Свойства многогранников и тел вращения. Геометрические тела. классификация геометрические тела многогранники тела вращения призма пирамида правильные многогранники цилиндр конус шар. Состав простых геометрических тел

Куб, шар, пирамида, цилиндр, конус - геометрические тела. Среди них выделяют многогранники. Многогранником называют геометрическое тело, поверхность которого состоит из конечного числа многоугольников. Каждый из этих многоугольников называется гранью многогранника, стороны и вершины этих многоугольников - соответственно ребрами и вершинами многогранника.

Двугранные углы между соседними гранями, т.е. гранями, име­ющими общую сторону - ребро многогранника - являются так­же и двугранными умами многогранника. Углы многоугольников - граней выпуклого многоугольника - являются плоскими умами многогранника. Кроме плоских и двугранных углов у выпуклого многогранника имеются еще и многогранные углы. Эти углы образу­ют грани, имеющие общую вершину.

Среди многогранников различают призмы и пирамиды.

Призма - это многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих об­щие стороны с каждым из оснований.

Два равных многоугольника называются основаниями ггризмьг, а параллелограммы - ее боковыми гранями. Боковые грани образуют боковую поверхность призмы. Ребра, не лежащие в основаниях, называются боковыми ребрами призмы.

Призму называют п-угольной, если ее основаниями являются я-угольники. На рис. 24.6 изображена четырехугольная призма АВСDА"В"С"D".

Призму называют прямой, если ее боковыми гранями являются прямоугольники (рис. 24.7).

Призму называют правильной , если она прямая, а ее основа­ния - правильные многоугольники.

Четырехугольную призму называют параллелепипедом , если ее основания - параллелограммы.

Параллелепипед называют прямоугольным, если все его грани - прямоугольники.

Диагональ параллелепипеда - это отрезок, соединяющий его противоположные вершины. У параллелепипеда четыре диаго­нали.

Доказано, что диагонали параллелепи­педа пересекаются в одной точке и делятся этой точкой пополам. Диагонали прямо­угольного параллелепипеда равны.

Пирамида - это многогранник, по­верхность которого состоит из много­угольника - основания пирамиды, и треугольников, имеющих общую верши­ну, называемых боковыми гранями пи­рамиды. Общая вершина этих треуголь­ников называется вершиной пирамиды, ребра, выходящие из вер­шины, - боковыми ребрами пирамиды.

Перпендикуляр, опущенный из вершины пирамиды на основа­ние, а также длина этого перпендикуляра называется высотой пи­рамиды.

Простейшая пирамида - треугольная или тетраэдр (рис. 24.8). Особенность треугольной пирамиды состоит в том, что любую грань можно рассматривать как основание.

Пирамиду называют правильной, если в основании ее лежит правильный многоугольник, а все боковые ребра равны между собой.

Заметим, что следует различать правильный тетраэдр (т.е. тетра­эдр, у которого все ребра равны между собой) и правильную тре­угольную пирамиду (в ее основании лежит правильный треуголь­ник, а боковые ребра равны между собой, но их длина может от­личаться от длины стороны треугольника, который является ос­нованием призмы).

Различают выпуюше и невыпуклые многогранники. Определить вы­пуклый многогранник можно, если воспользоваться понятием вы­пуклого геометрического тела: многогранник называют выпуклым. если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок.

Можно определить выпуклый многогранник иначе: многогран­ник называют выпуклым, если он полностью лежит по одну сторо­ну от каждого из ограничивающих его многоугольников.

Данные определения равносильны. Доказательство этого факта не приво­дим.

Все многогранники, которые до сих пор рассматривались, были выпуклыми (куб, параллелепипед, призма, пирамида и др.). Многогранник, изображенный на рис. 24.9, выпуклым не является.

Доказано, что в выпуклом многогран­нике все грани являются выпуклыми многоугольниками.

Рассмотрим несколько выпуклых многогранников (таблица 24.1)

Из этой таблицы следует, что для всех рассмотренных выпук­лых многогранников имеет место равенство В - Р + Г = 2. Оказа­лось, что оно справедливо и для любого выпуклого многогранни­ка. Впервые это свойство было доказано Л.Эйлером и получило название теоремы Эйлера.

Выпуклый многогранник называют правильным, если его гра­нями являются равные правильные многоугольники и в каждой вершине сходится одинаковое число граней.

Используя свойство выпуклого многогранного угла, можно до­казать, что различных видов правильных многогранников существу­ет не более пяти.

Действительно, если фан и многогранника - правильные тре­угольники, то в одной вершине их может сходиться 3, 4 и 5, так как 60" 3 < 360°, 60° - 4 < 360°, 60° 5 < 360°, но 60° 6 = 360°.

Если в каждой вершине многофанника сходится три правиль­ных треугольника, то получаем правшш/ый тетраэдр, что в пере­воде с феческого означает «четырехгранник» (рис. 24.10, а).

Если в каждой вершине многогранника сходится четыре пра­вильных треугольника, то получаем октаэдр (рис. 24.10, в). Его поверхность состоит из восьми правильных треугольников.

Если в каждой вершине многогранника сходится пято правиль­ных треугольников, то получаем икосаэдр (рис. 24.10, г). Его поверх­ность состоит из двадцати правильных треугольников.

Если грани многофанника - квадраты, то в одной вершине их может сходиться только три, так как 90° 3 < 360°, но 90° 4 = 360°. Этому условию удовлетворяет только куб. Куб имеет шесть фаней и поэтому называется также гексаэдром (рис. 24.10, б).

Если граани многофанника - правильные пятиугольники, то в одной вершине их может сходиться только фи, так как 108° 3 < 360°, пятиугольники и в каждой вершине сходится три грани, называется додекаэдром (рис. 24.10, д). Его поверхность состоит из двенадцати правильных пятиугольников.

