Что является основанием высоты в правильной пирамиде. Все боковые ребра правильной пирамиды равны, а боковые грани являются. IV. Составление алгоритма

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками. Дано: PA1A2…An – правильная пирамида Док - ть: 1) А1Р = А2Р = … = АnР 2) ?А1А2Р = ?А2А3Р = … = = ?Аn-1АnР – р/б.

Слайд 7 из презентации «Пирамиды» . Размер архива с презентацией 181 КБ.

Геометрия 10 класс

краткое содержание других презентаций

«Пирамида 10 класс» - А2. Содержание. Многогранник, составленный из n-угольника А1А2…Аn и n треугольников, называется пирамидой. Основание. Урок математики в 10 классе по теме «Пирамида». Аn. Вершина пирамиды. МБОУ «СОШ№22 с углубленным изучением английского языка» г.Нижнекамска РТ. А. А3. А1. C.

«Параллелепипед 10 класс» - Смежные грани. C1. Геометрия 10 класс. A1. C. D1. D. Противоположные грани. № 76. Докажите, что AC II A1C1 и BD II B1D1.

«Векторы геометрия 10 класс» - Вектора. Векторы в пространстве. Геометрия 10 класс. CB CM. Шагаева Анна Борисовна МОУ «Барагашская СОШ». Действия с векторами. Вырази вектор. Сумма векторов. Ас аn am. Вектор – как направленный отрезок.

«Сечения параллелепипеда» - 4. ? MNK- сечение параллелепипеда ABCDA’B’C’D’. Урок - практикум в 10 классе Учитель математики Швенк А.В. (MNK) ? (ADD’A’) = MN. (MNK) ? (A’B’C’D’) = NK. Сечения парллелепипеда. Задачи урока. Секущая плоскость пересекает противоположные грани параллелепипеда по параллельным отрезкам. Сечения параллелепипеда.

«Вектор в геометрии» - Вычитание векторов. Сложение и вычитание векторов. Правило параллелограмма. Такой вектор называется нулевым. Разность векторов а и b можно найти по формуле Где - вектор, противоположный вектору. Длиной ненулевого вектора называется длина отрезка АВ. На рис. 2 , т.к. и, а, т.к. . - векторы считаются сонаправленными. - векторы противоположно направлены.

Видеоурок 2: Задача на пирамиду. Объем пирамиды

Видеоурок 3: Задача на пирамиду. Правильная пирамида

Лекция: Пирамида, её основание, боковые рёбра, высота, боковая поверхность; треугольная пирамида; правильная пирамида

Пирамида, её свойства

Пирамида – это объемное тело, которое имеет в основании многоугольник, а все её грани состоят из треугольников.

Частным случаем пирамиды является конус, в основании которого лежит окружность.


Рассмотрим основные элементы пирамиды:


Апофема – это отрезок, который соединяет вершину пирамиды с серединой нижнего ребра боковой грани. Иными словами, это высота грани пирамиды.


На рисунке можно увидеть треугольники ADS, ABS, BCS, CDS. Если внимательно посмотреть на названия, можно увидеть, что каждый треугольник имеет в своем названии одну общую букву – S. То есть это значит, что все боковые грани (треугольники) сходятся в одной точке, которая называется вершиной пирамиды.


Отрезок ОS, который соединяет вершину с точкой пересечения диагоналей основания (в случае с треугольников – в точке пересечения высот), называется высотой пирамиды .


Диагональным сечением называют плоскость, которая проходит через вершину пирамиды, а также одну из диагоналей основания.


Так как боковая поверхность пирамиды состоит из треугольников, то для нахождения общей площади боковой поверхности необходимо найти площади каждой грани и сложить их. Количество и форма граней зависит от формы и размеров сторон многоугольника, который лежит в основании.


Единственная плоскость в пирамиде, которой не принадлежит её вершина, называется основанием пирамиды.

На рисунке мы видим, что в основании лежит параллелограмм, однако, может быть любой произвольный многоугольник.

