Что такое конденсация в физике определение. Значение слова конденсация. Смотреть что такое "конденсация" в других словарях

В статье рассказывается о том, что такое конденсация, из-за чего возникает подобный физический процесс, и где его можно заметить в повседневной жизни.

Начало

Физика является одной из важнейших для человечества дисциплиной. Конечно, таковой считает «свою» науку любой ее последователь, но тем не менее именно физика наряду с другими естественными техническими науками позволила хоть немного, но разобраться в устройстве нашего мира. Во все времена находились те, кого не устраивало библейское описание Вселенной и природы в целом, и они, будучи первопроходцами, стремились разобраться в положении дел самостоятельно, как, к примеру, сам Михайло Ломоносов.

К сожалению, с популяризацией физики все не так просто, но определенные успехи есть, если вспомнить «Занимательную физику» Перельмана и ряд научных трудов Стивена Хокинга.

А еще физика интересна тем, что вокруг нас ежесекундно происходит множество процессов, к которым мы привыкли и не обращаем внимания, а они довольно интересны с научной точки зрения, к примеру, такое явление, как конденсация. Так что такое конденсация? В этом мы и разберемся.

Определение

Если обратиться к энциклопедии, то, согласно ей, конденсация - это переход того или иного вещества из газообразного в жидкое или твердое. Говоря проще, это процесс превращения пара в нечто иное, к примеру, жидкость. На первый взгляд, все довольно просто, все мы привыкли к тому, что пар в помещении постепенно осаждается в виде капель воды на предметах, и это так. Так что теперь мы знаем, что такое конденсация. Однако где еще встречается подобное явление, и чем оно полезно?

Дождь

Конденсацию можно заметить и при приготовлении пищи, когда пар поднимается из кастрюли с кипящей водой и оседает на стенах или предметах мелкими капельками жидкости. Также наиболее ярко этот процесс заметен и в парилке бани: если вылить воду на раскаленный очаг, она перейдет в газообразное состояние и по мере падения температуры начнет конденсироваться на стенах и полу.

Так что теперь мы знаем, что такое К слову, согласно закону сохранения вещества и энергии, обратно в жидкое состояние перейдет ровно столько пара, сколько и испарилось.

КОНДЕНСАЦИЯ

КОНДЕНСАЦИЯ

(от позднелат. condensatio - уплотнение, сгущение), переход в-ва вследствие его охлаждения или сжатия из газообразного в конденсированное (жидкое или твёрдое). К. пара возможна только при темп-pax ниже критической для данного в-ва (см. КРИТИЧЕСКОЕ СОСТОЯНИЕ). К., как и обратный ей процесс - , относится к фазовым переходам I рода. При К. выделяется то же кол-во теплоты, к-рое было затрачено на испарение сконденсировавшегося в-ва. Дождь, снег, роса, иней - следствия конденсации водяного пара в атмосфере. К. широко применяется в энергетике, в хим. технологии, в холодильной и криогенной технике, в опреснит. установках и т. д. В технике К. обычно осуществляется на охлаждаемых поверхностях. Известны два режима поверхностной К.: плёночный и капельный. Первый наблюдается при К. на смачиваемой поверхности и характеризуется образованием сплошной плёнки конденсата. На несмачиваемых поверхностях конденсат образуется в виде отд. капель. При капельной К. интенсивность теплообмена (отводы теплоты к поверхности охлаждения) значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет (см. КИПЕНИЕ).

Скорость поверхностной К. тем выше, чем ниже темп-pa поверхности по сравнению с темп-рой насыщения пара при заданном давлении. Наличие в объёме наряду с паром др. газа уменьшает поверхностной К., т. к. затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов К. начинается при достижении паром у поверхности охлаждения парциального давления и темп-ры, соответствующих состоянию насыщения (точке росы).

К. может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной К. должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара р к давлению насыщ. пара ps, находящегося в равновесии с жидкой или тв. фазой, имеющей плоскую . Пар пересыщен, если p/ps>1, при p/ps=l пар насыщен. Степень пересыщения e=p/ps, необходимая для начала К., зависит от содержания в паре мельчайших пылинок (аэрозолей), к-рые явл. готовыми центрами К. Чем чище пар, тем выше должна быть нач. степень пересыщения. Зародышами, или центрами, К. могут служить также электрически заряжённые частицы, в частности ионизованные атомы, присутствующие в паре.