Шестиугольными и более грани многогранника не могут быть, так как даже для шестиугольника 120° 3 = 360°.

В геометрии доказано, что в трехмерном евклидовом простран­стве существует ровно пять различных видов правильных много­гранников’.

Чтобы изготовить модель многогранника, нужно сделать его развертку (точнее развертку его поверхности).

Развертка многогранника - это фигура на плоскости, которая получается, если поверхность многогранника разрезать но некото рым ребрам и развернуть ее так, чтобы все многоугольники, вхо­дящие в эту поверхность, лежали в одной плоскости.

Отметим, что многогранник может иметь несколько различных разверток в зависимости от того, какие ребра мы разрезали. На рисунке 24.11 показаны фиг"уры, которые являются различными развертками правильной четырехугольной пирамиды, т.е. пирами­ды, в основании которой лежит квадрат, а все боковые ребра рав­ны между собой.

Чтобы фигура на плоскости была разверткой выпуклого много­гранника, она должна удовлетворять ряду требований, связанных с особенностями многогранника. Например, фигуры на рис. 24.12 не являются развертками правильной четырехугольной пирамиды: в фигуре, изображенной на рис. 24.12, а, в вершине М сходятся четыре грани, чего не может быть в правильной четырехугольной пирамиде; а в фигуре, изображенной на рис. 24.12, б, боковые ребра А В и ВС не равны.

Вообще, развертку многогранника можно получить путем раз­резания его поверхности не только по ребрам. Пример такой раз­вертки куба приведен на рис. 24.13. Поэтому более точно развертку многогранника можно определить как плоский многоугольник, из которого может быть сделана поверхность этого многогранника без перекрытий.

Тела вращения

Телом вращения называют тело, полученное в результате вра­щения некоторой фигуры (обычно плоской) вокруг прямой. Эту прямую называют осью вращения.

Цилиндр - эго тело, которое получается в результате вращения прямоугольника вокруг одной из его сторон. При этом указанная сто­рона является осью цилиндра. На рис. 24.14 изображен цилиндр с осью ОО’, полученный в результате вращения прямоугольника АА"О"О вокруг прямой ОО". Точки О и О" - центры оснований цилиндра.

Цилиндр, который получается в результате вращения прямо­угольника вокруг одной из его сторон, называют прямым круго­вым цилиндром, так как его основаниями являются два равных круга, расположенных в параллельных плоскостях так, что отре­зок, соединяющий центры кругов, перпендикулярен этим плос­костям. Боковую поверхность цилиндра образуют отрезки, равные стороне прямоугольника, параллельной оси цилиндра.

Разверткой боковой поверхности пря­мого кругового цилиндра, если ее раз­резать по образующей, является прямо­угольник, одна сторона которого равна длине образующей, а другая - длине ок­ружности основания.

Конус - это тело, которое получает­ся в результате вращения прямоугольного треугольника вокруг одного из катетов.

При этом указанный катет неподвижен и называется осью конуса. На рис. 24.15 изображен конус с осью SO, получен­ный в результате вращения прямоуголь­ного треугольника SOA с прямым уг­лом О вокруг катета S0. Точку S называют вершиной конуса, ОА - радиусом его основания.

Конус, который получается в результате вращения прямоуголь­ного треугольника вокруг одного из его катетов, называют пря­мым круговым конусом, гак как его основанием является круг, а вершина проектируется в центр этого круга. Боковую поверхность конуса образуют отрезки, равные гипотенузе треугольника, при вращении которого образуется конус.

Если боковую поверхность конуса разрезать по образующей, то ее можно «развернуть» на плоскость. Разверткой боковой поверх­ности прямого кругового конуса является круговой сектор с ради­усом, равным длине образующей.

При пересечении цилиндра, конуса или любого другого тела вращения плоскостью, содержагцей ось вращения, получается осевое сечение. Осевое сечение цилиндра - прямоугольник, осевое сече­ние конуса - равнобедренный треугольник.

Шар - это тело, которое получается в результате вращения полукруг а вокруг его диаметра. На рис. 24.16 изображен шар, получен­ный в результате вращения полукруга вокруг диаметра АА". Точку О называют центром шара, а радиус круга является радиусом шара.

Поверхность шара называют сферой. Сферу развернуть на плос­кость нельзя.

Любое сечение шара плоскостью есть круг. Радиус сечения шара будет наибольшим, если плоскость проходит через центр шара. Поэтому сечение шара плоскостью, проходящей через центр шара, называют большим кругом шара, а окружность, его ограничиваю­щая, - большой окружностью.

ИЗОБРАЖЕНИЕ ГЕОМЕТРИЧЕСКИХ ТЕЛ НА ПЛОСКОСТИ

В отличие от плоских фигур геометрические тела невозможно точно изобразить, например, на листе бумаги. Однако с помощью чертежей на плоскости можно получить достаточно наглядное изоб­ражение пространственных фигур. Для этого используются специ­альные способы изображения таких фигур на плоскости. Одним из них является параллельное проектирование.

Пусть даны плоскость а и пересекающая се прямая а. Возьмем в пространстве произвольную точку Л", не принадлежащую пря­мой а, и проведем через X прямую а", параллельную прямой а (рис. 24.17). Прямая а" пересекает плоскость в некоторой точке X", которая называется параллельной проекцией точки X на плос­кость а.

Если точка А"лежит на прямой а, то се параллельной проекци­ей X" является точка, в которой прямая а пересекает плоскость а.

Если точка X принадлежит плоскости а, то точка X" совпадает с точкой X.

