеризации, полимеризации и алкилирования.

И наконец, четвертая волна в использовании катализа связана с охраной окружающей среды. Наиболее известное достижение в этой области – создание каталитического нейтрализатора выхлопных газов автомобилей. Каталитические нейтрализаторы, которые устанавливают на автомобили с 1975, сыграли большую роль в улучшении качества воздуха и сберегли таким образом много жизней.

За работы в области катализа и смежных областей было присуждено около десятка Нобелевских премий.

О практической значимости каталитических процессов свидетельствует тот факт, что на долю азота, входящего в состав полученных промышленным путем азотсодержащих соединений, приходится около половины всего азота, входящего в состав пищевых продуктов. Количество соединений азота, образующихся естественным путем, ограничено, так что производство пищевого белка зависит от количества азота, вносимого в почву с удобрениями. Невозможно было бы прокормить и половину человечества без синтетического аммиака, который получают почти исключительно с помощью каталитического процесса Габера – Боша.

Область применения катализаторов постоянно расширяется. Важно и то, что катализ позволяет значительно повысить эффективность ранее разработанных технологий. В качестве примера можно привести усовершенствование каталитического крекинга благодаря использованию цеолитов.

Гидрирование.

Большое число каталитических реакций связано с активацией атома водорода и какой-либо другой молекулы, приводящей к их химическому взаимодействию. Этот процесс называется гидрированием и лежит в основе многих этапов переработки нефти и получения жидкого топлива из угля (процесс Бергиуса).

Производство авиационного бензина и моторного топлива из угля было развито в Германии во время Второй мировой войны, поскольку в этой стране нет нефтяных месторождений. Процесс Бергиуса заключается в непосредственном присоединении водорода к углю. Уголь нагревают под давлением в присутствии водорода и получают жидкий продукт, который затем перерабатывают в авиационный бензин и моторное топливо. В качестве катализатора используют оксид железа, а также катализаторы на основе олова и молибдена. Во время войны на 12 заводах Германии с помощью процесса Бергиуса получали примерно 1400 т жидкого топлива в сутки.

Другой процесс, Фишера – Тропша, состоит из двух стадий. Вначале уголь газифицируют, т.е. проводят реакцию его с водяным паром и кислородом и получают смесь водорода и оксидов углерода. Эту смесь превращают в жидкое топливо с помощью катализаторов, содержащих железо или кобальт. С окончанием войны производство синтетического топлива из угля в Германии было прекращено.

В результате повышения цен на нефть, последовавшего за нефтяным эмбарго в 1973–1974, были предприняты энергичные усилия по разработке экономически выгодного способа получения бензина из угля. Так, прямое ожижение угля можно проводить более эффективно, используя двухстадийный процесс, в котором сначала уголь контактирует с алюмокобальтомолибденовым катализатором при относительно низкой, а затем при более высокой температуре. Стоимость такого синтетического бензина выше, чем получаемого из нефти.

Аммиак.

Один из самых простых с химической точки зрения процессов гидрирования – синтез аммиака из водорода и азота. Азот весьма инертное вещество. Для разрыва связи N–N в его молекуле необходима энергия порядка 200 ккал/моль. Однако азот связывается с поверхностью железного катализатора в атомарном состоянии, и для этого нужно всего 20 ккал/моль. Водород связывается с железом еще более охотно. Синтез аммиака протекает следующим образом:

Этот пример иллюстрирует способность катализатора ускорять в равной степени как прямую, так и обратную реакцию, т.е. тот факт, что катализатор не изменяет положение равновесия химической реакции.

Гидрирование растительного масла.

Одна из важнейших в практическом отношении реакций гидрирования – неполное гидрирование растительных масел до маргарина, кулинарного жира и других пищевых продуктов. Растительные масла получают из соевых бобов, семян хлопчатника и других культур. В их состав входят эфиры, а именно триглицериды жирных кислот с разной степенью ненасыщенности. Олеиновая кислота СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН имеет одну двойную связь С=С, линолевая кислота – две и линоленовая – три. Присоединение водорода с разрывом этой связи предотвращает окисление масел (прогоркание). При этом повышается их температура плавления. Твердость большинства получаемых продуктов зависит от степени гидрирования. Гидрирование проводят в присутствии мелкодисперсного порошка никеля, нанесенного на подложку, или никелевого катализатора Ренея в атмосфере водорода высокой степени очистки.

Дегидрирование.

Дегидрирование – это тоже важная в промышленном отношении каталитическая реакция, хотя масштабы ее применения несравнимо меньше. С ее помощью получают, например, стирол – важный мономер. Для этого дегидрируют этилбензол в присутствии катализатора, содержащего оксид железа; протеканию реакции способствуют также калий и какой-нибудь структурный стабилизатор. В промышленных масштабах осуществляют дегидрирование пропана, бутана и других алканов. Дегидрированием бутана в присутствии алюмохромового катализатора получают бутены и бутадиен.

Кислотный катализ.

Каталитическая активность большого класса катализаторов обусловливается их кислотными свойствами. Согласно И.Брёнстеду и Т.Лоури, кислота – это соединение, способное отдавать протон. Сильные кислоты легко отдают свои протоны основаниям. Концепция кислотности получила дальнейшее развитие в работах Г.Льюиса, который дал определение кислоты как вещества, способного принимать электронную пару от вещества-донора с образованием ковалентной связи за счет обобществления этой электронной пары. Эти идеи вместе с представлениями о реакциях с образованием карбений-ионов помогли понять механизм разнообразных каталитических реакций, особенно тех, в которых участвуют углеводороды.

Силу кислоты можно определить с помощью набора оснований, изменяющих цвет при присоединении протона. Оказывается, некоторые промышленно важные катализаторы ведут себя как очень сильные кислоты. К ним относится катализатор процесса Фриделя – Крафтса, такой, как HCl-AlCl 2 O 3 (или HAlCl 4), и алюмосиликаты. Сила кислоты – это очень важная характеристика, поскольку от нее зависит скорость протонирования – ключевого этапа процесса кислотного катализа.

Активность таких катализаторов, как алюмосиликаты, применяющихся при крекинге нефти, определяется присутствием на их поверхности кислот Брёнстеда и Льюиса. Их структура аналогична структуре кремнезема (диоксида кремния), в котором часть атомов Si 4+ замещена атомами Al 3+ . Лишний отрицательный заряд, возникающий при этом, может быть нейтрализован соответствующими катионами. Если катионами являются протоны, то алюмосиликат ведет себя как кислота Брёнстеда:

Активность кислотных катализаторов обусловливается их способностью реагировать с углеводородами с образованием в качестве промежуточного продукта карбений-иона. Алкилкарбений-ионы содержат положительно заряженный углеродный атом, связанный с тремя алкильными группами и/или атомами водорода. Они играют важную роль как промежуточные продукты, образующиеся во многих реакциях с участием органических соединений. Механизм действия кислотных катализаторов можно проиллюстрировать на примере реакции изомеризации н -бутана в изобутан в присутствии HCl-AlCl 3 или Pt-Cl-Al 2 O 3 . Сначала малое количество олефина С 4 Н 8 присоединяет положительно заряженный ион водорода кислотного катализатора с образованием третичного карбений-иона. Затем отрицательно заряженный гидрид-ион Н – отщепляется от н -бутана с образованием изобутана и вторичного бутилкарбений-иона. Последний в результате перегруппировки превращается в третичный карбений-ион. Эта цепочка может продолжаться с отщеплением гидрид-иона от следующей молекулы н -бутана и т.д.:

Существенно, что третичные карбений-ионы более стабильны, чем первичные или вторичные. Вследствие этого на поверхности катализатора присутствуют в основном именно они, а потому основным продуктом изомеризации бутана является изобутан.

