Примеры силы инерции. Неинерциальные системы отсчета. Силы инерции. Определение и формула силы инерции

Установив, что индивидуальные точки в ньютоновском абсолютном пространстве не являются физической реальностью, мы должны теперь задаться вопросом: что же остается в рамках

этого понятия вообще? Остается следующее: сопротивление всех тел ускорению должно интерпретироваться в ньютоновском смысле как действие абсолютного пространства. Паровоз, который приводит в движение поезд, преодолевает сопротивление инерции. Снаряд, сносящий стену, черпает свою разрушающую силу в инерции. Действие инерции проявляется всякий раз, когда имеют место ускорения, а последние представляют собой не более чем изменения скорости в абсолютном пространстве (мы можем использовать последнее выражение, так как изменение скорости имеет одну и ту же величину во всех инерциальных системах). Таким образом, системы координат, которые сами по себе движутся с ускорением относительно инерциальных систем, не эквивалентны последним или друг другу. Можно, конечно, определять законы механики и в таких системах, но они будут приобретать более сложную форму. Даже траектория свободного тела оказывается уже не равномерной и не прямолинейной в ускоренной системе (см. гл. стр. 59). Последнее можно выразить в форме утверждения, что в ускоренной системе, кроме действительных сил, существуют кажущиеся, или инерциальные, силы. Тело, на которое не действуют действительные силы, все-таки подвержено действию этих инерциальных сил, поэтому его движение в общем случае оказывается неравномерным и непрямолинейным. Например, автомобиль, который начинает двигаться или тормозит, представляет собой такую ускоренную систему. Каждому знаком толчок трогающегося или останавливающегося поезда; это не что иное, как действие инерциальной силы, о которой мы говорим.

Рассмотрим это явление подробно на примере системы движущейся прямолинейно с ускорением Если измерять ускорение тела относительно такой движущейся системы то его ускорение относительно абсолютного пространства, очевидно, будет больше на Следовательно, фундаментальный закон механики в этом пространстве имеет вид

Если записать его в виде

то можно сказать, что в ускоренной системе выполняется закон движения в ньютоновской форме, именно

за исключением того, что теперь в качестве силы нужно поставить К, которая равна

где К - действительная сила, а - кажущаяся сила, или сила инерции.

Итак, эта сила действует на свободное тело. Ее действие можно проиллюстрировать следующим рассуждением: мы знаем, что гравитация на Земле - сила тяжести - определяется формулой G = mg, где постоянное ускорение, обусловленное гравитацией. Сила инерции действует в этом случае подобно гравитации; знак минус означает, что сила инерции направлена противоположно ускорению системы отсчета которая используется как базис. Величина видимого гравитационного ускорения у совпадает с ускорением системы отсчета Таким образом, движение свободного тела в системе есть просто движение того типа, который мы знаем как падение или движение брошенного тела.

Эта взаимосвязь между инерциальными силами в ускоренных системах и силой гравитации здесь все еще кажется несколько искусственной. Фактически она оставалась незамеченной в течение двухсот лет. Однако уже на этой стадии мы должны указать, что она образует основу эйнштейновской общей теории относительности.

Эта тема будет посвящена рассмотрению особого вида сил – сил инерции. Особенность этих сил состоит в следующем. Все механические силы – будь то силы гравитационного, упругого взаимодействия или силы трения – возникают тогда, когда на тело имеет место воздействие со стороны других тел. С силами инерции дело обстоит иначе.

Для начала вспомним, что такое инерция. Инерция – это физическое явление, состоящее в том, что тело всегда стремится сохранить свою первоначальную скорость. И силы инерции возникают тогда, когда у тела изменяется скорость – т.е. появляется ускорение. В зависимости от того, в каком движении принимает участие тело, у него возникает то или иное ускорение, и оно порождает ту или иную силу инерции. Но все эти силы объединяет одна и та же закономерность: сила инерции всегда направлена противоположно ускорению ее породившему.

По своей природе силы инерции отличаются от других механических сил. Все остальные механические силы возникают в результате воздействия одного тела на другое. Тогда как силы инерции обусловлены свойствами механического движения тела. Кстати, в зависимости от того, в каком движении участвует тело, возникает та или иная сила инерции:

Движение может быть прямолинейным, и тогда речь пойдет о силе инерции поступательного движения;

Движение может быть криволинейным, и тогда речь пойдет о центробежной силе инерции;

Наконец, движение может быть одновременно и прямо-, и криволинейным (если тело перемещается во вращающейся системе или перемещается, вращаясь), и тогда речь пойдет о силе Кориолиса.