Таким образом, если заданы плоскость а и пересекающая ее прямая а. то каждой точке X пространства можно поставить в соот­ветствие единственную точку А" - параллельную проекцию точки X на плоскость а (при проектировании параллельно прямой а). Плос­кость а называется плоскостью проекций. О прямой а говорят, что она залает направление проектирования - ггри замене прямой а любой другой параллельной ей прямой результат проектирования не изменится. Все прямые, параллельные прямой а, задаюз одно и то же направ­ление проектирования и называются вместе с прямой а проектирующими прямыми.

Проекцией фигуры F называют мно­жество F‘ проекцией всех се точек. Ото­бражение, сопоставляющее каждой точ­ке X фигуры F "ее параллельную проек­цию - точку X" фигуры F", называется параллельным проектированием фигуры F (рис. 24.18).

Параллельной проекцией реального предмета является его тень, падающая на плоскую поверхность при солнечном освещении, поскольку солнечные лучи можно считать параллельными.

Параллельное проектирование обладает рядом свойств, знание которых необходимо при изображении геометрических тел на плоскости. Сформулируем основные, не приводя их доказательства.

Теорема 24.1. При параллельном проектировании для прямых, не параллельных направлению проектирования, и для лежащих на них отрезков выполняются следующие свойства:

1) проекция прямой есть прямая, а проекция отрезка - отрезок;

2) проекции параллельных прямых параллельны или совпадают;

3) отношение длин проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению длин самих отрезков.

Из этой теоремы вытекает следствие: при параллельном про­ектировании середина отрезка проектируется в середину его про­екции.

При изображении геометрических тел на плоскости необходи­мо следить за выполнением указанных свойств. В остальном оно может быть произвольным. Так, углы и отношения длин непарал­лельных отрезков могут изменяться произвольно, т.е., например, треугольник при параллельном проектировании изображается про­извольным треугольником. Но если треугольник равносторонний, то па проекции его медианы должны соединять вершину треуголь­ника с серединой противоположной стороны.

И еще одно требование необходимо соблюдать при изображе­нии пространственных тел на плоскости - способствовать созда­нию верного представления о них.

Изобразим, например, наклонную призму, основаниями кото­рой являются квадраты.

Построим сначала нижнее основание призмы (можно начинать и с верхнего). По правилам параллельного проектирования огго изобразится произвольным параллелограммом АВСD (рис. 24.19, а). Так как ребра призмы параллельны, строим параллельные пря­мые, проходящие через вершины построенного параллелограмма и откладываем на них равные отрезки АА", ВВ’, СС", DD", длина которых произвольна. Соединив последовательно точки А", В", С", D", получим четырехугольник А"В"С"D", изображающий верхнее основание призмы. Нетрудно доказать, что А"В"С"D" - паралле­лограмм, равный параллелограмму АВСD и, следовательно, мы имеем изображение призмы, основаниями которой являются рав­ные квадраты, а остальные грани - параллелограммы.

Если нужно изобразить прямую призму, основаниями которой являются квадраты, то показать, что боковые ребра этой призмы перпендикулярны основанию, можно так, как это сделано на рис. 24.19, б.

Кроме тог о, чертеж на рис. 24.19, б можно считать изображени­ем правильной призмы, так как ее основанием является квадрат - правильный четырехугольник, а также - прямоугольным парал­лелепипедом, поскольку все его грани - прямоугольники.

Выясним теперь, как изобразить на плоскости пирамиду.

Чтобы изобразить правильную пирамиду, сначала чертят пра­вильный многоугольник, лежащий в основании, и его центр - точку О. Затем проводят вертикальный отрезок OS, изображаю­щий высоту пирамиды. Заметим, что вертикальность отрезка OS обеспечивает большую наглядность рисунка. И наконец, точку S соединяют со всеми вершинами основания.

Изобразим, например, правильную пирамиду, основанием ко­торой является правильный шестиугольник.

Чтобы верно изобразить при параллельном проектировании правильный шестиугольник, надо обратить внимание на следующее. Пусть АВСDЕF - правильный шестиугольник. Тогда ВСЕF - прямоугольник (рис. 24.20) и, значит, при параллельном проектировании он изобра­зится произвольным параллелограммом В"С"Е"F". Так как диагональ АD проходит через точку О - центр многоугольника АВСDЕF и параллельна отрезкам. ВС и ЕF и АО= ОD, то при параллельном проектировании она изобразится произвольным от­резком А"D", проходящим через точку О" параллельно В"С" и Е"F" и, кроме того, А"О" = О"D".

Таким образом, последовательность построения основания ше­стиугольной пирамиды такова (рис. 24.21):

§ изображают произвольный параллелограмм В"С"Е"F" и его диагонали; отмечают точку их пересечения O";

§ через точку О" проводят прямую, параллельную В’С" (или Е"F’);

§ на построенной прямой выбирают произвольную точку А" и отмечают точку D" такую, что О"D" = А"О", и соединяют точку А" с точками В" и F ", а точку D" - с точками С" и Е".

Чтобы завершить построение пирамиды, проводят вертикаль­ный отрезок ОS (его длина выбирается произвольно) и соединя­ют точку S со всеми вершинами основания.

При параллельном проектировании шар изображается в виде круга того же радиуса. Чтобы сделать изображение шара более на­глядным, рисуют проекцию какой-нибудь большой окружности, плоскость которой не перпендикулярна плоскости проекции. Эта проекция будет эллипсом. Центр шара изобразится центром этого эллипса (рис. 24.22). Теперь можно найти соответствующие полюсы N и S при условии, что отрезок, их соединяющий, перпендикуля­рен плоскости экватора. Для этого через точку О проводим пря­мую, перпендикулярную АВ и отмечаем точку С - пересечение этой прямой с эллипсом; затем через точку С проводим касатель­ную к эллипсу, изображающему экватор. Доказано, что расстоя­ние СМ равно расстоянию от центра шара до каждого из полюсов. Поэтому, отложив отрезки ОN и OS, равные СМ, получим полю­сы N и S.