Свойства:


Рассмотрим первый случай пирамиды, при котором она имеет ребра одинаковой длины:

  • Вокруг основания такой пирамиды можно описать окружность. Если спроецировать вершину такой пирамиды, то её проекция будет находится в центре окружности.
  • Углы при основании пирамиды у каждой грани одинаковы.
  • При этом достаточным условием к тому, что вокруг основания пирамиды можно описать окружность, а так же считать, что все ребра разной длины, можно считать одинаковые углы между основанием и каждым ребром граней.

Если Вам попалась пирамида, у которой углы между боковыми гранями и основанием равны, то справедливы следующие свойства:

  • Вы сможете описать окружность вокруг основания пирамиды, вершина которой проецируется точно в центр.
  • Если провести у каждой боковой грани высоты к основанию, то они будут равной длины.
  • Чтобы найти площадь боковой поверхности такой пирамиды, достаточно найти периметр основания и умножить его на половину длины высоты.
  • S бп = 0,5P oc H.
  • Виды пирамиды.
  • В зависимости от того, какой многоугольник лежит в основании пирамиды, они могут быть треугольными, четырехугольными и др. Если в основании пирамиды лежит правильный многоугольник (с равными сторонами), то такая пирамида будет называться правильной.

Правильная треугольная пирамида
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • доказать свойства пирамиды с равными рёбрами;
  • сформировать умения использовать данную теорему при анализе условия задачи и построения чертежа к задаче;
  • сформировать у учащихся умения использовать данную теорему при решении двух шаговых задач.

I. Домашнее задание каждый ученик получает на заранее отпечатанных листочках.

Теория: по учебнику п.14.2, стр.110-111,2)и 3 задачи:

1. В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к плоскости основания под углом?. Найти высоту пирамиды.

2. В основании пирамиды лежит треугольник со сторонами , ,4. Боковые рёбра наклонены к плоскости основания под углом 45 0 . Найти высоту пирамиды.

3. Площадь основания правильной четырёхугольной пирамиды равна S. Боковые рёбра наклонены к плоскости основания под углом?. Найти высоту пирамиды.

II. Устная работа по готовым чертежам. (Каждый ребёнок получает лист А-4 с чертежами треугольной пирамиды).

2.1. Докажем 3 (прямые) теоремы. Дано: МАВС треугольная пирамида, МО – высота пирамиды.

1. Ученики доказывают “ простую” теорему из одного условия и одного заключения

2. Используют признак равенства прямоугольных треугольников по катету и гипотенузе

3. Делают вывод: из того что АО = ВО =СО, следует О – центр окружности, описанной около основания.

4.Учитель уточняет формулировки данного обстоятельства “основание пирамиды совпадает с центром окружности, описанной около основания” или “ вершина пирамиды проектируется в центр окружности, описанной около основания.

(к рис.2,3). Заменить условие теоремы, сохранить её заключение. Опираясь на признаки равенства прямоугольных треугольников, ученики приходят к выводу о том, что можно потребовать равенство углов между боковыми рёбрами и плоскостью основания или равенство углов между боковыми рёбрами и высотой пирамиды.

Итак, из каких условий можно сделать вывод, что основание высоты пирамиды совпадает с центром окружности, описанной около основания?

2.2. Сформулируем обратные утверждения. Верны ли эти утверждения?

Ученики, используя признаки равенства прямоугольных треугольников, доказывают обратные утверждения. Дано: МАВС треугольная пирамида, МО – высота пирамиды, О – центр окружности, описанной около основания, АО=ВО=СО.

2.3. Формулировка теоремы для n-угольной пирамиды.

Постановка проблемы: справедливо ли данное утверждение для n-угольной пирамиды? Ученикам предлагается доказать три прямых утверждения по аналогии.

Теорема. В n-угольной пирамиде с равными боковыми рёбрами основание высоты совпадает с центром окружности, описанной около основания; высота составляет равные углы с боковыми ребрами; боковые ребра составляют равные углы с плоскостью основания.

Рисунок 7.

2.4. Работа после доказательства теоремы (взгляд назад).