Кинетика процесса К. изучается теоретически как задача кинетики физической.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КОНДЕНСАЦИЯ

(от позднелат. condensatio - уплотнение, сгущение) - переход вещества из газообразного состояния (пара) в жидкое или твёрдое состояние. Ква-зистатич. процесс К. происходит в условиях равновесия сосуществующих фаз и является фазовым переходом 1-го рода. Если при этом р поддерживается постоянным, то сохраняется постоянной и абс. темп-ра Т. Связь между р и Т определяется равенством химических потенциалов и для пара и жидкости соответственно:

или задаётся Клапейрона - Клаузиуса уравнением. Эти ур-ния справедливы как для К., так и для обратного процесса - испарения, направление же процесса определяется теплообменом с окружающей средой: если системе сообщается , происходит испарение, при её отводе - К. Кол-во теплоты, выделяющееся при К. единицы массы, равно теплоте испарения. В квази-статич. условиях К. пара в возможна в интервале давления от критического до давления в тройной, точке. Ниже давления в тройной точке конденсирующийся пар граничит с кристаллом (рис. к ст. Испарение).

Равновесие между паром и конденсированной фазой (напр., в замкнутом объёме) имеет динамич. характер: ср. потоки конденсирующихся и испаряющихся молекул равны между собой, т. е. компенсируют друг друга. При нарушении фазового равновесия величину нескомпенсированного потока молекул можно оценить, используя идеального газа для пара (т. н. ур-ние Герца - Кнудсена):

где - коэф. конденсации, различный для разных веществ, р н - равновесное давление (давление насыщения при темп-ре Т), т - масса . Если в газовой фазе присутствует неконденсирующий газ, то К. пара происходит при его парциальном давлении, соответствующем линии насыщения чистого вещества. Молекулы газа скапливаются у поверхности раздела фаз и затрудняют К., снижая её скорость, однако появляющийся градиент концентраций вызывает их диффузию.

Если первоначально пар не сосуществует с конденсированной фазой, то он может перейти в метастабиль-ное состояние, характеризуемое степенью пересыщения =р/р н. При высоких степенях пересыщения внутри парогазовой смеси даже в отсутствие конденсирующих поверхностей может начаться процесс К. Кинетика нач. стадии такой объёмной К. описывается теорией гомогенного зародышеобразования. Высокая степень пересыщения создаётся при быстром расширении пара в потоке, при смешении пара с холодным газом, в молекулярных пучках. Образование зародышевых капель облегчается на смачиваемых стенках, твёрдых частицах (гетерогенное зародышеобразование) и на ионах (напр., в Вильсона камере).

К. и испарение играют важную роль в круговороте воды в природе, а также в разл. технол. процессах. На тепловых и атомных электростанциях К. отработанного водяного пара происходит при низком давлении (ок. 4 КПа). На смачиваемой твёрдой охлаждаемой поверхности конденсат образует сплошную плёнку, к-рая ухудшает теплообмен между паром и стенкой. В отсутствие смачивания наблюдается капельный режим К., к-рый предпочтительнее плёночного, однако при длит. работе несмачиваемая поверхность обычно становится смачиваемой. К. используется также в холодильных машинах, в ожижителях газов, в опреснительных и ректификационных установках. Кроме К. на твёрдой поверхности в технике применяют К. на струях и каплях предварительно охлаждённой жидкости.

Неравновесная К. на твёрдой поверхности с темп-рой (T тp - темп-pa тройной точки) может идти по схеме пар жидкость кристалл. Для ряда веществ экспериментально показано, что ниж. граница перехода к механизму К. пар-кристалл лежит при T тp (см. Кристаллизация). Неравновесная К. на охлаждаемой подложке (напр., для воды при 120 К) может приводить к образованию твёрдого аморфного (стеклообразного) слоя вещества.