Кислотные катализаторы широко применяются при переработке нефти – крекинге, алкилировании, полимеризации и изомеризации углеводородов . Установлен механизм действия карбений-ионов, играющих роль катализаторов в этих процессах. При этом они участвуют в целом ряде реакций, включая образование малых молекул путем расщепления больших, соединение молекул (олефина с олефином или олефина с изопарафином), структурную перегруппировку путем изомеризации, образование парафинов и ароматических углеводородов путем переноса водорода.

Одно из последних применений кислотного катализа в промышленности – получение этилированных топлив присоединением спиртов к изобутилену или изоамилену. Добавление кислородсодержащих соединений в бензин уменьшает концентрацию оксида углерода в выхлопных газах. Метил-трет -бутиловый эфир (МТБЭ) с октановым числом смешения 109 тоже позволяет получить высокооктановое топливо, необходимое для работы автомобильного двигателя с высокой степенью сжатия, не прибегая к введению в бензин тетраэтилсвинца. Организовано также производство топлив с октановыми числами 102 и 111.

Основной катализ.

Активность катализаторов обусловливается их основными свойствами. Давним и хорошо известным примером таких катализаторов является гидроксид натрия, применяющийся для гидролиза или омыления жиров при получении мыла, а один из последних примеров – катализаторы, используемые при производстве полиуретановых пластиков и пенопластов. Уретан образуется при взаимодействии спирта с изоцианатом, а ускоряется эта реакция в присутствии оснóвных аминов. В ходе реакции происходит присоединение основания к атому углерода в молекуле изоцианата, в результате чего на атоме азота появляется отрицательный заряд и его активность по отношению к спирту повышается. Особенно эффективным катализатором является триэтилендиамин. Полиуретановые пластики получают при взаимодействии диизоцианатов с полиолами (полиспиртами). Когда изоцианат реагирует с водой, ранее образовавшийся уретан разлагается с выделением CO 2 . При взаимодействии смеси полиспиртов и воды с диизоцианатами образующийся пенополиуретан вспенивается газообразным CO 2 .

Катализаторы двойного действия.

Эти катализаторы ускоряют реакции двух типов и дают лучшие результаты, чем при пропускании реагентов последовательно через два реактора, каждый из которых содержит только один тип катализатора. Это связано с тем, что активные центры катализатора двойного действия находятся очень близко друг к другу, и промежуточный продукт, образующийся на одном из них, тут же превращается в конечный продукт на другом.

Хороший результат дает объединение катализатора, активирующего водород, с катализатором, способствующим изомеризации углеводородов. Активацию водорода осуществляют некоторые металлы, а изомеризацию углеводородов – кислоты. Эффективным катализатором двойного действия, который применяется при переработке нефти для превращения нафты в бензин, является мелкодисперсная платина, нанесенная на кислый глинозем. Конверсия таких составляющих нафты, как метилциклопентан (МЦП), в бензол повышает октановое число бензина. Сначала МЦП дегидрируется на платиновой части катализатора в олефин с тем же углеродным остовом; затем олефин переходит на кислотную часть катализатора, где изомеризуется до циклогексена. Последний переходит на платиновую часть и дегидрируется до бензола и водорода.

Катализаторы двойного действия существенно ускоряют риформинг нефти. Их используют для изомеризации нормальных парафинов в изопарафины. Последние, кипящие при тех же температурах, что и бензиновые фракции, ценны тем, что обладают более высоким октановым числом по сравнению с неразветвленными углеводородами. Кроме того, превращение н -бутана в изобутан сопровождается дегидрированием, способствуя получению МТБЭ.

Стереоспецифическая полимеризация.

Важной вехой в истории катализа явилось открытие каталитической полимеризации a -олефинов с образованием стереорегулярных полимеров. Катализаторы стереоспецифической полимеризации были открыты К.Циглером, когда он пытался объяснить необычные свойства полученных им полимеров. Другой химик, Дж.Натта, предположил, что уникальность полимеров Циглера определяется их стереорегулярностью. Эксперименты по дифракции рентгеновских лучей показали, что полимеры, полученные из пропилена в присутствии катализаторов Циглера, высококристалличны и действительно имеют стереорегулярную структуру. Для описания таких упорядоченных структур Натта ввел термины «изотактический» и «синдиотактический». В том случае, когда упорядоченность отсутствует, используется термин «атактический»:

Стереоспецифическая реакция протекает на поверхности твердых катализаторов, содержащих переходные металлы групп IVA–VIII (такие, как Ti, V, Cr, Zr), находящиеся в неполностью окисленном состоянии, и какое-либо соединение, содержащее углерод или водород, который связан с металлом из групп I–III. Классическим примером такого катализатора является осадок, образующийся при взаимодействии TiCl 4 и Al(C 2 H 5) 3 в гептане, где титан восстановлен до трехвалентного состояния. Эта исключительно активная система катализирует полимеризацию пропилена при обычных температуре и давлении.

Каталитическое окисление.

Применение катализаторов для управления химизмом процессов окисления имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще нужно, чтобы окисление было неполным, например во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, содержащие такие функциональные группы, как –СНО, –СООН, –С–СО, –СN. При этом применяются как гомогенные, так и гетерогенные катализаторы. Примером гомогенного катализатора является комплекс переходного металла, который используется для окисления пара -ксилола до терефталевой кислоты, эфиры которой служат основой производства полиэфирных волокон.

Катализаторы гетерогенного окисления.

Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление проходит в два этапа. Сначала кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид восстанавливается. Восстановленный оксид взаимодействует с кислородом и возвращается в исходное состояние. Используя ванадиевый катализатор, неполным окислением нафталина или бутана получают фталевый ангидрид.

Получение этилена путем дегидродимеризации метана.

Синтез этилена посредством дегидродимеризации позволяет превращать природный газ в более легко транспортируемые углеводороды. Реакцию 2CH 4 + 2O 2 ® C 2 H 4 + 2H 2 O проводят при 850° С с использованием различных катализаторов; наилучшие результаты получены с катализатором Li-MgO. Предположительно реакция протекает через образование метильного радикала путем отщепления атома водорода от молекулы метана. Отщепление осуществляется неполностью восстановленным кислородом, например О 2 2– . Метильные радикалы в газовой фазе рекомбинируют с образованием молекулы этана и в ходе последующего дегидрирования превращаются в этилен. Еще один пример неполного окисления – превращение метанола в формальдегид в присутствии серебряного или железомолибденового катализатора.

Цеолиты.

