Электронная конфигурация иона иттрия 3. Производство стекла. Иттрий-локс, замечательный материал, представляющий собой твёрдый раствор из двуокиси тория в окиси иттрия. Он пропускает видимый свет, а также и инфракрасное излучение. Его используют в качеств

История иттрия

Иттрий (Yttrium) — это редкоземельный химический элемент, имеющий атомный номер 39, согласно периодической системе элементов. Его принято обозначать Y. Свое название он получил по названию деревни Иттербю в Швеции.

Очень необычна история открытия этого элемента. В 1794 году химик из Финляндии Юхан Гадолин, после проведенного эксперимента над породой иттербит, получил из породы оксид иттрия с примесью других элементов. При этом он ошибочно считал, что получил чистый иттрий и назвал полученный элемент экебертом.

Карл Мосандер спустя 50 лет, в 1843 году, обосновал, что полученный Гадолином экеберт является соединением из окислов эрбия, иттрия , тербия. Металлический иттрий , с незначительным содержанием других лантаноидов, был выделен первый раз только в 1828 году, в виде порошка светло-серого цвета.

Удалось это химику из Фридриху Вёлеру. В Российской литературе по химии, датированной первой половиной 19 века, элемент назывался так: основание иттрийской земли , иттрин (Страхов), иттрий (Гесс).

Месторождения иттрия

В земной коре иттрий содержится в размере 0,0028 весовых процентов и находится в числе тридцати самых распространенных элементов. В морской воде его концентрация составляет 0,0003 мг/л. Он входит в состав многих пород и минералов, больше всего содержится иттрия в фергюсоните, гадолините, цирконе, черчите, ксенотиме.

Мировые запасы сырья, из которого может быть получен иттрий, оцениваются в объеме 544,4 тысячи тонн. В год его добывают около 9 тысяч тонн во всем мире. Основным типом его месторождений являются россыпи. Крупнейшие месторождения иттрия расположены в таких странах, как: Китай, США, Австралия, Индия, Россия.

Свойства и цена иттрия

В чистом виде иттрий представляет собой относительно мягкий металл , который хорошо поддается обработке. Он относительно легко растворяется кислотами при комнатной температуре.

При нагревании до 400 °C на поверхности образовывается плотный слой окисла цвета. Температура плавления иттрия составляет 1530 °C, кипения 3318 °C.

Стоимость одного килограмма иттрия находится в районе 140 долларов. Использование его в промышленности очень обширно и будет расти в ближайшее время. В большинстве сфер потребления ему нет равноценной замены.

Применение иттрия

Металлический иттрий используется как добавка при изготовлении из и металлов, увеличивая их предел прочности, температуру плавления и меняя их магнитные свойства.

Из него изготавливают трубопроводы для транспортировки расплавленного ядерного топлива, потому что он не вступает во взаимодействие с расплавленными и .

Иттрий используется как стабилизатор, электролит и катализатор. Из него изготовляют керамику и высокотемпературные сверхпроводники. Его применяют при производстве драгоценных .

Также широко используются соли иттрия и другие его соединения. Крайне устойчив к нагреву в контакте с жидкой сталью и не имеет равноценных аналогов оксид иттрия.

Его используют для изготовления оптических, инфракрасных лазеров большой мощности, компонентов микроволновых радаров, производства иттриевых ферритов для радиоэлектроники.

Радиоактивный изотоп иттрия применяется для лечения раковых заболеваний, как источник бета-излучения. Нанесение соединений иттрия на компоненты двигателей внутреннего сгорания усиливает их износостойкость в 300 раз. Из оксосульфида иттрия производят красную компоненту люминофора для телевизоров и компьютерных мониторов.

ИТТРИЙ радиоактивный (Yttrium; Y ) - химический элемент III группы периодической системы элементов Д. И. Менделеева. Порядковый номер 39, ат. вес (масса) 88,905. И. относится к редким рассеянным металлам, его максимальная положительная валентность равна трем.

И. имеет один стабильный изотоп - 89 Y (100%) и 20 радиоактивных с атомными весами от 82 до 96; в их числе два относительно долгоживущих изотопа - 88 Y (108,1 дня) и 91 Y (58,8 дня). Остальные изотопы И. имеют минутные и часовые периоды полураспада. В медицине применяется иттрий-91 и гл. обр. короткоживущий иттрий-90 (64 часа).

Иттрий-91 испускает (бета-излучение с граничными энергиями двух спектров Е бета =1,545 МэВ (99,78%) и 0,34 (0,22%), а также гамма-излучение весьма малой интенсивности с энергией 1,21 МэВ (0,22%). Иттрий-90 тоже практически чистый бета-излучатель с бета-спектром из двух составляющих, основная из которых обладает высокой граничной энергией, равной 2,27 МэВ (Еср=0,93 МэВ), а вторая- 0,513 МэВ (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение (0,02%) с энергией 1,76 МэВ.

