Создание дуговой лампочки яблочковым. Свет в окошке: краткая история лампочки. Павел Яблочков и Александр Лодыгин. Происхождение, годы обучения

Весной 1876 года мировые СМИ пестрели заголовками: «Свет приходит к нам с Севера — из России»; «Северный свет, русский свет — чудо нашего времени»; «Россия — родина электричества».

На разных языках журналисты восхищались русским инженером Павлом Яблочковым , чьё изобретение, представленное на выставке в Лондоне, изменило представление о возможностях использования электричества.

Изобретателю в момент выдающегося триумфа было всего 29 лет.

Павел Яблочков в годы работы в Москве. Фото: Commons.wikimedia.org

Прирождённый изобретатель

Павел Яблочков родился 14 сентября 1847 года в Сердобском уезде Саратовской губернии, в семье обедневшего мелкопоместного дворянина, происходившего из старинного русского рода.

Отец Павла в молодости учился в Морском кадетском корпусе, но по болезни со службы был уволен с награждением гражданским чином XIV класса. Мать была властной женщиной, державшей в крепких руках не только хозяйство, но и всех членов семьи.

Паша ещё в детстве увлёкся конструированием. Одним из первых его изобретений стал оригинальный землемерный прибор, которым затем пользовались жители всех окрестных деревень.

В 1858 году Павел поступил в Саратовскую мужскую гимназию, однако из 5-го класса отец забрал его. Семья была стеснена в средствах, и на образование Павла их не хватало. Тем не менее мальчика удалось определить в частный Подготовительный пансионат, где молодых людей готовили к поступлению в Николаевское инженерное училище. Содержал его военный инженер Цезарь Антонович Кюи. Этот неординарный человек, одинаково успешно занимавшийся вопросами военной инженерии и написанием музыки, пробудил у Яблочкова интерес к науке.

В 1863 году Яблочков блестяще сдал вступительный экзамен в Николаевское инженерное училище. В августе 1866 года он окончил училище по первому разряду, получив чин инженер-подпоручика. Его назначили младшим офицером в 5-й сапёрный батальон, расквартированный в Киевской крепости.

Внимание, электричество!

Родители были счастливы, поскольку считали, что сын может сделать большую военную карьеру. Однако самого Павла эта стезя не прельщала, и спустя год он уволился со службы в чине поручика под предлогом болезни.

Яблочков проявляет большой интерес к электротехнике, однако знаний в этой области у него было недостаточно, и, чтобы устранить этот пробел, он вернулся на военную службу. Благодаря этому, у него появилась возможность поступить в Техническое гальваническое заведение в Кронштадте, единственную в России школу, готовившую военных электротехников.

После её окончания Яблочков отслужил положенные три года и в 1872 году вновь уволился из армии, теперь уже навсегда.

Новым местом работы Яблочкова стала Московско-Курская железная дорога, где он был назначен начальником службы телеграфа. Работу он совмещал с изобретательской деятельностью. Узнав об опытах Александра Лодыгина по освещению улиц и помещений электрическими лампами, Яблочков решил заняться усовершенствованием существовавших тогда дуговых ламп.

Как появился прожектор для поездов

Весной 1874 года по Московско-Курской дороге должен был проследовать правительственный состав. Руководство дороги задумало осветить путь поезду в ночное время при помощи электричества. Однако, как это сделать, чиновники не очень понимали. Тут вспомнили об увлечении начальника службы телеграфа и обратились к нему. Яблочков согласился с большой радостью.

На паровоз впервые в истории железнодорожного транспорта установили прожектор с дуговой лампой — регулятором Фуко. Прибор был ненадёжный, но Яблочков прикладывал все усилия, чтобы заставить его работать. Стоя на передней площадке паровоза, он менял угли в лампе и подкручивал регулятор. При смене паровозов Яблочков перемещался на новый вместе с прожектором.

Поезд успешно дошёл до места назначения, к радости руководства Яблочкова, но сам инженер решил — такой способ освещения слишком сложный и затратный и требует усовершенствования.

Яблочков уходит со службы на железной дороге и открывает в Москве мастерскую физических приборов, где проводятся многочисленные опыты с электричеством.

«Свеча Яблочкова». Фото: Commons.wikimedia.org

Русская идея воплотилась в жизнь в Париже

Главное изобретение в его жизни родилось во время опытов с электролизом поваренной соли. В 1875 году во время одного из опытов по электролизу параллельно расположенные угли, погружённые в электролитическую ванну, случайно коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории.

Инженеру пришла в голову мысль о том, что можно создать дуговую лампу без регулятора межэлектродного расстояния, которая будет значительно надёжнее.