Цеолиты составляют особый класс гетерогенных катализаторов. Это алюмосиликаты с упорядоченной сотовой структурой, размер ячеек которой сравним с размером многих органических молекул. Их называют еще молекулярными ситами. Наибольший интерес представляют цеолиты, поры которых образованы кольцами, состоящими из 8–12 ионов кислорода (рис. 2). Иногда поры перекрываются, как у цеолита ZSМ-5 (рис. 3), который используется для высокоспецифичного превращения метанола в углеводороды бензиновой фракции. Бензин содержит в значительных количествах ароматические углеводороды и поэтому имеет высокое октановое число. В Новой Зеландии, например, с помощью этой технологии получают треть всего потребляемого бензина. Метанол же получают из импортируемого метана.


Катализаторы, составляющие группу Y-цеолитов, существенно повышают эффективность каталитического крекинга благодаря в первую очередь своим необычным кислотным свойствам. Замена алюмосиликатов цеолитами позволяет увеличить выход бензина более чем на 20%.

Кроме того, цеолиты обладают селективностью в отношении размера реагирующих молекул. Их селективность обусловлена размером пор, через которые могут проходить молекулы лишь определенных размеров и формы. Это касается как исходных веществ, так и продуктов реакции. Например, вследствие стерических ограничений пара -ксилол образуется легче, чем более объемные орто - и мета -изомеры. Последние оказываются «запертыми» в порах цеолита (рис. 4).

Применение цеолитов произвело настоящую революцию в некоторых промышленных технологиях – депарафинизации газойля и машинного масла, получении химических полупродуктов для производства пластмасс алкилированием ароматических соединений, изомеризации ксилола, диспропорционировании толуола и каталитическом крекинге нефти. Особенно эффективен здесь цеолит ZSM-5.

Катализаторы и охрана окружающей среды.

Применение катализаторов для уменьшения загрязнения воздуха началось в конце 1940-х годов. В 1952 А.Хаген-Смит установил, что углеводороды и оксиды азота, входящие в состав выхлопных газов, реагируют на свету с образованием оксидантов (в частности, озона), которые оказывают раздражающее действие на глаза и дают другие нежелательные эффекты. Примерно в это же время Ю.Хоудри разработал способ каталитической очистки выхлопных газов путем окисления CO и углеводородов до CO 2 и Н 2 О. В 1970 была сформулирована Декларация о чистом воздухе (уточненная в 1977, расширенная в 1990), согласно которой все новые автомобили, начиная с моделей 1975, должны снабжаться каталитическими нейтрализаторами выхлопных газов. Были установлены нормы для состава выхлопных газов. Поскольку соединения свинца, добавляемые в бензин, отравляют катализаторы, принята программа поэтапного отказа от них. Обращалось внимание и на необходимость снижения содержания оксидов азота.

Специально для автомобильных нейтрализаторов созданы катализаторы, в которых активные компоненты нанесены на керамическую подложку с сотовой структурой, через ячейки которой проходят выхлопные газы. Подложку покрывают тонким слоем оксида металла, например Al 2 O 3 , на который наносят катализатор – платину, палладий или родий. Содержание оксидов азота, образующихся при сжигании природных топлив на теплоэлектростанциях, можно уменьшить добавлением в дымовые газы малых количеств аммиака и пропусканием их через титанованадиевый катализатор.

Ферменты.

Ферменты – это природные катализаторы, регулирующие биохимические процессы в живой клетке. Они участвуют в процессах энергообмена, расщеплении питательных веществ, реакциях биосинтеза. Без них не могут протекать многие сложные органические реакции. Ферменты функционируют при обычных температуре и давлении, обладают очень высокой селективностью и способны увеличивать скорость реакций на восемь порядков. Несмотря на эти преимущества, лишь ок. 20 из 15 000 известных ферментов применяются в широких масштабах.

Человек тысячелетиями использовал ферменты при выпечке хлеба, получении алкогольных напитков, сыра и уксуса. Сейчас ферменты применяются и в промышленности: при переработке сахара, получении синтетических антибиотиков, аминокислот и белков. Протеолитические ферменты, ускоряющие процессы гидролиза, добавляют в детергенты.

С помощью бактерий Clostridium acetobutylicum Х.Вейцман осуществил ферментативное превращение крахмала в ацетон и бутиловый спирт. Этот способ получения ацетона широко использовался в Англии во время Первой мировой войны, а во время Второй мировой войны с его помощью в СССР изготавливали бутадиеновый каучук.

Исключительно большую роль сыграло применение ферментов, продуцируемых микроорганизмами, для синтеза пенициллина, а также стрептомицина и витамина B 12 .

Этиловый спирт, получаемый ферментативным путем, широко используют в качестве автомобильного топлива. В Бразилии более трети из примерно 10 млн. автомобилей работают на 96%-ном этиловом спирте, получаемом из сахарного тростника, а остальные – на смеси бензина и этилового спирта (20%). Хорошо отработана технология производства топлива, представляющего собой смесь бензина и спирта, в США. В 1987 из зерен кукурузы было получено ок. 4 млрд. л спирта, из них примерно 3,2 млрд. л было использовано в качестве топлива. Разнообразное применение находят и т.н. иммобилизованные ферменты. Эти ферменты связаны с твердым носителем, например силикагелем, над которым пропускают реагенты. Преимущество этого метода состоит в том, что он обеспечивает эффективное контактирование субстратов с ферментом, разделение продуктов и сохранение фермента. Один из примеров промышленного использования иммобилизованных ферментов – изомеризация D-глюкозы во фруктозу.

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ

Современные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650° С и давлениях 100 атм и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля за технологическими процессами.

В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим – увеличение производства пищевых продуктов, поскольку аммиак – ценное удобрение.

Методы.

Исследования в области катализа проводят с использованием как традиционных, так и специальных методов. Применяются радиоактивные метки, рентгеновская, инфракрасная и рамановская (КР) спектроскопия, электронно-микроскопические методы; проводятся кинетические измерения, изучается влияние способов получения катализаторов на их активность. Большое значение имеет определение площади поверхности катализатора по методу Брунауэра – Эммета – Теллера (метод БЭТ), основанному на измерении физической адсорбции азота при разных давлениях. Для этого определяют количество азота, необходимого для образования монослоя на поверхности катализатора, и, зная диаметр молекулы N 2 , вычисляют суммарную площадь. Помимо определения общей площади поверхности проводят хемосорбцию разных молекул, что позволяет оценить число активных центров и получить информацию об их свойствах.

В распоряжении исследователей имеются разные методы изучения структуры поверхности катализаторов на атомном уровне. Уникальную информацию позволяет получить метод EXAFS. Среди спектроскопических методов все шире применяются УФ-, рентгеновская и оже-фотоэлектронная спектроскопия . Большой интерес представляет масс-спектрометрия вторичных ионов и спектроскопия ионного рассеяния. Для исследования природы каталитических комплексов применяются измерения ЯМР. Сканирующий туннельный микроскоп позволяет увидеть расположение атомов на поверхности катализатора.

ПЕРСПЕКТИВЫ

Масштабы каталитических процессов в промышленности увеличиваются с каждым годом. Все более широкое применение находят катализаторы для нейтрализации веществ, загрязняющих окружающую среду. Возрастает роль катализаторов в производстве углеводородов и кислородсодержащих синтетических топлив из газа и угля. Весьма перспективным представляется создание топливных элементов для экономичного преобразования энергии топлива в электрическую энергию.