Рассмотрим подробнее виды сил инерции и условия их возникновения.

1. СИЛА ИНЕРЦИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯF i . Она возникает, когда тело движется по прямолинейной траектории. Мы постоянно сталкиваемся с действием этой силы в транспорте, движущемся по прямой дороге, при торможении и при наборе скорости. При торможении нас бросает вперед, т.к. скорость движения резко уменьшается, а наше тело старается сохранить ту скорость, которая у него была. При наборе скорости нас вдавливает в спинку сидения по той же причине. На рис. 2.1

Изображены направления ускорения и силы инерции поступательного движения в случае уменьшения скорости: ускорение направлено противоположно движению, а сила инерции направлена противоположно ускорению. Формула силы инерции задается вторым законом Ньютона: . Знак «минус» обусловлен тем, что векторы и имеют противоположные направления. Численное значение (модуль) этой силы соответственно вычисляется по формуле:

F = ma (3.1)

2. ЦЕНТРОБЕЖНАЯ СИЛА ИНЕРЦИИF i . Чтобы понять, как возникает эта сила, рассмотрим рис. 3.2, на котором изображен диск, вращающийся в горизонтальной плоскости, с шариком, прикрепленным к центру диска посредством растяжимой связи (например, резинки). Когда диск начинает вращаться, шарик стремится удалиться от


центра и натягивает резинку. Причем чем быстрее вращается диск, тем дальше удаляется шарик от центра диска. Такое перемещение шарика по плоскости диска обусловлено действием силы, которая называется центробежной силой инерции (F цб) . Таким образом, центробежная сила возникает при вращении и направлена вдоль радиуса от центра вращения.F цб является силой инерции, а значит ее возникновение обусловлено наличием ускорения, которое должно быть направлено противоположно этой силе. Если центробежная сила направлена от центра, то очевидно, что причиной возникновения этой силы является нормальное (центростремительное) ускорение а n , ведь именно оно направлено к центру вращения (см. Тема 1, §1.2, п.3). Исходя из этого, получаем формулу центробежной силы. Согласно второму закону Ньютона F=ma , где m – масса тела. Тогда для центробежной силы инерции справедливо соотношение:

F цб = ma n .

Учитывая (1.18) и (1.19), получаем:

(3.2) и F цб = mω 2 r (3.3).

3. СИЛА КОРИОЛИСА F K . При совмещении двух видов движения: вращательного и поступательного – появляется еще одна сила, называемая силой Кориолиса (или кориолисовой силой) по имени французского механика Густава Гаспара Кориолиса (1792-1843), который дал расчет этой силы.

Появление кориолисовой силы можно обнаружить на примере опыта, изображенного на рис. 3.3. Ни нем изображен диск, вращающийся в горизонтальной

Рис. 3.3 вид сверху

плоскости. Прочертим на диске радиальную прямую ОА и запустим в направлении от О к А шарик со скоростью υ. Если диск не вращается, шарик будет катиться вдоль прочерченной нами прямой. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться вдоль изображенной пунктиром кривой ОВ, причем его скорость υ будет изменять свое направление (см. рис.3.3 (б)). Следовательно, по отношению ко вращающейся системе отсчета (а в данном случае это диск) шарик ведет себя так, как если бы на него действовала некая сила, перпендикулярная скорости υ. Это и есть сила Кориолиса F K . Именно она заставляет шарик отклоняться от прямолинейной траектории ОА. Формула, которая описывает эту силу определяется опять же вторым законом Ньютона, только на этот раз в качестве ускорения выступает так называемое кориолисово ускорениеа К : ,F K =2mυω (3.5).

Итак, как уже было сказано, чтобы сила Кориолиса проявила себя, необходимо совместить 2 вида движения. И здесь возможны два варианта: 1). Тело движется относительно вращающейся системы отсчета. Именно этот случай изображен на рис.3.3. 2). Вращающееся тело совершает поступательное движение В качестве примера можно рассматривать так называемые «крученые» мячи – прием, используемый в футболе – когда удар по мячу осуществляется так, что он во время полета вращается.

Пусть на материальную точку М действует некоторая система сил .

Среди сил могут быть активные силы и реакции связей.

На основании аксиомы независимости действия сил точка М под действием этих сил получит такое же ускорение, как если бы на нее действовала, лишь одна сила, равная геометрической сумме заданных сил,

где а - ускорение точки М ; m - масса точки М F Σ ; - равнодействующая системы сил.