Рассмотрим один из приемов построения эллипса (он основан на преобразовании плоскости, которое называется сжатием): строят окружность с диаметром и проводят хорды, перпендикулярные диаметру (рис. 24.23). Половину каждой из хорд делят пополам и полученные точки соединяют плавной кривой. Эта кривая - эл­липс, большой осью которого является отрезок АВ, а центром - точка О.

Этот прием мЬжно использовать, изображая на плоскости пря­мой круговой цилиндр (рис. 24.24) и прямой круговой конус (рис. 24.25).

Прямой круговой конус изображают так. Сначала строят эл­липс - основание, затем находят центр основания - точку О и перпендикулярно проводят отрезок OS, который изображает вы­соту конуса. Из точки S проводят к эллипсу касательные (это дела­ют «на глаз», прикладывая линейку) и выделяют отрезки и SD этих прямых от точки S до точек касания С и D. Заметим, что отрезок СD не совпадает с диаметром основания конуса.

Многогранником называется тело, ограниченное со всех сторон плоскостями. Элементы многогранника: грани, рёбра, вершины. Совокупность всех рёбер многогранника называется его сеткой. Многогранник называется выпуклым, если весь он лежит по одну сторону от плоскости любой его грани; при этом его грани являются выпуклыми многоугольниками. Для выпуклых многогранников Леонардом Эйлером предложена формула:

Г+В-Р=2, где Г-число граней; В – число вершин; Р – число рёбер.

Среди множества выпуклых многогранников наибольший интерес представляют правильные многогранники (тела Платона), пирамиды и призмы. Многогранник называется правильным, если все его грани являются равными правильными многоугольниками. К ним относятся (рис. 26): а - тетраэдр; б - гексаэдр (куб); в - октаэдр; г - додекаэдр; д - икосаэдр.

а) б) в) г) д)

Рис. 26

Параметры правильных многогранников (рис. 26)

Правильный многогранник (тело Платона) Число Угол между смежными рёбрами, град.
граней вершин рёбер сторон у каждой грани Число рёбер у каждой вершины
Тетраэдр 4 4 6 3 60 3
Гексаэдр (куб) 6 8 12 4 90 3
Октаэдр 8 6 12 3 60 4
Додекаэдр 12 20 30 5 72 3
Икосаэдр 20 12 30 3 60 5

Из таблицы видно, что число граней и вершин у куба и октаэдра соответственно составляет 6, 8 и 8, 6. Это позволяет вписывать (описывать) их в друг друга до бесконечности (рис. 27).

Большую группу составляют, так называемые, полуправильные многогранники (тела Архимеда). Это выпуклые многогранники, у которых грани являются правильными многоугольниками разных типов. Тела Архимеда это усечённые тела Платона. Внешний вид некоторых из них представлены на рис. 28, а ниже их параметры в таблице.




а) б) в) г)

Рис. 27 Рис. 28

Параметры полуправильных многогранников (рис. 28)

Многогранник может занимать общее положение в пространстве, или же его элементы могут быть параллельными и (или) перпендикулярными к плоскостям проекций. Исходными данными для построения многогранника в первом случае служат координаты вершин, во втором ─ его размеры. Построение проекций многогранника сводится к построению проекций его сетки. Наружный очерк проекции многогранника называют контуром тела.

Призма

─ выпуклый многогранник, боковые рёбра которого параллельны между собой. Нижняя и верхняя грани ─ равные многоугольники, определяющие количество боковых рёбер, называются основаниями призмы. Призма называется правильной, если в основании правильный многоугольник, и прямой, если боковые рёбра перпендикулярны к основанию. В противном случае призма наклонная. Боковые грани прямой призмы прямоугольники, а наклонной ─ параллелограммы. Боковая поверхность прямой призмы относится к проецирующим объектам и вырождается в многоугольник на перпендикулярную боковым рёбрам плоскость проекций. Проекции точек и линий, расположенных на боковой поверхности призмы, совпадают с её вырожденной проекцией.

Типовая задача 3 (рис. 29): Построить комплексный чертёж прямой призмы с размерами: l- сторона основания (длина призмы); b- высота равнобедренного треугольника основания (ширина призмы); h- высота призмы. Определить положение рёбер и граней относительно плоскостей проекций. На гранях ABB’A’ и ACC’A’ задать фронтальные проекции соответственно точки M и прямой n и построить их недостающие проекции.

1. Мысленно располагаем многогранник в системе плоскостей проекций так, чтобы его основание D ABC║P 1 ;а ребро АС║P 3 (рис. 29, а).

2. Мысленно вводим базовые плоскости: S║P 1 и совпадающую с основанием (D ABC); D║P 2 и совпадающую с задней гранью АСС’А’. Строим базовые линии S 2 , S 3 , D 1 , D 3 (рис. 29, б).

3. Строим горизонтальную, затем фронтальную и, наконец, профильную проекции призмы, используя базовые линии D 1 , D 3 (рис. 29, в).

Рёбра: АВ, ВС ─ горизонтали; АС ─ профильно-проецирующая; AS, SC, SB ─ горизонтально-проецирующие. Грани: ABC A"B’C’ ─ горизонтальные уровня; ABВ’А’, BCС’В’ ─ горизонтально-проецирующие; ACC"А’ ─фронтальная уровня..

5. Построение горизонтальных проекций точек, лежащих на боковых гранях призмы, выполняем с использованием собирательного свойства проецирующего объекта: все проекции точек и линий, расположенных на боковой поверхности призмы, совпадают с её вырожденной (горизонтальной) проекцией. Профильные проекции точек (например М) строим откладывая по горизонтальным линиям связи их глубины (Y M) от D 3 , которые измеряются на горизонтальной проекции от D 1 (см. также с. 8, 17). На прямой n задаём точки 1, 2 и строим эти точки на поверхности призмы, аналогично точке М. Определяем видимость методом конкурирующих точек. Выполнение задания "Призма с вырезом" см. в .