Новые концепции катализа позволят получать полимерные материалы и другие продукты, обладающие многими ценными свойствами, усовершенствовать методы получения энергии, увеличить производство пищевых продуктов, в частности путем синтеза белков из алканов и аммиака с помощью микроорганизмов. Возможно, удастся разработать генно-инженерные способы получения ферментов и металлоорганических соединений, приближающихся по своей каталитической активности и селективности к природным биологическим катализаторам.

Литература:

Гейтс Б.К. Химия каталитических процессов . М., 1981
Боресков Г.К. Катализ. Вопросы теории и практики . Новосибирск, 1987
Ганкин В.Ю., Ганкин Ю.В. Новая общая теория катализа . Л., 1991
Токабе К. Катализаторы и каталитические процессы . М., 1993



Катализ – это процесс изменения скорости химической реакции при помощи катализаторов – , принимающих участие в химической реакции, но в состав конечных продуктов не входящих и в результате реакции не расходующихся.

Одни катализаторы ускоряют реакцию (положительный катализ ), другие – замедляют (отрицательный катализ ). Отрицательный катализ называют ингибированием , а катализаторы, понижающие скорость химической реакции – ингибиторами .

Различают гомогенный и гетерогенный катализ.

Гомогенный катализ.

При гомогенном (однородном) катализе реагирующие вещества и катализатор находятся в одинаковом и между ними отсутствует поверхность раздела. Пример гомогенного катализа – реакция окисления SO 2 и SO 3 в присутствии катализатора NO (реагирующие вещества и катализатор являются газами).

Гетерогенный катализ.

В случае гетерогенного (неоднородного) катализа реагирующие вещества и катализатор находятся в различных агрегатных состояниях и между ними существует поверхность (граница) раздела. Обычно катализатор – твердое вещество, а реагирующие вещества – жидкости или газы. Пример гетерогенного катализа – окисление NN 3 до NO в присутствии Pt (катализатор – твердое вещество).

Механизм действия катализаторов

Действие положительных катализаторов сводится к понижению энергии активации реакции Е а(исх) , действие ингибиторов – противоположное.

Так, для реакции 2 HI = H 2 + I 2 Е а(исх) =184 кДж/моль. Когда же эта реакция протекает в присутствии катализатора Au или Pt , то Е а(исх) =104 кДж/моль, соответственно.

Механизм действия катализатора при гомогенном катализе объясняется образованием промежуточных соединений между катализатором и одним из реагирующих веществ. Далее промежуточное соединение реагирует со вторым исходным веществом, в результате чего образуется продукт реакции и катализатор в первоначальном виде. Так как скорость обоих промежуточных процессов значительно больше скорости прямого процесса, то реакция с участием катализатора протекает значительно быстрее, чем без него.

Например, реакция:

SO 2 +1/2 O 2 = SO 3 протекает очень медленно, а если использовать катализатор NO

то реакции NO +1/2О 2 = NO 2 и NO 2 + SO 2 = SO 3 + NO протекают быстро.

Механизм действия катализатора при гетерогенном катализе иной. В этом случае реакция протекает вследствие адсорбции молекул реагирующих веществ поверхностью катализатора (поверхность катализатора неоднородна: на ней имеются так называемые активные центры , на которых и адсорбируются частицы реагирующих веществ.). Увеличение скорости химической реакции достигается, в основном, за счет понижения энергии активации адсорбированных молекул, а также, отчасти, за счет увеличения концентрации реагирующих веществ в местах, где произошла адсорбция.

Каталитические яды и промоторы.

Некоторые вещества снижают или полностью уничтожают активность катализатора, такие вещества называют каталитическими ядами . Например, небольшие примеси серы (0,1%) полностью прекращает каталитическое действие металлического катализатора (губчатого железа), использующегося при синтезе аммиака. Вещества, повышающие активность катализатора, называют промоторами. Например, каталитическая активность губчатого железа значительно возрастает при добавлении примерно 2% метаалюмината калия KAlO 2 .

Применение катализаторов

Действие катализатора избирательно и специфично. Это означает, что, применяя различные катализаторы, из одних и тех же веществ можно получить различные продукты. Это особенно характерно для реакций органических веществ. Например, в присутствии катализатора AlO 3 происходит дегидратация этилового спирта, в присутствии Cu – дегидрирование:

Биологические катализаторы, принимающие участие в сложных химических превращениях, протекающих в организме, называются ферментами.

Катализаторы широко используются в производстве серной кислоты, аммиака, каучука, пластмасс и др. веществ.

Инициирующие химические реакции за счёт промежуточных химических взаимодействий с участниками реакции и восстановления своего химического состава после каждого цикла таких промежуточных взаимодействий (смотри в статье Катализ). По способу организации и фазовому составу реакционной системы принято различать гетерогенные и гомогенные катализаторы, а также катализаторы биологического происхождения - ферменты. В гетерогенном катализе катализаторы иногда называют контактами.

В общем случае носителем каталитической активности катализаторов (смотри в статьях Гетерогенный катализ, Гомогенный катализ) обычно является вещество, непосредственно вступающее в химическое взаимодействие, по крайней мере, с одним из исходных реагентов с образованием нестойких (в условиях проведения каталитической реакции) химических соединений, - активный компонент катализатора (для твёрдых гетерогенных катализаторов часто каталитическая активная фаза). Механизмы действия катализаторов достаточно разнообразны и зависят от типа осуществляемой каталитической реакции и природы вещества активного компонента катализатора; химическая природа активного компонента катализаторов также может быть самой разнообразной. Массовая доля активного компонента в катализаторах может варьировать от 100% до весьма малых величин (десятые доли процента).

Основными характеристиками катализаторов являются каталитическая активность, селективность по отношению к целевым продуктам каталитических превращений, специфичность по отношению к реагентам каталитических реакций, стабильность, устойчивость к действию каталитических ядов; для промышленных катализаторов ещё и производительность (количество целевого продукта, полученного за единицу времени на единицу объёма или массы катализатора).

Обычно катализаторы подразделяют по типам каталитических процессов: глубокого и парциального (селективного) окисления, гидрирования, полимеризации, процессов нефтепереработки, органического синтеза и др. Типичными катализаторами окислительно-восстановительных реакций (окисления, гидрирования и пр.) являются переходные элементы в металлическом виде, а также их соли, комплексные соединения, оксиды и сульфиды. Типичными катализаторами кислотно-основных реакций (гидратации, дегидратации, алкилирования, полимеризации, крекинга и пр.) являются жидкие и твёрдые минеральные и органические кислоты и основания, кислые соли, алюмосиликаты, цеолиты и др.

В промышленности предпочитают использовать твёрдые гетерогенные катализаторы вследствие лёгкости их отделения от реакционной среды и возможности работы при повышенных температурах. Активный компонент (каталитически активная фаза) многих промышленных гетерогенных катализаторов является высокодисперсным и нередко нанесённым на прочный пористый носитель (обычно высокопористый углерод, оксид непереходного элемента, например, кремния, алюминия, титана, циркония, и др.). Для увеличения каталитической активности, селективности, химической устойчивости и термостабильности в катализаторы иногда вводят небольшое количество промотора (или активатора) - вещества, которое может не обладать самостоятельной каталитической активностью.