Осенью 1875 года Яблочков намеревался со своими изобретениями отправиться на Всемирную выставку в Филадельфии, дабы продемонстрировать успехи российских инженеров на ниве электричества. Но дела мастерской шли неудачно, денег не хватало, и добраться Яблочков смог только до Парижа. Там он познакомился с академиком Бреге, владевшим мастерскими физических приборов. Оценив знания и опыт русского инженера, Бреге предложил ему работу. Яблочков принял приглашение.

Весной 1876 года ему удалось закончить работу по созданию дуговой лампы без регулятора. 23 марта 1876 года Павел Яблочков получил французский патент № 112024.

Лампа Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем её предшественницы. Она представляла собой два стержня, разделённых изоляционной прокладкой из каолина. Каждый из стержней зажимался в отдельной клемме подсвечника. На верхних концах зажигался дуговой разряд, и пламя дуги ярко светило, постепенно сжигая угли и испаряя изоляционный материал.

Одним деньги, другим наука

15 апреля 1876 года в Лондоне открылась выставка физических приборов. Яблочков представлял и фирму Бреге, и одновременно выступал от своего имени. В один из дней выставки инженер представил свою лампу. Новый источник света произвёл настоящий фурор. За лампой прочно закрепилось название «свеча Яблочкова». Она оказалась чрезвычайно удобной в использовании. Фирмы по эксплуатации «свечей Яблочкова» стремительно открывались по всему миру.

Но невероятный успех не сделал русского инженера миллионером. Он занял скромный пост руководителя технического отдела французской «Генеральной компании электричества с патентами Яблочкова».

От получаемой прибыли ему доставался незначительный процент, но Яблочков не роптал — его вполне устраивало то, что он имел возможность продолжать научные исследования.

Тем временем «свечи Яблочкова» появились в продаже и начали расходиться в громадном количестве. Каждая свеча стоила примерно 20 копеек и горела около полутора часов; по истечении этого времени приходилось вставлять в фонарь новую свечу. Впоследствии были придуманы фонари с автоматической заменой свечей.

«Свеча Яблочкова» в музыкальном зале в Париже. Фото: Commons.wikimedia.org

От Парижа до Камбоджи

В 1877 году «свечи Яблочкова» покорили Париж. Сначала они осветили Лувр, затем оперный театр, а затем одну из центральных улиц. Свет новинки был столь непривычно ярким, что парижане в первое время собирались, чтобы просто полюбоваться изобретением русского мастера. Вскоре «русское электричество» уже освещало и ипподром в Париже.

Успех «свечей Яблочкова» в Лондоне заставил местных бизнесменов попытаться добиться их запрета. Дискуссия в английском парламенте растянулась на несколько лет, а «свечи Яблочкова» продолжали успешно работать.

«Свечи» покорили Германию, Бельгию, Испанию, Португалию, Швецию, в Риме ими освещали развалины Колизея. К концу 1878 года лучшие магазины Филадельфии, города, в который Яблочков так и не попал на Всемирную выставку, также осветили его «свечи».

Подобными лампами осветили свои покои даже шах Персии и король Камбоджи.

В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, «свечи Яблочкова» впервые осветили Большой (Каменный) театр в Петербурге.

Все изобретения Яблочков вернул России

Заслуги Яблочкова получили признание и в научном мире. 21 апреля 1876 года Яблочкова избрали в действительные члены Французского физического общества. 14 апреля 1879 года учёного наградили именной медалью императорского Русского технического общества.

В 1881 году в Париже открылась первая Международная электротехническая выставка. На ней изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса. Однако выставка же стала свидетельством того, что время «свечи Яблочкова» уходит — в Париже была представлена лампа накаливания, которая могла гореть 800-1000 часов без замены.

Яблочкова это нисколько не смутило. Он переключился на создание мощного и экономичного химического источника тока. Опыты в этом направлении были весьма опасными — эксперименты с хлором обернулись для учёного ожогом слизистой оболочки лёгких. У Яблочкова начались проблемы со здоровьем.

Ещё около десяти лет он продолжал жить и работать, курсируя между Европой и Россией. Наконец, в 1892 году он вместе с семьёй возвращается на Родину окончательно. Желая, чтобы все изобретения стали собственностью России, он практически всё своё состояние потратил на выкуп патентов.

Памятник на могиле Павла Яблочкова. Фото: Commons.wikimedia.org / Andrei Sdobnikov

Гордость нации

Но в Петербурге об учёном успели забыть. Яблочков уехал в Саратовскую губернию, где намеревался в деревенской тиши продолжить научные исследования. Но тут Павел Николаевич быстро понял, что условий в деревне для подобных работ просто нет. Тогда он отправился в Саратов, где, живя в гостиничном номере, занялся составлением плана электрического освещения города.