А – Боковые рёбра пирамиды равны

В – Боковые рёбра пирамиды составляют с плоскостью основания равные углы

С – Боковые рёбра пирамиды составляют с высотой пирамиды равные углы

М – Основание пирамиды совпадает с центром окружности, описанной около основания

Учитывая все 6 простых теорем, ученики подводятся к выводу

2. Учитель показывает утверждении А(В, С,М), ученик формулирует 3 простые теоремы.

III. Формулировка темы урока. (Свойства пирамиды с равными боковыми ребрами).

Какая же тема сегодняшнего урока? (Любое из утверждений А, В, С, М может быть принято за тему урока).

IV. Составление алгоритма

Дано: треугольной пирамиды МАВС, МО – высота пирамиды. Определить высоту пирамиды.

Алгоритм решения двух шаговых задач.

1. Наличие в условии задачи одного из условий (А,В,С,). Из этих условий вытекает М.

2. Решить основание (найти радиус окружности, описанной около основания).

3. Решить прямоугольный треугольник, например, МОА.

1. Составление алгоритма.

2. Актуализация знаний:

а) центр окружности, описанной около основания – точка пересечения серединных перпендикуляров к сторонам треугольника;

б) расположение центра описанной окружности в остроугольном, тупоугольном, прямоугольном треугольниках;

в) формула S = .

V. Применение свойств пирамиды с равными боковыми ребрами к решению задач.

Задача 1. В основании пирамиды лежит равнобедренный прямоугольный треугольник с катетом, равным 2. Боковые рёбра наклонены к плоскости основания под углом 60 0 .

Найти высоту пирамиды.

Рисунок 8

1.Каждый ученик получает лист с условиями задач для решения

2. Стереометрический чертёж не делаем.

Наличие условия “ В”

Выполняем чертёж основания. О - середина гипотенузы, АВ = 4, R = 2

Строим треугольник АМО, находим МО = 6 Ответ: 6

Задача 2. Основание пирамиды – треугольник, две стороны которого 2 и и образуют угол 45 0 . Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 9

Решение. Работаем по алгоритму:

1. Наличие условия “А”.

2. Выполняем чертёж основания. По теореме косинусов находим третью сторону (),значит, треугольник равнобедренный и прямоугольный. О - середина гипотенузы. Гипотенуза равна 2, R = 1

3. Строим треугольник АМО, находим МО = 3 Ответ: 3

Задача 3 В основании пирамиды лежит треугольник со сторонами 5, 12, 13. Угол между высотой и каждым боковым ребром 45 0 . Найти высоту пирамиды.

Рисунок 10

Решение. Работаем по алгоритму:

1. Наличие условия “ С”

2. Выполняем чертёж основания. По теореме, обратной теореме Пифагора выясняем, треугольник – прямоугольный, О - середина гипотенузы,

АВ = 13, R = 6,5

3.Строим треугольник АМО -равнобедренный, находим МО =6,5 Ответ: 6,5

Задача4 Основание пирамиды – равнобедренный треугольник, боковые стороны которого равны и образуют угол 120 0 . Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 11

Решение.Работаем по алгоритму:

1. Наличие условия “ А” .

2. Выполняем чертёж основания. угол А - тупой,

О – вне треугольника,

АО – серединный перпендикуляр к ВС, треугольник АОС равносторонний, АВ =,

3.Строим треугольник АМО, МО = = 6 Ответ: 6

VI. Итог урока подвести при решении задач:

1. В основании пирамиды лежит трапеция, боковые рёбра равны. Определить вид трапеции (равнобедренная).

2. В основании пирамиды лежит параллелограмм, углы между боковыми рёбрами и плоскостью основания равны. Определить вид параллелограмма(прямоугольник).

3. В основании пирамиды лежит ромб. Углы между боковыми рёбрами и высотой пирамиды равны. Найти углы ромба. (90 о).