Твёрдые промышленные катализаторы должны обладать высокими каталитической активностью, специфичностью по отношению к заданной реакции, селективностью по отношению к целевому продукту, механической прочностью, термостойкостью, определённой теплопроводностью. Промышленные катализаторы должны быть также стойкими по отношению к дезактивации - снижению или полному подавлению их каталитической активности. Дезактивация катализаторов может происходить за счёт спекания или механического разрушения (например, истирания) активного компонента и/или вещества носителя, блокировки активных центров побочными продуктами процесса - плотными углеродными отложениями (коксом), смолистыми веществами и пр., отравления каталитическими ядами. Действие каталитических ядов обычно обусловлено блокировкой наиболее активных участков активного компонента катализаторов за счёт прочной хемосорбции и поэтому проявляется даже при наличии малых количеств ядов. Типичными каталитическими ядами являются соединения серы, азота, фосфора, мышьяка, свинца, ртути, цианистые соединения, кислород, монооксид углерода, производные ацетилена, иногда вода и др. В промышленности для предотвращения отравления катализаторов производят глубокую предварительную очистку реагирующих веществ от каталитических ядов. В промышленных каталитических процессах для восстановления каталитической активности катализаторы после их дезактивации регенерируют. Регенерацию катализаторов осуществляют, например, выжиганием кокса и смолистых веществ, промыванием водой или специально подобранными растворителями.

Каталитическая активность твёрдого катализатора зависит от величины и состояния доступной для реагентов поверхности катализатора, формы, размера и профиля пор катализатора (то есть его текстуры), что определяется способом приготовления катализатора и его предварительной обработкой. В условиях отсутствия диффузионных ограничений активность твёрдого катализатора прямо пропорциональна такой поверхности. Поэтому большинство промышленных гетерогенных катализаторов имеет развитую удельную поверхность, вплоть до нескольких сотен м 2 на 1 г катализатора. Наиболее распространёнными методами получения активных твёрдых катализаторов являются осаждение гидроксидов и карбонатов металлов из растворов солей или комплексных соединений с последующим термическим разложением осадка до оксидов, разложение иных соединений на воздухе до оксидов, сплавление нескольких веществ с последующим выщелачиванием одного из них (так называемые сплавные, или «скелетные», катализаторы), а также нанесение активного компонента катализатора на носитель методом пропитки или из газовой фазы с последующей активацией катализатора. Типичными процедурами активации катализаторов являются их восстановление водородом, сульфидирование с помощью различных серосодержащих соединений и т.п.; для некоторых типов катализаторов используется термоактивация, осуществляемая с помощью прогрева катализатора до температуры формирования активной фазы. Механически прочные катализаторы изготавливают в виде прессованных таблеток, а также полученных специальными методами гранул, шариков, сплошных и полых цилиндров (колец Рашига), различного рода экструдатов и пр. В ряде случаев для снижения аэро- или гидродинамического сопротивления слоя катализаторов им придают и более специфические формы. Например, каталитические нейтрализаторы автомобильных выхлопов обычно изготавливают в виде керамических или металлических «сотовых» блоков со множеством параллельных каналов вдоль потока очищаемого газа. В промышленности применяют также суспензии катализаторов в жидкой фазе (суспензионный процесс) и пылевидные катализаторы, которые в ходе реакции оказываются взвешенными в парах компонентов реакции (так называемый флюид-процесс).

Стоимость катализатора зависит от его химического состава, способа приготовления и варьирует от 0,5 до нескольких тысяч долларов США за 1 кг катализатора. Тем не менее, в стоимости готовой продукции, полученной с помощью промышленных катализаторов, стоимость катализатора обычно составляет не более 0,1-1%.

Промышленные гетерогенные катализаторы являются мало- или среднетоннажной продукцией. Общий объём их годового потребления в России около 100 тысяч тонн.

Литературу смотри при статье Катализ.

Катализаторы обеспечивают более быстрый исход любой химической реакции. Реагируя с исходными веществами реакции, катализатор образует с ними промежуточное соединение, после чего это соединение подвергается преобразованию и в итоге распадается на необходимый конечный продукт реакции, а также на неподвергшийся изменениям катализатор. После распада и образования необходимого продукта катализатор снова вступает в реакцию с исходными реагентами, образуя все большее количество исходного вещества. Данный цикл может повторяться миллионы раз, и если извлечь катализатор из группы реагентов, реакция может длиться в сотни и тысячи раз медленнее.

Катализаторы гетерогенными и гомогенными. Гетерогенные катализаторы в ходе химической реакции образуют самостоятельную фазу, которая отделена разделяющей границей от фазы исходных реагентов. Гомогенные катализаторы, напротив, являются частью одной и той же фазы с исходными реагентами.

Существуют катализаторы органического происхождения, которые участвуют в брожении и созревании, они называются ферментами. Без их непосредственного участия человечество не смогло бы получать большую часть спиртных напитков, молочнокислых продуктов, продуктов из теста, а также мед и . Без участия ферментов был бы невозможен обмен веществ у живых организмов.

Требования к веществам катализаторам

Катализаторы, которые широко применяются в промышленном производстве, должны обладать целым рядом свойств, необходимых для успешного завершения реакции. Катализаторы должны быть высокоактивными, селективными, механически прочными и термоустойчивыми. Они должны обладать продолжительным действием, легкой регенерацией, устойчивостью к каталитическим ядам, гидродинамическими свойствами, а также небольшой ценой.

Современное применение промышленных катализаторов

В нынешнем высокотехнологическом производстве катализаторы применяются при крекинге нефтепродуктов, получении ароматических углеводородов и высокооктанового , получении чистого водорода, кислорода или инертных газов, синтезе аммиака, получении и серной кислоты без дополнительных затрат. Также катализаторы широко применяются для получения азотной кислоты, фталевого ангидрида, метилового и спирта и ацетальдегида. Наиболее широко применяемые катализаторы – это металлическая платина, ванадий, никель, хром, железо, цинк, серебро, алюминий и палладий. Также довольно часто применяются некоторые соли этих металлов.

Лекция 7

Катализ

Катализ нашел широкое применение в химической промышленности, в частности, в технологии неорганических веществ. Катализ – возбуждение химических реакций или изменение их скорости под влиянием веществ - катализаторов, многократно вступающих в химическое взаимодействие с участниками реакции и восстанавливающихся после каждого цикла взаимодействия свой химический состав. Существуют вещества, уменьшающие скорость реакции, которые называются ингибиторами или отрицательными катализаторами. Катализаторы не изменяют состояния равновесия в системе, а лишь облегчают его достижение. Катализатор может одновременно ускорять как прямую, так и обратную реакции, но при этом константа равновесия остается постоянной. Иными словами, катализатор не может изменить равновесие термодинамически невыгодных обратимых реакций, у которых равновесие сдвинуто в сторону исходных веществ.