Здоровье, подорванное опасными опытами, продолжало ухудшаться. Помимо проблем с дыханием, беспокоили боли в сердце, опухали и совсем отказывали ноги.

Около 6 часов утра 31 марта 1894 года Павла Николаевича Яблочкова не стало. Изобретатель ушёл из жизни в возрасте 46 лет. Его похоронили на окраине села Сапожок в ограде Михайло-Архангельской церкви в фамильном склепе.

В отличие от многих деятелей дореволюционной России, имя Павла Яблочкова почиталось и в советские времена. В честь него были названы улицы в различных городах страны, включая Москву и Ленинград. В 1947 году была учреждена премия Яблочкова за лучшую работу по электротехнике, которая присуждается 1 раз в три года. А в 1970 году в честь Павла Николаевича Яблочкова был назван кратер на обратной стороне Луны.

Яблочков родился в 1847 году. Первые свои знания получал в Саратовской гимназии. В 1862 году переехал в , и стал учиться в подготовительном пансионе. Спустя год Павел Николаевич поступил в Николаевское военно-инженерное училище. Военная карьера не прельщала молодого человека. Будучи выпускником училища, он год прослужил в русской армии в саперном батальоне, и уволился со службы.

В это же время у Павла появляется новое увлечение - электротехника. Он понимает, что важно продолжить учебу и поступает в Офицерские гальванические классы. В классах он изучит подрывную технику и минное дело. Когда учеба была окончена, Яблочкова командировали в Киев, в его бывший батальон, где он возглавил гальваническую бригаду. Павел подтвердил поговорку о том, что дважды войти в одну реку невозможно. Вскоре он оставил службу.

В 1873 году Павел стал начальником телеграфа Московско-Курской железной дороги. Работу он совмещал с посещением собраний Постоянной комиссии Отдела прикладной физики. Здесь он послушал ряд докладов, получил новые знания. Тут же он познакомился с электротехником Чиколевым. Встреча с этим человеком помогла Павлу Николаевичу окончательно определить свои интересы.

Яблочков совместно с инженером Глуховым, создали лабораторию, в которой изучали вопросы электротехники, что-то мастерили. В 1875 году в этой лаборатории друзья ученые создали электрическую свечу. Эта электрическая свеча стала первой моделью дуговой лампы без регулятора. Такая лампа удовлетворяла все технические потребности текущего исторического периода. Ученые сразу же получили заказы на изготовление ламп. Вследствие различных причин, лаборатория Яблочкова не смогла дать прибыли и разорилась. Павел Николаевич был вынужден некоторое время скрываться заграницей от кредиторов.

За пределами Родины, будучи в Париже, Павел знакомиться с Бреге. Бреге был известным механиком. Он предложил Яблочкову работать в его мастерских. Бреге занимался конструированием телефонов и электрических машин. В его мастерской Павел Николаевич усовершенствовал свою электрическую свечу. И получил французский патент на нее. В это же время Павел разработал систему электрического освещения на однофазном переменном токе. Новации Яблочкова в Российской Империи оказались спустя два года после их изобретения. Павлу нужно было расплатиться с кредиторами, как только это произошло, его изобретения появились на Родине. В ноябре 1878 года его электрическая свеча осветила Зимний дворец, а так же корабли «Петр Великий» и «Вице - адмирал Попов»

Система освещения, разработанная ученым, получила название «русский свет». С большим успехом систему демонстрировали на выставках Лондоне и Париже. «Русский свет» использовали все Европейские страны.

Павел Михайлович Яблочков с большой буквы. Он внес неоценимый вклад в развитие электротехники в и Мире, его достижения признаны и неоспоримы. Умер Павел в 1894 году.

(«Наука и жизнь» №39, 1890 год)

Конечно, все читатели знают имя П. Н. Яблочкова, изобретателя электрической свечи. С каждым днём всё более выдвигается на очередь вопрос об электрическом освещении городов и больших зданий, и в этом деле имя Яблочкова занимает одно из выдающихся мест среди электротехников. Помещая в этом номере журнала его портрет, скажем несколько слов о жизни русского изобретателя, сущности и значении его изобретения.

Павел Николаевич Яблочков родился в 1847 году и первоначальное образование получил в Саратовской гимназии. По окончании в ней курса он поступил в Николаевское инженерное училище, где окончил с чином подпоручика, и затем был зачислен в один из батальонов Киевской сапёрной бригады. Вскоре он был сделан начальником телеграфа на Московско-Курской железной дороге и здесь-то основательно изучил все тонкости электротехники, что и дало ему возможность сделать изобретение, наделавшее столько шума, — электрическую свечу.