Иттрий-91 извлекают из продуктов деления урана, в частности из облученных в реакторе отработанных тепловыделяющих элементов (ТВЭЛ). Иттрий-90 получают облучением в реакторе природного И. по ядерной реакции 89 Y(n, гамма).

Однако в виду низкого сечения активации (1,26 барн) по этой реакции получается препарат И. с носителем невысокой удельной активности. 90 Y без носителя можно получить также, выделяя его из продуктов деления урана, но при этом он будет в смеси с более долгоживущим 91 Y, что нежелательно.

Для получения чистого без носителя 90 Y его химически выделяют из равновесной смеси с долгоживущим материнским изотопом 90 Sr, являющимся одним из основных продуктов деления урана. При необходимости регулярного получения иттрия-90 используют изотопный генератор 90 Sr - 90 Y, когда из одной и той же порции стронция по мере потребности элюируют 90 Y (см. Генераторы радиоактивных изотопов). При этом в случае приготовления иттрия-90 для клин, применения тщательно следят за тем, чтобы в элюате не оказалось примеси высокорадиотоксичного стронция-90, для чего при необходимости проводят повторную очистку И. от стронция, достигая снижения величины его примеси до 10 -4 -10 -5 %.

И. применяют в медицине в основном для лучевой терапии опухолей различной локализации в виде коллоидных р-ров, суспензий (см. Радиоактивные коллоиды), микросфер и гранул (см. Радиоактивные препараты).

Так, олеат 90 Y применяют для лучевой терапии опухолей небольших размеров (диам, до 3 см), локализующихся в коже и подкожной клетчатке; силикат 90 Y - для терапии злокачественных новообразований, расположенных поверхностно, а также для профилактического введения в послеоперационные рубцы; гранулы с 90 Y - для лечения опухолей мозга основания черепа, гипофиза.

И. относится к радиоизотопам средней радиотоксичности. На рабочем месте без разрешения сан.-эпид, службы может использоваться препарат И. активностью до 10 мккюри.

Библиография: Левин В. И. Получение радиоактивных изотопов, с. 80 и др., М., 1972; Нормы радиационной безопасности (НРБ-76), М., 1978.

В. В. Бочкарев.

В 1794 г.в шведском минерале из Иттербю финский химик Юхан Гадолин обнаружил оксид неизвестного элемента, который был назван в 1797 г. Экебертом "иттриевой землей". Впоследствии оказалось, что "иттриевая земля" - смесь оксидов, из которой были выделены оксид иттрия, а также оксиды 10 других редкоземельных элементов. Только в 1828 г. немецкий ученый Фридрих Велер получил металлический иттрий в виде серого ппорошка при восстановлении безводного хлорида иттрия калием.

Получение:

Физические свойства:

Чистый иттрий - мягкий металл, по своим механическим свойствам он напоминает алюминий. Температура плавления примерно 1500°С, плотность 4,47 г/см 3 .

Химические свойства:

Иттрий медленно разлагает кипящую воду, легко растворим в обычных кислотах. При температуре около 400 0 С на иттрии образуется плотно пристающая пленка оксида Y 2 O 3 .

Важнейшие соединения:

Оксид: В свободном виде кристаллы Y 2 O 3 - бесцветны, гигроскопичны и поглощают из воздуха CO 2 . Y 2 O 3 проявляет слабоосновные свойства, практически не растворим в воде (0,0002 г. в 100 г. Н 2 O), растворяется в кислотах.

Гидроксид иттрия(III) не растворим в воде,имеет характер слабого основания. При стоянииY(OH) 3 постепенно под действием двуокиси углерода воздуха переходит в карбонат:
2Y(OH) 3 +3CO 2 = Y 2 (CO 3) 3 + 3H 2 O

Соли иттрия. Большинство солей иттрия (III) представляют собой белые порошки, образуют кристаллогидраты:
карбонат -Y 2 (CO 3) 3 *3H 2 O, хлорид - YCl 3 *6H 2 O, сульфат - Y 2 (SO 4) 5 *8H 2 O и т.п.

Применение:

Металлический иттрий используется добавка при производстве легированной стали, модифицированного чугуна, других сплавов. Из иттрия изготовляют трубопроводы для транспортирования жидкого ядерного горючего - расплавленного урана или плутония. Оксид иттрия(III) расходуется на изготовление иттриевых ферритов, применяемых в радиоэлектрике, в слуховых приборах, ячейках памяти.