Сущность ускоряющего действия катализаторов состоит в понижении энергии активации Е а химической реакции за счет изменения реакционного пути в присутствии катализатора. Для реакции превращения А в В реакционный путь можно представить следующим образом:

А + К  АК

ВК  В + К

Как видно из рисунка 1, вторая стадия механизма является лимитирующей, поскольку имеет наибольшую энергию активации Е кат, однако существенно более низкую, чем для некаталитического процесса Е некат. Снижение энергии активации происходит за счет компенсации энергии разрыва связей реагирующих молекул энергией образования новых связей с катализатором. Количественной характеристикой снижения энергии активации, а значит и эффективности катализатора может служить величина степени компенсации энергии разрываемых связей Дi:

 = (Дi – Е кат)/Дi (1)

Чем ниже энергия активации каталитического процесса, тем выше степень компенсации.

Одновременно со снижением энергии активации во многих случаях происходит снижение порядка реакции. Понижение порядка реакции объясняется тем, что в присутствии катализатора реакции идет через несколько элементарных стадий, порядок которых может быть меньше порядка некаталитических реакций.

Виды катализа

По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на гомогенные и гетерогенные. При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе (газовой или жидкой), при гетерогенном – в разных. Нередко реагирующая система гетерогенного каталитического процесса складывается из трех фаз в различных сочетаниях, например, реагенты могут быть в газовой и жидкой фазах, а катализатор – в твердой.

В особую группу выделяют ферментативные (биологические) каталитические процессы, распространенные в природе и применяемые в промышленности для производства кормовых белков, органических кислот, спиртов, а также при обезвреживании сточных вод.

По типам реакций катализ делят на окислительно-восстановительный и кислотно-основной. В реакциях, протекающих по окислительно-восстановительному механизму, промежуточное взаимодействие с катализатором сопровождается гомолитическим разрывом двухэлектронных связей в реагирующих веществах и образованием связей с катализатором по месту неспаренных электронов последнего. Типичными катализаторами окислительно-восстановительного взаимодействия являются металлы или оксиды переменной валентности.

Кислотно-основные каталитические реакции протекают в результате промежуточного протолитического взаимодействия реагирующих веществ с катализатором или взаимодействия с участием неподеленной пары электронов (гетеролитический) катализ. Гетеролитический катализ протекает с таким разрывом ковалентной связи, при котором, в отличие от гомолитических реакций, электронная пара, осуществляющая связь, целиком или частично остается у одного из атомов или группы атомов. Каталитическая активность зависит от легкости передачи протона реагенту (кислотный катализ) или отрыва протона от реагента (основной катализ) в первом акте катализа. По кислотно-основному механизму протекают каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, алкилирования, изомеризации и др. Активными катализаторами являются соединения бора, фтора, кремния, алюминия, серы и других элементов, обладающих кислотными свойствами, или соединений элементов первой и второй групп периодической системы, обладающих основными свойствами. Гидратация этилена по кислотно-основному механизму с участием кислотного катализатора НА осуществляется следующим образом: на первой стадии катализаторор служит донором протона

СН 2 =СН 2 + НА  СН 3 -СН 2 + + А -

вторая стадия – собственно гидратация

СН 3 -СН 2 + + НОНСН 3 СН 2 ОН + Н +

третья стадия – регенерация катализатора

Н + + А -  НА.

Окислительно-восстановительные и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула-решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикала, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются.

Существует также фотокатализ, когда процесс инициируется под действием света.

Поскольку в неорганической химии наиболее распространен гетерогенный катализ на твердых катализаторах, то на нем остановимся подробнее. Процесс можно разделить на несколько стадий:

1) внешняя диффузия реагирующих веществ из ядра потока к поверхности катализатора, в промышленных аппаратах обычно преобладает турбулентная (конвективная) диффузия над молекуларной;

2) внутренняя диффузия в порах зерна катализатора, в зависимости от размеров пор катализатора и размеров молекул реагентов диффузия может происходить по молекулярному механизму или по механизму Кнудсена (при стесненном движении);

3) активированная (химическая) адсорбция одного или нескольких реагирующих веществ на поверхности катализатора с образованием поверхностного химического соединения;

4) перегруппировка атомов с образованием поверхностного комплекса продукт-катализатор;

5) десорбция продукта катализа и регенерация активного центра катализатора, для ряда катализаторов активной является не вся его поверхность, а отдельные участки – активные центры;

6) диффузия продукта в порах катализатора;

7) диффузия продукта от поверхности зерна катализатора в поток газа.

Общая скорость гетерогенного каталитического процесса определяется скоростями отдельных стадий и лимитируется наиболее медленной из них. Говоря о стадии, лимитирующей процесс, предполагают, что остальные стадии протекают настолько быстро, что в каждой из них практически достигается равновесие. Скорости отдельных стадий определяются параметрами технологического процесса. По механизму процесса в целом, включая собственно каталитическую реакцию и диффузионные стадии переноса вещества, различают процессы, проходящие в кинетической, внешнедиффузионной и внутридиффузионной областях. Скорость процесса в общем случае определяется выражением:

d/d = k c(2)

где c– движущая сила процесса, равная произведению действующих концентраций реагирующих веществ, для процесса, протекающего в газовой фазе движущая сила выражается в парциальных давлениях реагирующих веществр;k– константа скорости.

В общем случае константа скорости зависит от многих факторов:

k = f (k 1 , k 2 , k поб, …..D и,D и / ,D п, ….) (3)

где k 1 , k 2 , k поб - константы скоростей прямой, обратной и побочной реакции;D и,D и / ,D п - коэффициенты диффузии исходных веществ и продукта, определяющие значениеk во внешне- или внутридиффузионной областях процесса.

Вкинетической области kне зависит от коэффициентов диффузии. Общее кинетическое уравнение скорости газового каталитического процесса с учетом влияния на скорость основных параметров технологического режима:

u = kvpP n  0 = k 0 e -Ea/RT vpP n  0 (4)

где v - расход газа, p - движущая сила процесса при Р0,1 МПа (1 ат),P - отношение рабочего давления к атмосферному нормальному, то есть безразмерная величина, 0 - коэффициент пересчета к нормальному давлению и температуре,n- порядок реакции.

Механизм химических стадий определяется природой реагирующих веществ и катализатора. Процесс может лимитироваться хемосорбцией одного из реагентов поверхностью катализатора или десорбцией продуктов реакции. Скорость реакции может контролироваться образованием заряженного активированного комплекса. В этих случаях заряжение поверхности катализатора под действием каких-либо факторов оказывает существенное влияние на протекание реакции. В кинетической области протекают главным образом процессы на малоактивных катализаторах мелкого зернения с крупными порами при турбулентном течении потока реагентов, а также при низких температурах, близких к температурам зажигания катализатора. Для реакций в жидкостях переход в кинетическую область может происходить и с повышением температуры вследствие понижения вязкости жидкости и, следовательно, ускорения диффузии. С повышением температуры уменьшается степень ассоциации, сольватации, гидратации молекул реагентов в растворах, что приводит к росту коэффициентов диффузии и соответственно переходу из диффузионной области в кинетическую. Для реакций, общий порядок которых выше единицы, характерен переход из диффузионной области в кинетическую при значительном понижении концентрации исходных реагентов. Переход процесса из кинетической области во внешнедиффузионную может происходить при снижении скорости потока, повышении концентрации повышении температуры.