а) б) в)

Рис. 29

Пирамида

многогранник, одной из граней которого является многоугольник (основание пирамиды), определяющий число боковых граней, а остальные грани (боковые) ─ треугольники с общей вершиной, называемой вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми рёбрами. Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды. Пирамида правильная, если в основании правильный многоугольник и прямая, если вершина проецируется в центр основания. Боковые рёбра правильной пирамиды равны, а боковые грани являются равнобедренными треугольниками. Высота боковой грани правильной пирамиды называется апофемой. Если вершина пирамиды проецируется вне её основания, - то пирамида наклонная.

Типовая задача 4 (рис. 30-32): Построить комплексный чертёж прямой правильной пирамиды с размерами: l- сторона основания (длина); b- высота треугольника основания (ширина); h- высота пирамиды. Определить положение рёбер и граней относительно плоскостей проекций. Задать фронтальную и горизонтальные проекции точек M и N принадлежащих соответственно граням ASB и ASC и построить их недостающие проекции.

1. Мысленно располагаем многогранник в системе плоскостей проекций так, чтобы его основание D ABC║P 1 ;а ребро АС║P 3 (рис. 31).

2. Мысленно вводим базовые плоскости: S║P 1 и совпадающую с основанием (D ABC);

D║P 2 и совпадающую с ребром АС. Строим базовые линии S 2 , S 3 , D 1 , D 3 (рис. 32) .

3. Строим горизонтальную, затем фронтальную и, наконец,

профильную проекции пирамиды (см. рис. 32).

4. Анализируем положение рёбер и граней на комплексном чертеже пирамиды, учитывая исходные данные и классификаторы положения прямых и плоскостей (с. 11,14).

Рёбра: АВ, ВС ─ горизонтали; АС ─ профильно-проецирующая; AS, SC ─ общего положения; SB ─ профильная уровня. Грани: ASB, BSC ─ общего положения; ABC ─горизонтальная уровня; ASC ─ профильно-проецирующая.

5. Построение недостающих проекций точек, лежащих на гранях пирамиды, выполняем с использованием признака «принадлежности точек плоскости». В качестве вспомогательных прямых используем горизонтали или произвольные прямые. Профильные проекции точек строим откладывая по горизонтальным линиям связи глубины точек (в направлении оси Y), которые измеряются на горизонтальной проекции (см с. 8, 17).


Рис. 30 Рис. 31 Рис. 32

МОДЕЛЬ ОФОРМЛЕНИЯ СЦЕНАРИЯ ТВОРЧЕСКОГО УРОКА

Общие требования:

Полное название образовательного учреждения: Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 90», Томская область, город Северск

Предмет: геометрия

Тема: Многогранники и тела вращения.

Класс: 11

Время реализации занятия: 2 урока (90 мин.)

Цель урока: повторение изучаемого материала.

Задачи урока:

Образовательные: контроль за уровнем усвоения материала.

Развивающие: формирование навыков продуктивного делового взаимодействия и принятия групповых решений.

Воспитательные: воспитание ответственности, коллективизма, уважительное отношение к мнению партнёра.

Тип урока: обобщающий урок

Форма урока:

  • Урок – аукцион ;

Оборудование: переносная доска, карточки с вопросами, игровые денежки.

План проведения урока:

Этапы урока

Временная реализация

  1. Организационный момент

5 минут

  1. Первый тур «Конкретный вопрос»

35 минут

  1. Второй тур «Закрытый лот»

40 минут

  1. Подведение итогов, выставление оценок

10 минут

Ход урока:

Урок – аукцион является одной из форм проверки знаний, умений учащихся по данной большой теме.

Правила игры.

Класс делится на три команды, выбирается жюри. Все команды перед началом аукциона получают в «банке» (роль банкира играет один из членов жюри или учитель) первоначальный капитал в виде краткосрочного кредита под 30% годовых в размере 1000 денежек (или других денежных знаков) Приложение №1.

Это означает, что в конце игры все взявшие кредит должны вернуть в банк 1300д. (1000д. – сам кредит и 300д. составляют 30% от суммы кредита);

Расписываясь в банковской книге «Выдачи кредитом» за его получение, капитан команды одновременно с деньгами получает номер участника аукциона и лицевой счёт команды Приложение №2 . Только имёя номер, команда может претендовать на тот или иной лот (вопрос, правильный ответ на который приносит команде определенный доход, выставленный на аукционе).

Игра состоит из двух или более туров.

Перед проведением очередного тура аукционист (ведущий аукцион преподаватель) объявляет характер предлагаемых лотов и порядок проведения торгов.

Первый Тур « Конкретный вопрос».

Тур проходит по следующим правилам:

  • задается конкретный вопрос по теме «Многогранники, тела вращения»;
  • право на ответ может купить любая команда, имеющая номер, заплатив небольшую сумму в ходе открытых торгов;
  • первоначальная стартовая цена каждого лота (права на ответ) 100д., а торговый (аукционный) шаг стоит 50д., т. е. торг ведется суммами, кратными 50д. Например, одна из команд называет свою цену за конкретный вопрос, предложенный аукционистом, - 150д. Если какая- то другая команда также хочет приобрести этот лот (право на ответ), то она называет цену – 200д. (250д. 300д. и т. д.), т. е. каждый раз цена увеличивается на 50д. (или сразу на 100д., или на 200д. и т. п.);
  • называя свою цену, капитан команды должен поднять и показать аукционисту номер, который он получил перед началом аукциона;
  • команда, купившая очередной лот, платит в банк сумму, за которую она купила этот выставленный лот;
  • за правильный ответ на купленный вопрос команда получает денежное вознаграждение от 500 до 1500д., в зависимости от сложности вопроса;
  • если участники команды неверно ответили на вопрос, они платят в банк штраф в размере 200д., и лот снимается с торгов и может быть выставлен в конце первого тура для повторной продажи.