Лит.: Радченко И. В., Молекулярная , М. 1965; Хирс Д., Па унд Г., Испарение и конденсация пер. с англ., М., 1966; Кириллин В. А., Сычев В. В. Шейндлин А. Е., Техническая , 4 изд. М., 1983. В. П. Скрипов

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Антонимы :

Смотреть что такое "КОНДЕНСАЦИЯ" в других словарях:

    - (лат. condensatio). Сгущение, уплотнение. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОНДЕНСАЦИЯ вообще сгущение: сгущение электричества, сгущение паров какого либо вещества в жидкость (при помощи давления и… … Словарь иностранных слов русского языка

    конденсация - и, ж. condensation f. < condensatio 1. спец. Сгущение, уплотнение. БАС 1. Конденсация пара. Конденсация электричества. Уш. 1934. 2. Переход газа или пара в жидкое состояние. СИС 1954. Конденсационный ая, ое. Конденсационная вода. БАС 1.… … Исторический словарь галлицизмов русского языка

    - (от позднелатинского condensatio уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация фазовый переход 1 го рода. Конденсация возможна только при температурах ниже критической точки … Современная энциклопедия

    КОНДЕНСАЦИЯ, конденсации, жен. (спец.). Действие по гл. конденсировать и конденсироваться. Конденсация электричества. Конденсация пара (превращение его в жидкость). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Конденсация - – переход вещества из газообразного состояния в жидкое или твердое. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Конденсация – образование… … Энциклопедия терминов, определений и пояснений строительных материалов

    Конденсация - (от позднелатинского condensatio уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация фазовый переход 1 го рода. Конденсация возможна только при температурах ниже критической точки. … Иллюстрированный энциклопедический словарь

    - (от позднелат. condensatio уплотнение сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация возможна только при температурах ниже критической температуры … Большой Энциклопедический словарь

    Скопление, сгущение, уплотнение. Ant. разрежение Словарь русских синонимов. конденсация сущ., кол во синонимов: 7 гомополиконденсация (2) … Словарь синонимов

    - (от лат. condense сгущаю) переход водяного пара атмосферы в жидкое состояние. Играет большую роль в водном обмене, в частности в пустынных экосистемах, где очень важна ночная конденсация влаги на поверхности растений (роса) и почвенных частиц, а… … Экологический словарь

Что такое "КОНДЕНСАЦИЯ"? Как правильно пишется данное слово. Понятие и трактовка.