Чтобы уяснить значение этого изобретения, скажем несколько слов о системах электрического освещения.

Все приборы для электрического освещения можно разделить на две главные группы: 1) приборы, основанные на принципе вольтовой дуги, и 2) лампы с накаливанием.

Чтобы произвести свет накаливанием, электрический ток пропускают через весьма дурные проводники, которые поэтому сильно накаливаются и издают свет. Лампы с накаливанием можно разделить на два отдела: а) накаливание производится при доступе воздуха (лампы Ренье и Вердемана); б) накаливание производится в пустоте. В лампах Ренье и Вердемана ток идёт через цилиндрический уголёк; так как при доступе воздуха уголь быстро сгорает, то эти лампы весьма неудобны и нигде не применяются. Теперь употребляются исключительно лампы с накаливанием в пустоте, устройство коих, в общем, очень просто. Концы проволок соединяются посредством угольной нити и вставляются в стеклянную колбочку или пузырёк, из коего воздух выкачивается с помощью ртутного насоса почти до совершенной пустоты. Здесь достигается та выгода, что угольная нить (обыкновенно очень тонкая) хотя и накаливается весьма сильно, но может служить до 1200 и более часов, почти не сгорая, вследствие отсутствия воздуха. Все системы ламп с накаливанием в пустоте отличаются одна от другой лишь способом обработки угольной нити и формой, которую придают нитям. В лампе Эдисона нити получаются из обугленных волокон бамбукового дерева, сами же нити сгибаются в виде буквы U. В лампе Свана нити готовятся из хлопчатой бумаги и загибаются петлёй в полтора оборота. В лампе Максима нити делаются из обугленного бристольского картона и сгибаются в виде буквы М. Жерар готовит нити из прессованного кокса и сгибает их под углом. Крюто осаждает уголь на тонкую платиновую нить и т. д.

Лампы с вольтовой дугой основаны на всем известном из физики явлении вольтовой дуги, которое Гумфри Дэви впервые наблюдал ещё в 1813 году. Пропуская через два угля ток от 2000 цинкомедных пар, он получил между концами углей огненный язык дугообразной формы, которому и дал название вольтовой дуги. Для её получения необходимо сначала сблизить концы углей до соприкосновения, так как иначе дуги не будет, какова бы ни была сила тока; угли удаляются друг от друга лишь тогда, когда концы их накалятся. Это первое и весьма важное неудобство вольтовой дуги. Ещё более важное неудобство возникает при дальнейшем горении. Если ток постоянный, то тот уголь, который соединён с положительным полюсом, расходуется вдвое более, чем другой уголь, соединённый с отрицательным полюсом. Кроме того, на конце положительного угля образуется углубление (называемое кратером), а отрицательный сохраняет острую форму. При вертикальном расположении углей положительный уголь всегда ставят вверху, чтобы пользоваться лучами, отражёнными от вогнутой поверхности кратера (иначе лучи, идя вверх, пропадали бы). При переменном токе оба угля сохраняют острую форму и сгорают одинаково, но зато здесь нет отражения от верхнего угля, а потому этот способ менее выгоден.

Отсюда ясно видны недостатки систем с вольтовой дугой. Перед зажиганием таких ламп необходимо сблизить концы углей, а затем во всё время горения переставлять концы углей, по мере их сгорания. Словом, чуть не к каждой лампе требовалось приставить по человеку для наблюдения за горением. Ясно, что такая система совершенно непригодна для освещения, например, целых городов и даже больших зданий. Для уничтожения этих неудобств множество изобретателей занялись придумыванием механических регуляторов, так чтоб угли сами собой сближались по мере сгорания, не требуя надзора человека. Было придумано много весьма остроумных регуляторов (Серрена, Жаспара, Сименса, Грамма, Бреша, Уэстона, Канса и т. д.), но все они не много помогали делу. Во-первых, они были чрезвычайно сложны и хитроумны, во-вторых, всё-таки мало достигали цели и были очень дороги.

В то время как все придумывали лишь разные тонкости в регуляторах, г. Яблочкову пришла в голову гениальная мысль, в то же время настолько простая, что просто удивительно, как это раньше никто не напал на неё. Насколько просто открывался ларчик, видно из следующей схемы:

а_______б в_______ г д_______ е ж_______ з

аб—вг — старая система вольтовой дуги; электрический ток шёл через а и г , дуга была между б и в ; задача изобретателей была в том, чтобы регулировать расстояние между б и в , которое менялось соответственно силе тока, качеству и размерам углей аб и вг , и т. д. Очевидно, что задача была хитрая и сложная, где не обойтись без тысячи винтов и т. д.