Аукционист отвечает на вопросы участников, и открываются торги.

1.1 Чему равен угол между плоскостью основания прямого цилиндра и плоскостью, проходящей через образующую цилиндра? Стартовая цена 100д. Вознаграждение 500д. Кто дает большую цену?

1.2 Равны ли друг другу углы между образующими конуса и плоскостью основания? Стартовая цена 100д. Вознаграждение 500д.

[Равны, т.к. осевое сечение

конуса равнобедренный треугольник]

1.3 Космонавт сообщил на базу, что обнаружил странный космический объект. Это геометрически правильное твердое тело, которое выглядит одинаково, какой бы гранью ни повернулось. Так было до тех пор, пока космонавт до него не дотронулся. После чего три грани космического тела пульсируют красными огнями, три - голубями, остальные шесть - зелеными. Ученые на базе до сих по пытаются определить, что это за огни: Однако теперь они знают форму всех граней космического объекта. А вы знаете? Вознаграждение 1500д.

[Не важно, какого цвета огни, - красного, зеленого или голубого.

Объект представляет собой геометрическое тело с 12-ю гранями.

Значит, оно может быть только декаэдром (двенадцатигранником). Каждая его грань представляет собой правильный пятиугольник.]

Могут ли вершины прямоугольного треугольника с катетами 4см и см лежать на сфере радиуса см? Вознаграждение 1000д.

[Нет]

1.4 Круглое бревно весит 30кг. Сколько весит бревно, которое вдвое толще, но вдвое короче? Вознаграждение 1500д.

[От увеличения вдвое объем круглого бревна увеличивается

вчетверо; от укорочения же вдвое объем бревна уменьшается

всег о в два раза. Поэтому толстое короткое бревно должно

быть вдвое тяжелее длинного тонкого, т. е; весит 60 кг.]

1.5 Какая из двух банок, изображенных на рис. 1, вместительнее - широкая, или втрое более высокая, но вдвое более узкая? Вознаграждение 1500 р.

[Высокая банка менее вместительна. Это легко проверить. Площадь основания широкой банки в 2 2, т. е. в четыре раза больше, чем узкой; высота же ее всего в три раза меньше. Значит, объем широкой банки в раза больше, чем узкой. Если содержимое высокой банки перелить в широкую, заполнится лишь ее объема.]

1.6 Чему равны углы между отрезками, проведенными на гранях куба (рис. 2)? Вознаграждение 1000д.

[ 60° (рис. 3 , а); 120°, (рис. 3, б).]

1.7 Двое заспорили о содержимом бочки. Один спорщик говорил, что воды в бочке более, чем наполовину, а другой утверждал, что менее.

Как убедиться, кто прав, не употребляя ни палки, ни веревки, ни вообще какого-либо приспособления для измерения? Вознаграждение 1500д.

[Если бы вода в бочке была налита ровно до половины, то, наклонив бочку так, чтобы уровень воды пришелся как раз у края бочки, мы увидели бы, что высшая точка два находится также на уровне воды. Это ясно из того, что плоскость, проведенная через диаметрально противоположные точки верхней и нижней окружности бочки, делит, ее на две равные части. Если вода налита менее чем до половины, то при таком же наклоне бочки должен выступать из воды больший или меньший сегмент два. Наконец, если воды в бочке более половины, то при наклоне верхняя часть дна окажется под водой.]

1.8 Как найти вместимость объем стакана с помощью весов? Вознаграждение 1000д.

[Пусть масса стакана с водой а без воды ,

тогда где - плотность; для воды .]

1.9 «Сюрприз». Команда, купившая этот лот, получает карточку, в которой написано: «Вы имеете право на приобретение по первоначальной стартовой цене одного из лотов второго тура аукциона или получить в банке премию в размере 500д.».

1.10 Вычислите приближенно объем мяча, если в вашем распоряжении нитка и измерительная линейка. Вознаграждение 1500д.

[Пусть D - диаметр мяча, l - длина наибольшей

Окружности на поверхности мяча, найденная

с помощью нитки и линейки, тогда

1.11 С помощью мензурки определите радиус вмещающегося в нее шара. Вознаграждение 1500д.

[С помощью мензурки находим V - объем шара, а его

радиус вычисляем по формуле .]

1.12 Для тренировки смекалки представьте себе такое вынужденное положение: необходимо, пользуясь только масштабной линейкой, определить объем бутылки (с круглым, квадратным или прямоугольным дном), которая частично наполнена жидкостью. Дно бутылки предполагается плоским. Выливать или доливать жидкость не разрешается. Вознаграждение 1500д.

[Так как дно бутылки по условию имеет форму круга или квадрата, или прямоугольника, то его площадь легко можно определить при помощи одной только масштабной линейки. Обозначим площадь дна через S. Измерим высоту h 1 , жидкости в бутылке. Тогда объем той части бутылки, которую занимает жидкость, равен Sh 1 , (рис.б). Опрокидываем бутылку вверх дном и измеряем высоту h 2 , ее части от уровня жидкости до дна бутылки. Объем этой части бутылки равен Sh 2 . Остальную часть бутылки занимает жидкость, объем которой уже определен - он равен Sh 1 . Отсюда следует, что объем всей бутылки равен ]

Третий тур. Закрытый лот «Неизвестный вопрос».