Оксид иттрия также находит применение в производстве керамики, катализаторов, ювелирных украшений, оптических лазеров. См. также: Металлический иттрий. Оксид иттрия марки ИтО-ЛЮМ.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах

Истинная, эмпирическая, или брутто-формула: Y

Молекулярная масса: 88,906

Иттрий - элемент побочной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 39. Обозначается символом Y (лат. Yttrium). Простое вещество иттрий - металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния, β-Y с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 1482 °C.

История

В 1794 году финский химик Юхан (Иоганн) Гадолин (1760-1852) выделил из минерала иттербита оксид элемента, который он назвал иттрием - по названию шведского населённого пункта Иттербю, находящегося на острове Ресарё, входящем в Стокгольмский архипелаг (иттербит был найден здесь в заброшенном карьере). В 1843 году Карл Мосандер доказал, что этот оксид на самом деле является смесью оксидов иттрия, эрбия и тербия и выделил из этой смеси Y 2 O 3 . Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, был получен впервые в 1828 году Фридрихом Велером.

Нахождение в природе

Иттрий - химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л. Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной - иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты - цериевую. Главнейшие минералы иттрия - ксенотим YPO 4 , гадолинит Y 2 FeBe 2 Si 2 O 10 .

Месторождения

Главные месторождения иттрия расположены в Китае, Австралии, Канаде, США, Индии, Бразилии, Малайзии.

Получение

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический иттрий получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Физические свойства

Иттрий - металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния (a=3,6474 Å; с=5,7306 Å; z=2; пространственная группа P63/mmc), β-Y с кубической объёмноцентрированной решёткой типа α-Fe (a=4,08 Å; z=2; пространственная группа Im3m), температура перехода α↔β 1482 °C, ΔH перехода - 4,98 кДж/моль. Температура плавления - 1528 °C, температура кипения - около 3320 °C. Иттрий легко поддается механической обработке.

Изотопы

Иттрий - моноизотопный элемент, в природе представлен одним стабильным нуклидом 89Y.

Химические свойства

На воздухе иттрий покрывается плотной защитной оксидной плёнкой. При 370-425 °C образуется плотная чёрная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде , реагирует с минеральными кислотами, уксусной кислотой , не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y 2 О 3 обладает основными свойствами, ему отвечает основание Y(ОН) 3 .

Применение

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия - около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается плёнкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C.

Керамика для нагревательных элементов

Хромит иттрия - материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).

ИК - керамика

«Иттралокс» (Yttralox) - твёрдый раствор диоксида тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттралокс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия - чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900-1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута, например, 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa 2 Cu 3 O 7 -δ - высокотемпературный сверхпроводник с температурой перехода в сверхпроводящее состояние около 90 К.

Сплавы иттрия

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, что позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов. Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов). Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Магнитные материалы

Изучается перспективный магнитный сплав - неодим-иттрий-кобальт.

Люминофоры

Оксид и ванадат иттрия, легированные европием, используются в производстве кинескопов цветных телевизоров. Оксосульфид иттрия, активированный европием, применяется для производства люминофоров в цветном телевидении (красная компонента), а активированный тербием - для чёрно-белого телевидения. Иттрий-алюминиевый гранат (ИАГ), легированный трёхвалентным церием с максимумом излучения в области жёлтого цвета используется в конструкции люминофорных белых светодиодов.

Дуговая сварка

Добавлением иттрия в вольфрам резко снижают работу выхода электрона (у чистого иттрия 3,3 эВ), что используется для производства иттрированных вольфрамовых электродов для аргонодуговой сварки и составляет значительную статью расхода металлического иттрия. Гексаборид иттрия имеет так же малую работу выхода электронов (2,22 эВ) и применяется для производства катодов мощных электронных пушек (электронно-лучевая сварка и резка в вакууме).

Другие сферы применения

Бериллид иттрия (равно как и бериллид скандия) является одним из лучших конструкционных материалов аэрокосмической техники и, плавясь при температуре около 1920 °C, начинает окисляться на воздухе при 1670 °C (!). Удельная прочность такого материала весьма высока, и при использовании его в качестве матрицы для наполнения нитевидными кристаллами (усами) можно создать материалы, имеющие фантастические прочностные и упругие характеристики. Тетраборид иттрия находит применение в качестве материала для управляющих стержней атомных реакторов (имеет малое газовыделение по гелию и водороду). Ортотанталат иттрия синтезируется и используется для производства рентгеноконтрастных покрытий. Синтезированы иттрий-алюминиевые гранаты (ИАГ), имеющие ценные физико-химические свойства, которые могут применяться и в ювелирном деле, и уже довольно давно применяемые в качестве технологичных и относительно дешёвых материалов для твердотельных лазеров. Важным лазерным материалом является ИСГГ - иттрий-скандий-галлиевый гранат. Гидрид иттрия-железа применяют как аккумулятор водорода с высокой ёмкостью и достаточно дешёвый.