Правая половина схемы представляет гениальное решение задачи, сделанное Яблочковым. Он расположил угли параллельно; ток входит через концы д и ж . Угли де и жз разъединены слоем непроводника; следовательно, вольтова дуга получается между концами е и з. Очевидно, что если межуточный слой из горючего материала (непроводящего электричество) и если ток переменный, то концы е и з будут сгорать равномерно, пока все угольные пластинки де и жз не догорят до конца. Не нужно никаких регуляторов, никаких приспособлений — ларчик открывался более чем просто! Но ведь главная примета всякого гениального изобретения именно в том и состоит, что оно очень просто...

Как и следовало ожидать, в России отнеслись к изобретению Яблочкова недоверчиво, и он должен был ехать за границу. Первый опыт в больших размерах был сделан 15 июня 1877 года в Лондоне, во дворе West-India-Docks . Опыты удались блестяще, и вскоре имя Яблочкова облетело всю Европу. В настоящее же время множество зданий в Париже, Лондоне и т. д. освещаются по системе Яблочкова. В настоящее время в Петербурге существует крупное «Товарищество электрического освещения и изготовления электрических машин и аппаратов в России» под фирмой П. Н. Яблочков-изобретатель и Ко (между прочим, товарищество берётся за устройство передвижения лодок и вагонов посредством аккумуляторов; адрес правления: С.-Петербург, Обводной канал, № 80). В настоящее время г. Яблочков сделал многие усовершенствования своей системы, и его свечи ныне таковы.

Диаметр углей — 4 миллиметра; изолирующее (межуточное) вещество носит название коломбин. Первоначально коломбин изготовлялся из каолина (фарфоровой глины), а ныне его заменили смесью равных частей сернокислой извести и сернокислого барита, которая весьма легко отливается в формы, а при температуре вольтовой дуги превращается в пары.

Выше уже было сказано, что при зажигании концы углей надо соединить. У Яблочкова концы углей в свече разъединены коломбином, и, следовательно, предстояло решить задачу относительно соединения их. Он решил её очень просто: концы свечей обмакиваются в угольное тесто, которое быстро сгорает и зажигает свечу, которая продолжает гореть уже при посредстве коломбина.

Само собой разумеется, что для свечей Яблочкова требуется переменный ток, чтобы оба угля горели равномерно.

Одним из важных недостатков системы Яблочкова было то, что свечи было необходимо часто менять, когда они сгорали. Теперь и этот недостаток устранён — устройством подсвечников на несколько свечей. Лишь только догорает первая свеча, загорается вторая, затем третья и т. д. Для освещения Лувра (в Париже) г. Кларио придумал к системе Яблочкова особый автоматический коммутатор.

Свечи Яблочкова превосходны при освещении мастерских, верфей, магазинов, железнодорожных станций и т. д. В Париже, кроме Лувра, по системе Яблочкова освещаются магазины «du Printemps », Континентальная гостиница, Ипподром, мастерские Фарко, Гуэна, завод в Иври и т. д. В Москве по этой же системе освещаются площадь у храма Христа Спасителя и Каменный мост, многие фабрики и заводы и т. д.

В заключение нельзя ещё раз не припомнить истории этого изобретения без чувства крайней горечи. Как это ни прискорбно, но в России нет места русским изобретателям, пока они не получат заграничного клейма. Изобретатель остроумнейшего способа электрической спайки металлов, г. Бенардос, долго и безуспешно толкался в двери русских капиталистов, пока не добился успеха в Париже. Яблочков и поныне «прозябал бы в неизвестности», если бы не побывал в Лондоне и Париже. Даже Бабаев получил клеймо годности в Америке...

Нет пророка в своём отечестве. Эти слова как нельзя лучше резюмируют жизнь изобретателя Павла Яблочкова. По уровню научно-технического прогресса Россия второй половины XIX века в некоторых областях заметно отставала от ведущих европейских стран и США. Поэтому соотечественникам было легче поверить, что всё гениальное и передовое приходит издалека, нежели рождается в умах учёных, работающих рядом с ними.

Когда Яблочков изобрёл дуговую лампу, он первым делом хотел найти ей применение в России. Но никто из русских промышленников не воспринял изобретение всерьёз, и Яблочков отправился в Париж. Там он усовершенствовал конструкцию при поддержке местного инвестора, и успех пришёл почти сразу.