Во внешнедиффузионной области протекают прежде всего процессы на высокоактивных катализаторах, обеспечивающих быструю реакцию и достаточный выход продукта за время контакта реагентов с катализаторами, измеряемое долями секунды. Очень быстрая реакция почти полностью протекает на внешней поверхности катализатора. В этом случае нецелесообразно применять пористые зерна с высокоразвитой внутренней поверхностью, а нужно стремиться развить наружную поверхность катализатора. Так, при окислении аммиака на платине последнюю применяют в виде тончайших сеток, содержащих тысячи переплетений платиновой проволоки. Наиболее эффективным средством ускорения процессов, протекающих в области внешней диффузии, является перемешивание реагентов, которое часто достигается увеличением линейной скорости реагентов. Сильная турбулизация потока приводит к переходу процесса из внешнедиффузионной области во внутридиффузионную (при крупнозернистых мелкопористых катализаторах) или же в кинетическую области.

где G- количество вещества, перенесенное за времяв направлении х, перпендикулярном к поверхности зерна катализатора при концентрации с диффундирующего компонента в ядре потока реагентов, S - свободная внешняя поверхность катализатора,dc/dx -градиент концентрации.

Предложено большое число способов и уравнений для определения коэффициентов диффузии веществ в различных средах. Для бинарной смеси веществ А и В по Арнольду

где Т - температура, К; М А, М В - молярные массы веществ А и В, г/моль;v А, v В - молярные объемы веществ; Р - общее давление (0,1 М Па); С А+В - константа Сезерленда.

Константа Сезерленда равна:

С А+В = 1,47(Т А / +Т В /) 0,5 (7)

г
де Т А / , Т В / - температуры кипения компонентов А и В, К.

Для газов А и В с близкими значениями молярных объемов можно принимать =1, а при значительной разности между ними1.

Коэффициент диффузии в жидких средах D ж можно определить по формуле

где - вязкость растворителя, ПаС; М иv- молярная масса и молярный объем диффундирующего вещества; х а - параметр, учитывающий ассоциацию молекул в растворителе.

Во внутридиффузионной области , то есть когда общаяскорость процесса лимитируется диффузией реагентов в порах зерна катализатора, существует несколько путей ускорения процесса. Можно уменьшить размеры зерен катализатора и соответственно путь молекул до середины зерна, это возможно если переходят одновременно от фильтрующего слоя к кипящему. Можно изготовить для неподвижного слоя крупнопористые катализаторы, не уменьшая размеров зерен во избежание роста гидравлического сопротивления, но при этом неизбежно уменьшится внутренняя поверхность и соответственно понизится интенсивность работы катализатора по сравнению с мелкозернистым крупнопористым. Можно применять кольцеобразную контактную массу с небольшой толщиной стенок. Наконец, бидисперсные или полидисперсные катализаторы, в которых крупные поры являются транспортными путями к высокоразвитой поверхности, создаваемой тонкими порами. Во всех случаях стремятся настолько уменьшить глубину проникновения реагентов в поры (и продуктов из пор), чтобы ликвидировать внутридиффузионное торможение и перейти в кинетическую область, когда скорость процесса определяется только скоростью собственно химических актов катализа, то есть адсорбции реагентов активными центрами, образования продуктов и его десорбции. Большая часть промышленных процессов, проходящих в фильтрующем слое, тормозится внутренней диффузией, например крупномасштабные каталитические процессы конверсии метана с водяным паром, конверсии оксида углерода, синтез аммиака и т. д.

Время , необходимое для диффузии компонента в поры катализатора на глубину l, можно определить по формуле Эйнштейна:

 = l 2 /2D э (10)

Эффективный коэффициент диффузии в порах определяют приближенно в зависимости от соотношения размеров пор и длины свободного пробега молекул. В газовых средах при длине свободного пробега молекулы компонента , меньшей эквивалентного диаметра поры d=2r (2r), принимают, что в порах происходит нормальная молекулярная диффузия D э =D, которую вычисляют по формуле:

При стесненном режиме движения, когда 2r, определяют D э =D к по ориентировочной формуле Кнудсена:

(
12)

где r - поперечный радиус поры.

(
13)

Диффузия в порах катализатора в жидких средах весьма затруднена вследствие сильного повышения вязкости раствора в узких каналах (аномальная вязкость), поэтому для катализа в жидкостях часто применяют дисперсные катализаторы, то есть мелкие непористые частицы. Во многих каталитических процессах с изменением состава реакционной смеси и других параметров процесса может меняться механизм катализа, а также состав и активность катализатора, поэтому необходимо учитывать возможность изменения характера и скорости процесса даже при относительно небольшом изменении его параметров.

Катализаторы могут неограниченно повышать константу скорости реакции, однако, в отличие от температуры, катализаторы не влияют на скорость диффузии. Поэтому, во многих случаях при значительном повышении скорости реакции общая скорость остается низкой из-за медленного подвода компонентов в зону реакции.

Структура и состав катализаторов

Промышленные катализаторы очень часто представляют собой многокомпонентные системы. Компоненты катализатора могут находиться в различных формах: в виде элементарных соединений (металлы, угли), оксидов, сульфидов, галогенидов, а также сложных комплексных соединений (ферменты, комплексы металлов с органическими лигандами). Сложность состава катализаторов обусловлена тем, что каталитическая активность двух или нескольких соединений не аддитивна, а принимает экстремальное значение, так называемый «синергетический эффект». Одним из способов увеличения активности катализатора является его промотирование - добавление к катализатору вещества (промотора ), которое само по себе не обладает каталитическими свойствами, но увеличивает активность катализатора. Различают два типа промоторов: электронные и структурные.

Электронные промоторы

Механизм их действия сводится к изменению электронных состояний в кристаллах катализатора и снижению работы выхода электрона. Электронные промоторы изменяют строение и химический состав активной фазы, образуя на поверхности катализатора активные центры новой химической природы, в связи с чем изменяется характер и скорость элементарных стадий каталитических процессов, а иногда и изменение селективности. Например, добавление К 2 О к катализатору синтеза аммиака способствует десорбции аммиака, что приводи к повышению удельной каталитической активности катализатора.

Структурные промоторы

Они стабилизируют активную фазу катализатора по отношению к спеканию, механическим или химическим разрушениям. Например, оксид алюминия при добавлении к железному катализатору синтеза аммиака взаимодействует с Fe 3 O 4 образуя кристаллическую решетку шпинелиFeAl 2 O 4 тем самым препятствуя процессу рекристаллизации. Кроме того, добавление 8-10%Al 2 O 3 приводит к увеличение удельной поверхности железного катализатора от 1 до 25-30 м 2 /г. Следует отметить, что в зависимости от количества промотора, он может оказывать как промотирующее, так и отравляющее действие на катализатор.

Большинство адсорбентов и катализаторов по характеру макроструктуры можно разделить на два типа: губчатые и ксерогели. Губчатые катализаторы представляют собой сплошное твердое тело, пронизанное конусными, цилиндрическими и бутылкообразными порами, образовавшимися при выделении из этого тела летучих или растворимых продуктов в результате сушки или обработки агрессивными жидкостями и газами (выщелачивание, восстановление, обжиг). Пористая структура ксерогелей описывается глобулярной моделью, согласно которой твердое вещество состоит из соприкасающихся или сросшихся частиц, поры представляют собой пустоты между ними. В зависимости от метода получения катализаторы бывают смешанные и нанесенные.