В этом туре команды покупают закрытый лот, не зная, какой вопрос будет в этом лоте. В остальном правила проведения аукциона остаются прежними, лишь цена за правильный ответ на купленный в лоте вопрос увеличивается и составляет от 1500д. до 3000д. в зависимости от сложности вопроса. Вопрос формулируется лишь после того, как какая-либо команда купит лот.

«Неизвестные вопросы»:

  1. Стартовая цена 100д., аукционный шаг 50д. Вопрос. Сформулируйте определение цилиндра.
  1. Денежное вознаграждение за правильный ответ 1500д. Задание. Сформулируйте определение конуса.
  1. Денежное вознаграждение за правильный ответ 1500д. Первоначальная стартовая цена 100д. Вопрос. Что представляет собой сечение цилиндра плоскостью, параллельной его образующей?
  1. Денежное вознаграждение за правильный ответ 1500д. Вопрос. На какие многогранники рассёкает треугольную призму плоскость, проходящая через вершину верхнего основания и противоположную ей сторону нижнего основания? [На две пирамиды: треугольную и четырехугольную (рис. 5).
  1. «Сюрприз». Команда, купившая этот лот получает карточку, в которой написано: «Вы совершили удачную сделку, ваши наличные деньги увеличиваются на 50% ».
  1. Денежное вознаграждение за правильный ответ 1500д. Вопрос. В результате вращения какой фигуры может быть получен усеченный конус?
  1. Задание. Сформулируйте определение призмы.
  1. Задание. Перечислите свойства сечения пирамиды плоскостью, параллельной основанию.
  1. Денежное вознаграждение за правильный ответ 3000д. Вопрос. Назовите все виды призм. В чем состоят их различия?
  1. Денежное вознаграждение за правильный ответ 2500д. Задание. Сформулируйте определения пирамиды и усеченной пирамиды.
  1. Денежное вознаграждение за правильный ответ? Вопрос. Что представляет собой сечение конуса плоскостью, проходящей через его вершину?
  1. Денежное вознаграждение за правильный ответ 1500д. Вопрос. Могут ли все грани треугольной пирамиды быть прямоугольными треугольниками?
  1. Денежное вознаграждение за правильный ответ 1500д. Вопрос. Из каких тел состоит тело , полученное вращением равнобедренной трапецией вокруг большего основания? [Полученное тело состоит из двух равных конусов и цилиндра].
  1. Денежное вознаграждение за правильный ответ 1500д. Вопрос. Существует ли четырёхугольная пирамида, две противоположные грани которой перпендикулярны основанию пирамиды?
  1. Денежное вознаграждение за правильный ответ 2000д. Вопрос. Сформулируйте определение шара, и сферы.

В конце игры аукционист просит всех участников подсчитать сумму наличных денег, вернуть взятый в банке кредит и 30 % годовых за пользование им (т. е. 1300д.). Победителем игры считается команда, у которой на руках осталось больше всего денег.

Все учащиеся выигравшей команды получают отличные оценки; отличные оценки выставляются также наиболее активным учащимся других команд, всем остальным учащимся оценка не выставляется.

Примечания.

Вопросы, сформулированные для двух туров аукциона можно заменить на более сложные и требующими развернутых ответов, или более простыми и доступными.

Количество вопросов в каждом туре можно увеличить или уменьшить в зависимости от времени, которым располагает учитель или от интереса учеников.

Игру-аукцион можно использовать также при изучении практически любого учебного предмета. Для этого нужно лишь продумать четкие и конкретные вопросы по уже пройденному материалу и распределить их по двум турам аукциона.

Дополнения.

Все команды, участвующие в аукционе, заводят свои лицевые счета. Приложение №2.

В графе «Приход» команды фиксируют все денежные поступления, в графе «Расход» указывают все выплаты, а в графе «Остаток» - оставшиеся на данный момент денежные средства.

Первая запись, которую делает в лицевом счёте каждая команда: в графе «Приход» фиксируется полученный в банке кредит (1000д.)

Лицевой счёт

Номер команды 1

Получено в банке 1000д.

Номер записи

Приход

Расход

Остаток

1000

1000

Например, члены команды №1 купили в первом туре вопрос 2, указав наибольшую сумму 350д. Значит, сразу же после покупки капитан команды (или какой-либо ее участник) в лицевом счете своей команды делает запись и вычисляет остаток денежных средств:

Лицевой счёт

Номер команды 1

Получено в банке 1000д.

Номер записи

Приход

Расход

Остаток

1000

1000

Если команда №1 правильно ответила На купленный вопрос, то она получает денежное вознаграждение 500д. (в соответствии с правилами первого тура аукциона) и делает третью запись в графе «Приход»:

Лицевой счёт

Номер команды 1

Получено в банке 1000д.

Номер записи

Приход

Расход

Остаток

1000

1000

1150

Такие же лицевые счета находятся у члена жюри (счет той команды, работу которой он оценивает).

Таким образом, ведя постоянный учет, команда в любой момент игры видит реальный остаток своих денежных средств. Это удобно и для преподавателя, если возникает необходимости проверить кредитоспособность команды.

Если у какой-либо команды закончились денежные средства, капитан может с разрешения преподавателя получить в банке дополнительный кредит (не более 1000д.), но уже под 50 % годовых.

Список использованной литературы:

  1. Кордемский Б А. Удивительный мир чисел. - М., Просвещение, 1986.

    Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

    Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

    Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

    Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

    Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

    По форме простые геометрические тела делятся на много­гранники и тела вращения.

    Плоскость является частным случаем поверхности.

    Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

    Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

    Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

    Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
    2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

    4. Состав простых геометрических тел




    Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

    Рис. 44. Структурные различия в форме цилиндров

    Рис. 45. Изменения формы цилиндров



    Рис. 46. Четырехугольные пирамиды различной формы

    Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

    Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

    Рис. 47. Геометрические тела

    План урока

    Тема: «Многогранники, фигуры вращения, площади их поверхностей и объемы»

    Тип урока – комбинированный урок.