После марта 1876 года, когда Яблочков получил патент на свою лампу, «свечи Яблочкова» стали появляться на главных улицах европейских столиц. Пресса Старого Света возносит нашего изобретателя. «Россия — родина электричества», «Вы должны видеть свечу Яблочкова» — такими заголовками пестрят европейские газеты того времени. La lumiere russe («русский свет» — так лампы Яблочкова называли французы) стремительно распространялся по городам Европы и Америки.

Вот он — успех в современном понимании. Павел Яблочков становится знаменитым и богатым человеком. Но люди того поколения мыслили иначе — и далеко не понятиями житейского успеха. Заграничная слава была не тем, к чему стремился русский изобретатель. Поэтому после завершения Русско-турецкой войны он совершил неожиданный для нашего современного восприятия поступок. Выкупил у французской компании, которая инвестировала его работы, за один миллион франков (!) право применять своё изобретение в родной стране и отправился в Россию. К слову, колоссальная сумма в миллион франков — это и было всё состояние, накопленное Яблочковым за счёт популярности его изобретения.

Яблочков думал, что после европейского успеха его будет ждать тёплый приём и на родине. Но он ошибся. К изобретению Яблочкова теперь относились, конечно, с бoльшим интересом, чем до его отъезда за границу, но промышленники и на этот раз были не готовы по достоинству оценить свечу Яблочкова.

К моменту публикации материала о Яблочкове в дореволюционной «Науке и жизни» la lumiere russe начал тускнеть. В России дуговые лампы так и не получили широкого распространения. В передовых странах у них появился серьёзный конкурент — лампа накаливания.

Разработка ламп накаливания велась с начала XIX века. Одним из основоположников этого направления был англичанин Деларю, который ещё в 1809 году получал свет, пропуская ток через платиновую спираль. Позже наш соотечественник — отставной офицер Александр Лодыгин — создал лампу накаливания с несколькими угольными стержнями — при сгорании одного автоматически включался другой. Путём постоянной доработки Лодыгину удалось поднять ресурс своих ламп с получаса до нескольких сотен часов. Именно он одним из первых стал откачивать воздух из баллона лампы. Талантливый изобретатель Лодыгин был неважным предпринимателем, поэтому в истории электрического освещения ему принадлежит довольно скромная роль, хотя сделал он, несомненно, очень много.

Самым же известным персонажем в истории электричества стал Томас Алва Эдисон. И следует признать, что слава к американскому изобретателю пришла заслуженно. После того как в 1879 году Эдисон начал заниматься разработкой лампы накаливания, он провёл тысячи экспериментов, израсходовав на исследовательскую работу более 100 тысяч долларов — фантастическая сумма по тем временам. Инвестиции оправдались: Эдисон создал первую в мире лампу накаливания с продолжительным сроком работы (около 1000 часов), подходящую для серийного производства. При этом Эдисон подошёл к делу системно: помимо самой лампы накаливания он разработал в подробностях системы электрического освещения и централизованного электроснабжения.

Что же касается Яблочкова, то в последние годы жизни он вёл довольно скромную жизнь: пресса о нём забыла, не обращались к нему и предприниматели. На смену грандиозным проектам обустройства мировых столиц пришла более скромная работа по созданию системы электроосвещения в Саратове — городе, где прошла его юность и где он жил теперь. Здесь Яблочков и умер в 1894 году — безвестным и небогатым.

Долгое время считалось, что дуговые лампы Яблочкова — тупиковая ветвь в области эволюции искусственного освещения. Однако в какой-то момент яркость дуговых ламп оценили автомобильные компании. Свеча Яблочкова возродилась на новом технологическом уровне — в виде газоразрядных ламп. Ксеноновые лампы, которые устанавливаются в фары современных автомобилей, — это в некотором роде сильно усовершенствованная свеча Яблочкова.

Павел Николаевич Яблочков - российский электротехник, изобретатель и предприниматель. Изобрел (патент 1876) дуговую лампу без регулятора - электрическую свечу («свеча Яблочкова»), чем положил начало первой практически применимой системе электрического освещения. Работал над созданием электрических машин и химических источников тока.

Детство и начальное обучение Павлика Яблочкова

Павел Яблочков родился 14 сентября (2 сентября по старому стилю) 1847 года, в селе Жадовка, Сердобского уезда Саратовской губернии, в семье обедневшего мелкопоместного дворянина, происходившего из старинного русского рода. С детства Павлик любил конструировать, придумал угломерный прибор для землемерных работ, устройство для отсчета пути, пройденного телегой. Родители, стремясь дать сыну хорошее образование, в 1859 определили его во 2-ой класс Саратовской гимназии. Но в конце 1862 Яблочков ушел из гимназии, несколько месяцев обучался в Подготовительном пансионе и осенью 1863 поступил в Николаевское инженерное училище в Петербурге, которое отличалось хорошей системой обучения и выпускало образованных военных инженеров.