Перенесем вектор, стоящий в левой части уравнения, в правую часть. После этого получим сумму векторов, равную нулю,

Введем обозначение, тогда приведенное уравнение можно представить в виде:

Таким образом, все силы, включая силу , должны уравновешиваться, так как силы и F Σ равны между собой и направлены по одной прямой в противоположные стороны. Сила , равная произведению массы точки на ее ускорение, но направленная в сторону, противоположную ускорению, называется силой инерции.

Из последнего уравнения следует, что в каждый данный момент времени силы, приложенные к материальной точке, уравновешиваются силами инерции. Приведенный вывод называют началом Д"Аламбера. Он может быть применен не только к материальной точке, но и к твердому телу или к системе тел. В последнем случае он формулируется следующим образом: если ко всем действующим силам, приложенным к движущемуся телу или системе тел, приложить силы инерции, то полученную систему сил можно рассматривать как находящуюся в равновесии.

Следует подчеркнуть, что силы инерции действительно существуют, но приложены не к движущемуся телу, а к тем телам, которые вызывают ускоренное движение.

Применение начала Д"Аламбера позволяет при решении динамических задач использовать уравнения равновесия. Такой прием решения задач динамики носит название метода кинетостатики .

Рассмотрим, как определяется сила инерции материальной точки в различных случаях ее движения.

1. Точка М массой m движется прямолинейно с ускорением (рис. а, б).

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении (рис. а) направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении (рис. б), когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

2. Точка М движется криволинейно и неравномерно (рис. в).

При этом, как известно из предыдущего, ее ускорение может быть разложено на нормальную а n и касательную a t составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции:

3.3 Работа постоянной силы на прямолинейном перемещении

Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории. Рассмотрим материальную точку С, к которой приложена постоянная по значению и направлению сила F.

За некоторый промежуток времени t точка С переместилась в положение С 1 по прямолинейной траектории на расстояние s .

Работа A постоянной силы F при прямолинейном движении точки ее приложения равна произведению модуля силы F на расстояние s и на косинус угла между направлением силы и направлением перемещения, т. е.

Угол α между направлением силы и направлением движения может меняться в пределах от 0 до 180°. При α < 90° работа положительна, при α> 90° - отрицательна, при α = 90° A = 0 (работа равна нулю).

Если cила составляет с направлением движения острый угол, она называется движущей силой, ее работа всегда положительна. Если угол между направлениями силы и перемещения тупой, сила оказывает сопротивление движению, совершает отрицательную работу и носит название силы сопротивления. Примерами сил сопротивления могут служить силы резания, трения, сопротивления воздуха и другие, которые всегда направлены в сторону, противоположную движению.

Когдаα = 0, т. е. когда направление силы совпадает с направлением скорости, A = Fs , так как cos α = 1. Произведение F cos α есть проекция силы F на направление движения материальной точки. Следовательно, работу силы можно определить как произведение перемещения s и проекции силы F на направление движения точки.

За единицу работы в Международной системе единиц (СИ) принят джоуль (Дж), равный работе силы в один ньютон (Н) на совпадающем с ней по направлению движения длиной в один метр (м): . Применяется также более крупная единица работы - килоджоуль (кДж), 1 кДж = 1000 Дж = 10 3 Дж. В технической системе (МКГСС) за единицу работы принят килограмм-сила метр (кгс м).

В классической механике представления о силах и их свойствах основываются на законах Ньютона и неразрывно связаны с понятием инерциальная система отсчёта .

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта. Соответственно, понятие силы первоначально оказывается определённым только для таких систем отсчёта.

Уравнение второго закона Ньютона, связывающее ускорение имассу материальной точки с действующей на неё силой , записывается в виде

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

сила есть мера механического действия на данное материальное тело других тел

в соответствии с третьим законом Ньютона силы способны существовать лишь попарно, при этом природа сил в каждой такой паре одинакова.

любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, силы обязательно представляют собой результат взаимодействия тел.

Никакие другие силы в механике в рассмотрение не вводятся и не используются. Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается.

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются.