Смешанные катализаторы

В смешанных катализаторах компоненты вводятся в соизмеримых количествах и каждый из них является каталитически активным в отношении данной реакции. Смешанные катализаторы получают либо механическим смешением активных компонентов с последующей термообработкой или без нее, либо соосаждением полупродуктов с последующим прокаливанием, например при использовании оксидов в качестве катализаторов. Повышение активности смешанного катализатора может быть связано с тем, что в процессе его получения компонеты реагируют друг с другом с образованием нового, более активного соединения. Например, железомолибденовый катализатор окисления метилового спирта в формальдегид представляет собой молибдат железа, получаемый при соотношении оксидов молибдена и железа в соотношении 1,5: 1. Катализатор, содержащий другое сооношение оксидо будет менее активным вследствие существования двух фаз: молибдата железа и избытка оксидов МоО 3 иFe 2 O 3 . Повышение активности может быть следствием образования твердого раствора одного компонента в другом или их сплава. Например, введение оксида циркония в оксид церия, являющийся катализатором окисления сажи, приводит к улучшению термической устойчивости катализатора и возрастанию активности за счет увеличения подвижности кислорода решетки.

Катализаторы на носителях являются наиболее распространенным типом сложных контактных масс. В них активная составляющая наносится тем или иным способом (пропиткой, напылением и др.) на пористую подложку – носитель . Чаще всего носитель инертен для данного процесса и составляет в отличие от промоторов большую его часть, однако нередко используются носители, которые обладают каталитическими свойствами в проводимых процессах. За счет применения носителя увеличивают рабочую поверхность катализатора и уменьшают его стоимость. Носитель должен обладать следующими свойствами: высокой температурой плавления, термостойкостью, прочностью, развитой пористой структурой, удельной поверхностью более 100 м 2 /г. В некоторых случаях носитель взаимодействует с активным компонентом, повышая его активность. Наиболее распространенными носителями являются: цеолиты, оксиды алюминия, кремния, титана, угли.

Необходимый состав контактной массы в значительной степени определяется условиями протекания каталитического процесса, составом исходной смеси, в частности влажностью, наличием посторонних инертных или ядовитых примесей, температурой и гидродинамикой процесса.

Свойства катализаторов:

1. Активность катализаторов

В качестве меры активности применяют разность скоростей химической реакции в присутствие катализатора и без него с учетом доли реакционного пространства, занимаемого катализаторо и недоступного для реагирующих веществ:

А 1 =  кат -  (1- кат) (14)

это выражение может применяться только при постоянной движущей силе процесса с.

Более удобно применять в качестве меры активности катализатора отношение канстант скоростей каталитического и некаталитического процессов:

А 2 = k кат / k = k 0 кат e -Ea кат /RT / k 0 e -Ea/RT = (k 0 кат /k 0) e -  Ea/RT (15)

Активные катализаторы обеспечивают высокую интенсивность процесса (значительную степень превращения при высоких объемных скоростях потока). Активность характеризуется константой скорости реакции, зависящей от удельной каталитической активности k уд (на 1 м 2 поверхности), которая отражает химическую природу катализатора, внутренней удельной поверхности катализатора S уд (м 2 /г) и степени ее использования :

k = k уд S уд  (16)

Для сравнения активности катализатора в какой-либо реакции при различных условиях, либо для сравнения нескольких катализаторов в качестве меры активности используют отношение количества продукта, получаемого за 1 час работы единицы объема катализатора

А = G/ V(17)

2. Селективность (избирательность)

Селективность действия катализатора может характеризоваться как отношение скорости образования целевого продукта к суммарной скорости превращения основного реагирующего вещества по всем направлениям (из дифференциальных данных кинетики), либо как отношение количества основного вещества, превратившегося в целевой продукт, к общему его количеству, вступившему во все реакции (из интегральных кинетических данных). Высокие значения избирательности достигаются применением катализаторов определенного химического состава и пористой структуры, обеспечением оптимальных форм и размеров зерен, а также гидродинамическим режимом в реакторе. Так, из смеси СО и Н 2 (водяной газ) в зависимости от катализатора и условий синтеза могут образовываться различные продукты. Над металлическим никелем при температуре образуется метан, на меди при повышенном давлении образуется метиловый спирт.

3. Механическая прочность

Прочность катализатора и их активность часто находятся в обратно пропорциональной зависимости. Приемлемым способом повышения прочности катализаторов является применение различных связующих (неорганические клеи), не оказывающие отрицательного влияния на их активность.

4. Термостойкость

Устойчивость катализаторов к перегревам имеет значение для высокотемпературных процессов. В процессе термической рекристаллизации катализатора либо его носителя удельная поверхность, а значит, и активность снижаются. Обычно катализатор характеризуют максимальной температурой, при которой длительное время сохраняется его активность, либо приводят значение относительной потери активности при эксплуатации в более жестких условиях.

5. Удельная поверхность

Удельная поверхность различных катализаторов колеблется от нескольких метров квадратных на грамм до сотен. Удельная поверхность катализатора определяется, с одной стороны, размером частиц вещества, с другой стороны, его пористостью. Для катализа наиболее предпочтительны переходные поры, поскольку именно они вносят основной вклад в величину удельной поверхности. В микропористых материалах затруднена диффузия реагентов к поверхности катализатора и продуктов реакции от нее. Высокой активность обладают катализаторы, имеющие бидисперсную (бипористую) структуру, когда крупные глобулы, между которыми образуются транспортные поры, в свою очередь, образованы из мелких глобул, создающих высокую удельную поверхность. Для повышения активности катализатора целесообразно применение более мелких зерен, что дает возможность повысить степень использования зерна.

6. Устойчивость к вредным примесям (ядостойкость)

Каталитические яды - это такие соединения, присутствие которых в реакционной смеси, способно снизить или полностью подавить активность катализатора, происходит «отравление» катализатора. При отравлении блокируются активные центры катализатора. Отравление бывает обратимым и необратимым. Так, платиновый катализатор отравляется СО и CS 2 , однако, при внесении его в чистую смесь исходных веществ, происходит десорбция ядов, и активность восстанавливается. При отравлении же H 2 S и РН 3 платина полностью дезактивируется, здесь происходит взаимодействие яда с катализатором с образованием стойких соединений.

7. Низкое гидравлическое сопротивление слоя.

Недостатком применения мелких гранул является высокое гидравлическое сопротивление. Средством его снижения является увеличение доли свободного объема (порозности) слоя. Для этой цели применяют катализаторы особых форм (полые цилиндрики, звездочки, катализаторы сотовой формы). При той же активности, что и для слоя обычных сплошных цилиндриков, эти формы позволяет снизить гидравлическое сопротивление в 1,5 раза и во столько же раз снизить массовую загрузку катализатора. Однако механическая прочность таких катализаторов меньше, а истираемость больше. Поэтому стремление к тонкостенности новых форм имеет жесткие ограничения по прочности, поскольку мелочь, образующаяся при разрушении катализатора, заполняет пространство между зернами, что резко повышает гидравлическое сопротивление слоя.