Служба в армии. Дальнейшая учеба

По окончании училища в 1866 года Павел Яблочков был направлен для прохождения офицерской службы в Киевский гарнизон. На первом же году службы он вынужден был выйти в отставку из-за болезни. Вернувшись в 1868 на действительную службу, поступил в Техническое гальваническое заведение в Кронштадте, которое окончил в 1869 году. В то время это была единственная в России школа, которая готовила военных специалистов в области электротехники.

Московский период

В июле 1871 года, окончательно оставив военную службу, Яблочков переехал в Москву и поступил на должность помощника начальника телеграфной службы Московско-Курской железной дороги. При Московском политехническом музее был создан кружок электриков-изобретателей и любителей электротехники, делившихся опытом работы в этой новой по тем временам области. Здесь, в частности, Яблочков узнал об опытах Александра Николаевича Лодыгина по освещению улиц и помещений электрическими лампами, после чего решил заняться усовершенствованием существовавших тогда дуговых ламп.

Мастерская физических приборов

Уйдя со службы на телеграфе, П. Яблочков в 1874 году открыл в Москве мастерскую физических приборов. «Это был центр смелых и остроумных электротехнических мероприятий, блестевших новизной и опередивших на 20 лет течение времени», - вспоминал один из современников. В 1875, когда П.Н. Яблочков проводил опыты по электролизу поваренной соли с помощью угольных электродов, у него возникла идея более совершенного устройства дуговой лампы (без регулятора межэлектродного расстояния) - будущей «свечи Яблочкова».

Работа во Франции. Электрическая свеча

В конце 1875 года финансовые дела мастерской окончательно расстроились и Яблочков уехал в Париж, где поступил на работу в мастерские академика Л. Бреге, известного французского специалиста в области телеграфии. Занимаясь проблемами электрического освещения, Яблочков к началу 1876 года завершил разработку конструкции электрической свечи и в марте получил патент на нее.

Свеча Павла Николаевича Яблочкова представляла собой два стержня, разделенных изоляционной прокладкой. Каждый из стержней зажимался в отдельной клемме подсвечника. На верхних концах зажигался дуговой разряд, и пламя дуги ярко светило, постепенно сжигая угли и испаряя изоляционный материал.

Создание системы электрического освещения

Успех свечи Яблочкова превзошел все ожидания. Сообщения о ее появлении обошли мировую прессу. В течение 1876 года Павел Николаевич разработал и внедрил систему электрического освещения на однофазном переменном токе, который, в отличие от постоянного тока, обеспечивал равномерное выгорание угольных стержней в отсутствие регулятора. Кроме того, Яблочков разработал способ «дробления» электрического света (то есть питания большого числа свечей от одного генератора тока), предложив сразу три решения, в числе которых было первое практическое применение трансформатора и конденсатора.

Система освещения Яблочкова («русский свет»), продемонстрированная на Всемирной выставке в Париже в 1878 году, пользовалась исключительным успехом; во многих странах мира, в том числе во Франции, были основаны компании по ее коммерческой эксплуатации. Уступив право на использование своих изобретений владельцам французской «Генеральной компании электричества с патентами Яблочкова», Павел Николаевич, как руководитель ее технического отдела, продолжал трудиться над дальнейшим усовершенствованием системы освещения, довольствуясь более чем скромной долей от огромных прибылей компании.

Возвращение в Россию. Коммерческая деятельность

В 1878 Году Павел Яблочков решил вернуться в Россию, чтобы заняться проблемой распространения электрического освещения. На родине он был восторженно встречен как изобретатель-новатор.

В 1879 Павел Николаевич организовал «Товарищество электрического освещения П. Н. Яблочков-изобретатель и К» и электротехнический завод в Петербурге, изготовившие осветительные установки на ряде военных судов, Охтенском заводе и др. И хотя коммерческая деятельность была успешной, она не приносила изобретателю полного удовлетворения. Он ясно видел, что в России слишком мало возможностей для реализации новых технических идей, в частности, для производства построенных им электрических машин. К тому же, к 1879 году электротехник, изобретатель, основатель крупных электротехнических предприятий и компаний Томас Эдисон в Америке довел до практического совершенства лампу накаливания, которая полностью вытеснила дуговые лампы.