    Цель: сформировать у учащихся представление о многогранниках, фигурах вращения, а также научить находить площади их поверхностей и объемы.

    Задачи:

      Дать определение понятиям многогранник, фигура вращения;

      Познакомить учащихся с основными многогранниками и фигурами вращения;

      Сформировать у учащихся навыки вычисления площадей поверхностей многогранников и фигур вращения;

      развивать мышление учащихся при выполнении упражнений;

      Формирование интереса и положительной мотивации учащихся к изучению геометрии;

      Сохранение, закрепление и развитие пространственных представлений учащихся.

    Структура занятия :

      Организационный момент (1-2 минуты)

      Проверка домашнего задания (10-15 минут)

      Сообщение темы занятия, актуализация (1-2 минуты)

      Изучение нового материала (17-20 минут)

      Закрепление нового материала (45-55 минут)

      Итог урока, рефлексия (3-4 минуты)

      Задание на дом (1 минута)

    Ход занятия

    1. Организационный момент

    Перед началом урока преподаватель проводит проверку подготовленности кабинета к занятию.

    Приветствие учащихся, определение отсутствующих, заполнение группового журнала.

    2. Проверка домашнего задания:

    Выясняет были ли сложности с выполнением домашнего задания. При необходимости отвечает на вопросы учащихся. Просит некоторых учащихся сдать тетради для проверки домашнего задания.

    3. Сообщение темы занятия, актуализация

    Сообщается тема и цель урока. Говорит что, тема «Многогранники и тела вращения” важна, так как связана с рядом предметов школьной программы: изобразительным искусством, черчением, трудовым обучением, информатикой.

    4. Изучение нового материала:

    Многогранник , точнее трёхмерный многогранник - совокупность конечного числа плоских многоугольников в трёхмерном пространстве такая, что:

      каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне);

      связность : от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним, и т. д.

    Эти многоугольники называются гранями , их стороны - рёбрами , а их вершины - вершинами многогранника.

    Виды многогранников:

      Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью.

      Призма - многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом.

      Параллелепипед - призма, основанием которой является прямоугольник.

      Куб - параллелепипед, все измерения которого равны между собой.

    Тела вращения - объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.

    Примеры тел вращения:

      Шар - образован полукругом, вращающимся вокруг диаметра разреза

      Цилиндр - образован прямоугольником, вращающимся вокруг одной из сторон

      Конус - образован прямоугольным треугольником, вращающимся вокруг одного из катетов

    Формулы для нахождения площадей поверхностей многогранников и тел вращения, а также их объемов.

    Фигура

    S осн

    S бок

    S полн

    Параллелепипед:

    прямоугольный

    куб

    произвольный

    S осн = ab

    S осн = a 2

    S осн = ab * sinα

    l- бок . ребро

    S бок =2(a+b)H

    S бок = 4a 2

    S бок =P сеч l

    S полн = S бок +2S осн

    V=abc

    V=a 3

    V=S осн H

    Призма

    S бок =P сеч l

    S полн = S бок +2S осн

    V = Ql (Q -площадь перпендикулярного сечения)

    Пирамида

    S бок =P осн l , l -апофема

    S полн = S бок +S осн

    V= 1/3* S осн H

    Усеченная пирамида

    S бок =(P 1 + P 2) l , l -апофема

    S полн = S бок +S 1 + S 2

    V =1/3* H (S 1 + +S 2

    Цилиндр

    S осн = πR 2

    S бок = 2 πRH

    S полн = 2 πR (H + R)

    V=πR 2 H

    Конус

    S осн = πR 2

    S бок = πRl, l- образующая

    S полн = πR (l + R)

    V=1/3*πR 2 H

    Усеченный конус

    S осн = πR 2

    S бок = π (R + r ) l , l -образующая

    S полн = π (R 2 + r 2 )+ R + r ) l

    V=1/3*πH(R 2 +Rr+r 2 )

    Шар

    S полн =4πR 2

    V=4/3*πR 3

    5. Закрепление нового материала:

    1. Образующая прямого конуса равна 4 см и наклонена к плоскости основания под углом 30 0 . Найдите объём конуса.

    2. Основание прямоугольного параллелепипеда – квадрат. Найдите объём параллелепипеда, если его высота равна 4 см, а диагональ параллелепипеда образует с плоскостью основания угол 45

    7. Основание пирамиды – квадрат. Сторона основания равна 20 дм, а её высота равна 21 дм. Найдите объём пирамиды.

    8. Диагональ осевого сечения цилиндра 13 см, высота 5 см. Найдите объём цилиндра.

    9. Измерения прямоугольного параллелепипеда 15 м, 50 м, 36 м. Определите ребро куба, равновеликого прямоугольному параллелепипеда.

    10. Найдите объём прямоугольного параллелепипеда, если его длина равна 6 см, ширина – 7 см, а диагональ – 11 см.

    11. Высота цилиндра 6 дм, радиус основания 5 дм. Найдите боковую поверхность и объём цилиндра.

    6. Подведение итогов урока, рефлексия

    Объявляет итог урока, называет оценки.

    В качестве рефлексии у чащимся предлагается закончить предложения и высказать свои мнения.

    Данное занятие для меня…

    Я почувствовал(а), что…

    В будущем я…

    Сегодня работать для меня было…

    Мне бы хотелось изменить…

    На следующем занятии мне бы хотелось…

    7. Задание на дом

    1) Диагональ куба равна 15см. Найдите объём куба.

    2) Диагональ боковой грани правильной треугольной призмы образует с основанием угол, равный 30 0 . Найдите объём призмы, если площадь боковой поверхности призмы равна см 2 .