Введение

Когда мы начали изучать стереометрические фигуры мы затронули тему «Пирамида». Нам понравилась это тема, потому что пирамида очень часто употребляется в архитектуре. И так как наша будущая профессия архитектора, вдохновившись этой фигурой, мы думаем, что она сможет подтолкнуть нас к отличным проектам.

Прочность архитектурных сооружений, важнейшее их качество. Связывая прочность, во-первых, с теми материалами, из которых они созданы, а, во-вторых, с особенностями конструктивных решений, оказывается, прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой.

Другими словами, речь идет о той геометрической фигуре, которая может рассматриваться как модель соответствующей архитектурной формы. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения.

Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.

Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.



Цель проекта : узнать что-то новое о пирамидах, углубить знания и найти практическое применение.

Для достижения поставленной цели потребовалось решить следующие задачи:

· Узнать исторические сведения о пирамиде

· Рассмотреть пирамиду, как геометрическую фигуру

· Найти применение в жизни и архитектуре

· Найти сходство и различие пирамид, расположенных в разных частях света


Теоретическая часть

Исторические сведения

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

Усыпальницы египетских фараонов. Крупнейшие из них - пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.


Основные понятия

Пирамидой называется многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины;

Боковые грани - треугольники, сходящиеся в вершине;

Боковые ребра - общие стороны боковых граней;

Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания;

Основание - многоугольник, которому не принадлежит вершина пирамиды.

Основные свойства правильной пирамиды

Боковые ребра, боковые грани и апофемы соответственно равны.

Двугранные углы при основании равны.

Двугранные углы при боковых ребрах равны.

Каждая точка высоты равноудалена от всех вершин основания.

Каждая точка высоты равноудалена от всех боковых граней.


Основные формулы пирамиды

Площадь боковой и полной поверхности пирамиды.

Площадью боковой поверхности пирамиды (полной и усечённой) называется сумма площадей всех ее боковых граней, площадью полной поверхности – сумма площадей всех ее граней.

Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

p - периметр основания;

h - апофема.

Площадь боковой и полной поверхностей усеченной пирамиды.

p 1 , p 2 - периметры оснований;

h - апофема.

Р - площадь полной поверхности правильной усеченной пирамиды;

S бок - площадь боковой поверхности правильной усеченной пирамиды;

S 1 + S 2 - площади основания

Объем пирамиды

Формула объёма используется для пирамид любого вида.

H - высота пирамиды.


Углы пирамиды

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол образуется двумя перпендикулярами.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах .

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания .

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды .


Сечения пирамиды

Поверхность пирамиды – это поверхность многогранника. Каждая ее грань представляет собой плоскость, поэтому сечение пирамиды, заданной секущей плоскостью – это ломаная линия, состоящая из отдельных прямых.

Диагональное сечение

Сечение пирамиды плоскостью, проходящей через два боковых ребра, не лежащих на одной грани, называется диагональным сечением пирамиды.

Параллельные сечения

Теорема :

Если пирамида пересечена плоскостью, параллельной основанию, то боковые ребра и высоты пирамиды делятся этой плоскостью на пропорциональные части;

Сечением этой плоскости является многоугольник, подобный основанию;

Площади сечения и основания относятся друг к другу как квадраты их расстояний от вершины.

Виды пирамиды

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, и вершина пирамиды проектируется в центр основания.

У правильной пирамиды:

1. боковые ребра равны

2. боковые грани равны

3. апофемы равны

4. двугранные углы при основании равны

5. двугранные углы при боковых ребрах равны

6. каждая точка высоты равноудалена от всех вершин основания

7. каждая точка высоты равноудалена от всех боковых граней

Усеченная пирамида – часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Основание и соответствующие сечение усеченной пирамиды называются основаниями усеченной пирамиды .

Перпендикуляр, проведенный из какой-либо точки одного основания на плоскость другого, называется высотой усеченной пирамиды.


Задачи

№1. В правильной четырехугольной пирамиде точка О – центр основания, SO=8 cм, BD=30 см. Найдите боковое ребро SA.


Решение задач

№1. В правильной пирамиде все грани и ребра равны.