Снова во Франции

Переехав в Париж в 1880 году, Яблочков стал готовиться к участию в первой Всемирной электротехнической выставке, которая должна была состояться в 1881 году в Париже. На этой выставке изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса, но сама выставка явилась триумфом лампы накаливания. С этого времени Яблочков занимался главным образом вопросами генерирования электрической энергии - созданием динамомашин и гальванических элементов.

Последний период жизни изобретателя

В конце 1893 года, почувствовав себя больным, Павел Яблочков после 13 лет отсутствия вернулся в Россию, но через несколько месяцев 31 марта (19 марта по ст. стилю) 1894 умер от сердечного заболевания в Саратове. Она был похоронен в родовом склепе в селе Сапожок Саратовской области.

Яблочков Павел Николаевич - русский электротехник, изобретатель и предприниматель. Родился в с. Жадовка Саратовской губернии в семье мелкопоместного дворянина. Получил образование военного инженера - окончил в 1866 Николаевское инженерное училище и в 1869 - Техническое гальваническое заведение в Петербурге. По окончании последнего Яблочков поступил подпоручиком в киевскую саперную бригаду, но вскоре оставил военную службу и принял место начальника телеграфа на Московско-Курской железной дороге. Уже в начале своей службы на железной дороге П. Н. Яблочков сделал своё первое изобретение: создал «чернопишущий телеграфный аппарат». В 1873 Яблочков открыл мастерскую физических приборов: изобрел сигнальный термометр для регулирования температуры в железнодорожных вагонах; устроил первую в мире установку для освещения железнодорожного пути электрическим прожектором, укрепленным на паровозе.

Яблочков занимался в мастерской усовершенствованием аккумуляторов и динамо-машины, проводил опыты по освещению большой площади огромным прожектором. В мастерской Яблочкову удалось создать электромагнит оригинальной конструкции. Он применил обмотку из медной ленты, поставив её на ребро по отношению к сердечнику. Это было его первое изобретение, здесь же Павел Николаевич вёл работы по усовершенствованию дуговых ламп. К 1875 году относится одно из главных изобретений Яблочкина - электрическая свеча - первая модель дуговой лампы без регулятора, которая уже удовлетворяла разнообразным практическим требованиям. В 1875 году Яблочкин уехал в Париж, где сконструировал промышленный образец электрической лампы (французский патент № 112024, 1876), разработал и внедрил систему электрического освещения на однофазном переменном токе, разработал способ "дробления света посредством индукции катушек". Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа А. Н. Лодыгина, не имела ни механизмов, ни пружин. Она представляла собой два стержня, разделённых изоляционной прокладкой из каолина. Каждый из стержней зажимался в отдельной клемме подсвечника. На верхних концах зажигался дуговой разряд, и пламя дуги ярко светило, постепенно сжигая угли и испаряя изоляционный материал.

Яблочков сконструировал первый генератор переменного тока, который, в отличие от постоянного тока, обеспечивал равномерное выгорание угольных стержней в отсутствие регулятора, первым применил переменных ток для промышленных целей, создал трансформатор переменного тока, электромагнит с плоской обмоткой и впервые использовал статистические конденсаторы в цепи переменного тока. Изобретатель разработал систему питания ряда электрических свечей от одного источника тока, основанную на применении конденсаторов.

В 1879 году Яблочкин организовал "Товарищество электрического освещения П. Н. Яблочков-изобретатель и К°" и электромеханический завод в Петербурге, изготовившие осветительные установки на ряде военных судов, Охтенском заводе и др. Со 2-й половины 1880-х годов Яблочкин занимался главным образом вопросами генерирования электрической энергии: сконструировал "магнитодинамоэлектрическую машину", которая уже имела основные черты современной индукторной машины, провел много оригинальных исследований в области практического решения задачи непосредственного превращения энергии топлива в электрическую энергию, предложил гальванический элемент со щелочным электролитом, создал регенеративный элемент (так называемый автоаккумулятор) и др. Со временем изобретение Яблочкова вытеснили более экономичные и удобные лампы накаливания с тонкой электрической нитью внутри, его «свеча» стала всего лишь музейным экспонатом. Однако это была первая лампочка, благодаря которой искусственный свет стал использоваться повсеместно: на улицах, площадях, в театрах, магазинах, в квартирах и на заводах.

Яблочкин был участником электротехнических выставок в России (1880 и 1882), Парижских электротехнических выставок (1881 и 1889), Первого международного конгресса электриков (1881), одним из инициаторов создания электротехнического отдела Русского технического общества и журнала "Электричество". Награжден медалью Русского технического общества. В 1947 г. была учреждена премия Яблочкина за лучшую работу по электротехнике, присуждаемая 1 раз в 3 года.