Цены на иттрий

Иттрий чистотой 99-99,9 % стоит в среднем 115-185 долларов США за 1 кг.

ИТТРИЙ

1. Иттрий металлический

Физические и химические свойства

Иттрий — светло-серый металл. Температура плавления около 1500°С, плотность 4,47 г/см 3 , твердость по Бринеллю 628 МПа, модуль упругости 66 ГПа, модуль сдвига 264 ГПа, коэффициент Пуассона 0,265, коэффициент сжимаемости 26,8.10 -7 см 2 /кг. По своим механическим свойствам он напоминает алюминий. Легко поддается механической обработке.

Иттрий легко растворяется в минеральных кислотах. В кипящей воде он постепенно окисляется, на воздухе при температуре 400 °C окисление иттрия идет достаточно быстро. Но при этом образуется темная блестящая пленка окиси, плотно окутывающая металл и препятствующая окислению в массе. Лишь при 760°C эта пленка теряет защитные свойства, и тогда окисление превращает светло-серый металл в бесцветную или черную (от примесей) окись.

Хранение

В нормальной атмосфере иттрий весьма устойчив, он лишь слегка тускнеет, но никогда не теряет металлический блеск. Иттрий окисляется при более высокой температуре. С иттриевыми стружками следует обращаться осторожно, так как при нагревании они энергично сгорают. В атмосфере водяного пара при 750°C иттрий покрывается окисной пленкой, предохраняющей металл от дальнейшего окисления.

Производство

Как и многие лантаноиды, иттрий относится к числу довольно распространенных металлов. По данным геохимиков, содержание иттрия в земной коре 0,0028% - это значит, что элемент входит в число 30 наиболее распространенных элементов Земли.

Свыше ста минералов содержат иттрий. Среди них есть собственно иттриевые - ксенотим, фергюсонит, эвксенит, таленит и другие, промышленное значение имеют только ксенотим и эвксенит.

Главнейшие месторождения иттрия расположены в КНР, США, Канаде, Австралии, Индии, Малайзии, Бразилии. Китай является основным мировым поставщиком иттрия. Промышленное месторождение иттрия и иттриевых редких земель (тяжелых лантаноидов) имеется в Киргизии.

Извлечь чистый иттрий из руды чрезвычайно трудно. Мешает сходство с другими редкими землями.

Процесс переработки руд на иттрий и редкоземельные элементы, разработанный Спеллингом и Лоуэллом, заключается в следующем. Исходный ксенотим вскрывают путем обработки серной кислотой при высокой температуре. Полученный после такой обработки раствор подают на колонки с катионообменной смолой. Для их элюирования применяют раствор этилендиаминтетрауксусной кислоты. Иттрий и редкоземельные элементы содержатся в разных фракциях элюата. Их осаждают из этих фракций в виде оксалатов и прокаливают до окисей.

Универсальный способ получения совершенно чистых редко­земельных металлов и иттрия заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фтори­дов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.

Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны на­ходиться в расплавленном состоянии.

Полученный таким способом иттрий кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-208-72:

Марка

Сумма гадолиния, тербия, диспрозия, гольмия

железо

кальций

медь

Тантал, вольфрам (в зависимости от материала аппаратуры)

ИтМ-1

0,10

0,01

0,01

0,03

0,02

ИтМ-2

0,20

0,02

0,03

0,05

0,20

ИтМ-3

0,50

0,05

0,05

0,10

0,30

ИтМ-4

2,80

0,05

0,50

0,10

0,70

ИтМ-5

3,80

0,05

1,60

0,10

1,00

Применение металлического иттрия

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм). Очень важным качеством, как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида предохраняющих его от дальнейшего окисления до 1000 °C .

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно, что иттрий и некоторые его сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Изучается перспективный магнитный сплав - неодим -иттрий-кобальт .

Легирование

Иттрий широко используется в черной и цветной металлургии.

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а, кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет громадное экономическое значение.

Введение незначительных количеств иттрия в сталь делает ее структуру мелкозернистой, улучшает механические, электрические и магнитные свойства. При добавлении небольших количеств иттрия (десятые, сотые доли процента) в чугун, твердость его возрастет почти вдвое, а износостойкость - в четыре раза. Такой чугун становится менее хрупким, по прочностным характеристикам он приближается к стали, легче переносит высокие температуры. И особенно важно, что иттриевый чугун можно переплавлять несколько раз, но прочностные характеристики при этом сохраняются.