Рассмотрим OSB: OSB-прямоугольный прямоугольник, т. к.

SB 2 =SO 2 +OB 2

SB 2 =64+225=289

Пирамида в архитектуре

Пирамида - монументальное сооружение в форме обычной правильной геометрической пирамиды, в которой боковые стороны сходятся в одной точке. По функциональному назначению пирамиды в древности были местом захоронения или поклонения культу. Основа пирамиды может быть треугольной, четырехугольной или в форме многоугольника с произвольным числом вершин, но наиболее распространенной версией является четырехугольная основа.

Известно немалое количество пирамид, построенных разными культурами Древнего мира в основном в качестве храмов или монументов. К крупным пирамидам относятся египетские пирамиды.

По всей Земле можно увидеть архитектурные сооружения в виде пирамид. Здания-пирамиды напоминают о древних временах и очень красиво выглядят.

Египетские пирамиды величайшие архитектурные памятники Древнего Египта, среди которых одно из «Семи чудес света» пирамида Хеопса. От подножия до вершины она достигает 137, 3 м, а до того, как утратила верхушку, высота ее была 146, 7 м

Здание радиостанции в столице Словакии, напоминающее перевернутую пирамиду, было построено в 1983 г. Помимо офисов и служебных помещений, внутри объема находится достаточно вместительный концертный зал, который имеет один из самых больших органов в Словакии.

Лувр, который "молчит неизменно и величественно, как пирамида" на протяжении веков перенёс немало изменений прежде, чем превратиться в величайший музей мира. Он родился как крепость, воздвигнутая Филиппом Августом в 1190 г., вскоре превратившаяся в королевскую резиденцию. В 1793 г. дворец становится музеем. Коллекции обогащаются благодаря завещаниям или покупкам.

  • апофема — высота боковой грани правильной пирамиды , которая проведена из ее вершины (кроме того, апофемой является длина перпендикуляра, который опущен из середины правильного многоугольника на 1-ну из его сторон);
  • боковые грани (ASB, BSC, CSD, DSA) — треугольники, которые сходятся в вершине;
  • боковые ребра ( AS , BS , CS , DS ) — общие стороны боковых граней;
  • вершина пирамиды (т. S) — точка, которая соединяет боковые ребра и которая не лежит в плоскости основания;
  • высота ( SO ) — отрезок перпендикуляра, который проведен через вершину пирамиды к плоскости ее основания (концами такого отрезка будут вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, которое проходит через вершину и диагональ основания;
  • основание (ABCD) — многоугольник, которому не принадлежит вершина пирамиды.

Свойства пирамиды.

1. Когда все боковые ребра имеют одинаковую величину, тогда:

  • около основания пирамиды легко описать окружность , при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • боковые ребра образуют с плоскостью основания одинаковые углы ;
  • кроме того, верно и обратное, т.е. когда боковые ребра образуют с плоскостью основания равные углы, либо когда около основания пирамиды можно описать окружность и вершина пирамиды будет проецироваться в центр этой окружности, значит, все боковые ребра пирамиды имеют одинаковую величину.

2. Когда боковые грани имеют угол наклона к плоскости основания одной величины, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • высоты боковых граней имеют равную длину;
  • площадь боковой поверхности равняется ½ произведения периметра основания на высоту боковой грани.

3. Около пирамиды можно описать сферу в том случае, если в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы станет точка пересечения плоскостей, которые проходят через середины ребер пирамиды перпендикулярно им. Из этой теоремы делаем вывод, что как около всякой треугольной, так и около всякой правильной пирамиды можно описать сферу.

4. В пирамиду можно вписать сферу в том случае, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в 1-ной точке (необходимое и достаточное условие). Эта точка станет центром сферы.

Простейшая пирамида.

По количеству углов основания пирамиды делят на треугольные, четырехугольные и так далее.

Пирамида будет треугольной , четырехугольной , и так далее, когда основанием пирамиды будет треугольник, четырехугольник и так далее. Треугольная пирамида есть четырехгранник — тетраэдр . Четырехугольная — пятигранник и так далее.