34. Понятие о плоскопараллельном движении твердого тела

Движение твердого тела называется плоскопараллельным, если все точки тела перемещаются в плоскостях, параллельных некоторой фиксированной плоскости (основной плоскости). Пусть некоторое тело V совершает плоское движение, π - основная плоскость. Из определения плоскопараллельного движения и свойств абсолютно твердого тела следует, что любой отрезок прямой АВ, перпендикулярный плоскости π, будет совершать поступательное движение. То есть траектории, скорости и ускорения всех точек отрезка АВ будут одинаковы. Таким образом, движение каждой точки сечения s параллельного плоскости π, определяет собой движение всех точек тела V, лежащих на отрезке перпендикулярном сечению в данной точке. Примерами плоскопараллельного движения являются: качение колеса по прямолинейному отрезку, так как все его точки перемещаются в плоскостях, параллельных плоскости, перпендикулярной оси колеса; частным случаем такого движения является вращение твердого тела вокруг неподвижной оси , в самом деле, все точки вращающегося тела движутся в плоскостях параллельных некоторой перпендикулярной оси вращения неподвижной плоскости.

35. Силы инерции при прямолинейном и криволинейном движении материальной точки

Сила, с которой точка сопротивляется изменению движения, называется силой инерции материальной точки. Сила инерции направлена противоположно ускорению точки и равна массе, умно­женной на ускорение.

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении, когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

При криволинейном и неравномерном движении ускорение может быть разложено на нормальную аn и касательную at составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции.

Для того чтобы второй закон Ньютона выполнялся в неинерциальных системах отсчета в дополнение к силам, которые действуют на тела вводят силы инерции.

Определение и формула силы инерции

ОПРЕДЕЛЕНИЕ

Силой инерции называют силу, которая вводится только потому, что система координат, в которой происходит рассмотрение движения тел, является неинерциальной.

Возникновение сил инерции не связано с действием каких-либо тел. Напомним, что неинерциальными системами отсчета являются любые системы, движущейся с ускорением относительно инерциальных систем.

Третий закон Ньютона для сил инерции не выполняется.

Пусть ускорение тела относительно инерциальной системы отсчета равно . Обычно такое ускорение называют абсолютным, при этом ускорение тела относительно неинерциальной системы отсчета носит название относительного (). Второй закон Ньютона для инерциальной системы отсчета запишем как:

где - равнодействующая сила, приложенная к телу массы m. В неинерциальной системе отсчета:

поскольку:

Добавим к правой части выражения (2) силы инерции, так чтобы выполнялся второй закон Ньютона в неинерциальной системе отсчета:

В таком случае получим, что сила инерции равна:

Формула (5) для силы инерции дает верное описание движения в неинерциальной системе отсчета. При этом нахождение разности относительного и абсолютного ускорений является кинематической задачей. Ее можно решить, если известен характер движения неинерциальной системы отсчета относительно инерциальной.

Системы отсчета, движущиеся прямолинейно с постоянным ускорением

Система отсчета, которая перемещается прямолинейно с постоянным ускорением - это простейший случай неинерциальной системы. Рассмотрим неинерциальную систему отсчета, которая движется прямолинейно с постоянным ускорением (переносное ускорение) относительно инерциальной системы отсчета. Тогда:

Согласно формуле (5) сила инерции равна:

Вращающаяся система отсчета

Рассмотрим систему отсчета, вращающуюся относительно неподвижной оси с постоянной скоростью . Для тела находящегося в состоянии покоя в такой системе отсчета формулу для силы инерции можно записать как:

где - радиус-вектор, по величине равный расстоянию от оси вращения до рассматриваемого тела, направленный от центра к телу. Сила инерции (8) называется центробежной силой инерции.

Все тела на поверхности Земли испытывают действие центробежной силы инерции.

Отметим, что всякую задачу можно решить в инерциальной системе отсчета. Применение неинерциальных систем продиктовано соображениями удобства применения неинерциальных систем.

Примеры решения задач по теме «Сила инерции»

ПРИМЕР 1

Задание Какова сила нормального давления тела (вес) на поверхность Земли, если тело неподвижно, имеет массу m. Находится на широте . Радиус Земли считать равным R.
Решение Сделаем рисунок.

Свяжем систему отсчета с Землей. На груз в этой системе отсчета действуют силы: сила тяжести (); сила реакции опоры (); сила трения покоя (). Кроме этих сил, так как систему отсчета связанную с Землей в нашем случае инерциальной считать не будем, действует центробежная сила инерции (). Формулу для расчета силы инерции возьмем:

где радиус траектории (окружности) по которой движется груз.

Систему координат выберем так, что ее начало совпадет с центром тела, ось Y будет перпендикулярна поверхности Земли, ось X - касательная к поверхности Земли (см. рис.1). Так как тело не движется относительно Земли, то второй закон Ньютона запишем как:

В проекциях на оси X и Y выражения (1.2), учитывая (1.1) имеем:

Так как вес тела (P) по величине равен (N), выразим его из первого уравнения системы (1.3), получим:

Ответ