КОНДЕНСАЦИЯ (от позднелат. condensatio - уплотнение, сгущение), переход в-ва из газообразного состояния в жидкое или твердое при докритич. параметрах; фазовый переход первого рода. К.- экзотермич. процесс, при к-ром выделяется теплота фазового перехода - теплота К. Конденсир. фаза может образовываться в объеме пара или на пов-сти твердого тела и жидкости, имеющих более низкую т-ру, чем т-ра насыщения пара при данном давлении (см. Росы точка). К. происходит при изотермич. сжатии, адиабатич. расширении и охлаждении пара или одноврем. понижении его давления и т-ры, к-рое приводит к тому, что конденсиров. фаза становится термодинамически более устойчивой, чем газообразная. Если при этом давление и т-ра выше, чем в тройной точке для данного в-ва, образуется жидкость (сжижение), если ниже - в-во переходит в твердое состояние, минуя жидкое (десублимация). К. широко применяется в хим. технологии для разделения смесей посредством конденсации фракционной, при сушке и очистке в-в и др., в энергетике, напр. в конденсаторах паровых турбин, в холодильной технике для К. рабочего тела, в опреснит. установках и др. При К. паров в узких порах адсорбентов последние могут поглощать значит. кол-ва в-ва из газовой фазы (см. Капиллярная конденсация). Следствие К. водяного пара в атмосфере - дождь, снег, роса, иней. Конденсация в жидкое состояние. В случае К. в объеме пара или парогазовой смеси (гомогенная К.) конденсир. фаза образуется в виде мелких капель жидкости (тумана) или мелких кристаллов. Для этого необходимо наличие центров К., к-рыми могут служить очень мелкие капельки жидкости (зародыши), образующиеся в результате флуктуации плотности газовой фазы, пылинки и частицы, несущие электрич. заряд (ионы). При отсутствии центров К. пар может в течение длит. времени находиться в т. наз. метастабильном (пересыщенном) состоянии. Устойчивая гомог. К. начинается при т. наз. критич. пересыщении П кp=p к/p н где р к -равновесное давление, соответствующее критич. диаметру зародышей, р н - давление насыщ. пара над плоской пов-стью жидкости (напр., для водяного пара в воздухе, очищенном от твердых частиц или ионов, П кр=5-8). Образование тумана наблюдается как в природе, так и в технол. аппаратах, напр. при охлаждении парогазовой смеси вследствие лучеиспускания, смешении влажных газов. Конденсация на пов-сти твердого тела насыщенного или перегретого пара происходит при т-ре пов-сти, к-рая меньше, чем т-ра насыщения пара при его равновесном давлении над ней. Наблюдается во многих пром. аппаратах, к-рые служат для К. целевых продуктов, подогрева разл. сред, разделения паровых и парогазовых смесей, охлаждения влажных газов и т. д. При сжижении пара на пов-сти твердого тела, хорошо смачивающейся конденсатом, образуется сплошная пленка жидкости (пленочная К.); на пов-сти, не смачивающейся конденсатом или смачивающейся частично, - отдельные капли (капельная К.); на пов-сти с неоднородными св-вами (напр., на полированной металлической с окисленными загрязненными участками) - зоны, покрытые пленкой конденсата и каплями (смешанная К.). При пленочной К. чистых паров неметаллов коэф. теплоотдачи определяется в осн. термич. сопротивлением пленки конденсата, к-рое зависит от режима ее течения. Последний в случае практически неподвижного пара определяется числом Рейнольдса пленки: Rе пл=wd/v к, где w,d - соотв. средняя по сечению скорость и толщина пленки конденсата, v к - кинематич. вязкость конденсата. Для К. на вертикальной пластине или трубе при Rе пл менее 5-8 течение пленки чисто ламинарное, при превышении этих значений Rе пл - ламинарно-волновое, при Re пл>>350-400 - турбулентное. На вертикальных пoв-стях значит. высоты могут наблюдаться области с разл. режимами течения пленки конденсата. При ламинарном течении увеличение Re пл с возрастанием толщины пленки приводит к уменьшению коэф. теплоотдачи, при турбулентном течении - к его увеличению. Если пар перегрет, К. сопровождается конвективной теплоотдачей от пара к конденсату, т-ра поверхности к-рого практически равна т-ре насыщения при давлении пара. Для в-в с большой теплотой К. (напр., вода, спирты) теплота перегрева обычно незначительна по сравнению с теплотой К., и ею можно пренебречь. В случае пленочной К. движущегося пара касательное напряжение на пов-сти раздела фаз, обусловленное межфазным трением и переносом импульса частицами сконденсировавшегося пара, к-рые присоединяются к пленке конденсата, вызывает при нисходящем потоке пара увеличение скорости и уменьшение толщины пленки, в результате чего коэф. теплоотдачи увеличивается. При более высоких скоростях парового потока воздействие его на пленку конденсата может приводить не только к изменению ее скорости и толщины, но и к возмущению течения (образование волн, турбулизация), интенсифицирующему теплоперенос в пленке. Если поток пара направлен вверх, движение ламинарной пленки конденсата тормозится, толщина ее увеличивается и коэф. теплоотдачи уменьшается по мере возрастания скорости пара до тех пор, пока действие межфазного трения не вызовет т. наз. обращенное (направленное вверх) течение пленки конденсата. При К. движущегося пара внутри трубы (канала) режимы течения и характер взаимод. паровой и жидкой фаз могут значительно изменяться в результате изменения по мере образования конденсата скорости пара, касательного напряжения трения на межфазной пов-сти и Re пл. При больших скоростях пара (когда действие силы тяжести на пленку конденсата пренебрежимо мало и течение ее определяется в осн. силой трения) местные и средние по длине трубы коэф. теплоотдачи не зависят от пространств. ориентации трубы. Если силы тяжести и трения соизмеримы, условия К. определяются углом наклона трубы и взаимным направлением движения фаз. В случае К. внутри горизонтальной трубы и малой скорости пара кольцевая пленка конденсата образуется только на верх, части внутренней пов-сти трубы. На ниж. части возникает "ручей", в зоне к-рого в результате относительно большой толщины слоя жидкости теплоотдача значительно менее интенсивна, чем на остальном участке пов-сти. В случае К. на пучке горизонтальных труб расход стекающего конденсата увеличивается сверху вниз вследствие натекания конденсата с вышележащих труб на нижележащие, а расход пара по пути его движения снижается. В пучке с постоянным или относительно немного уменьшающимся по высоте живым сечением между трубами скорость нисходящего потока пара постепенно снижается, а конденсат натекает с верх, труб на нижние. Вначале это приводит к уменьшению местных коэф. теплоотдачи (осредненных по периметру труб) при увеличении отсчитываемого сверху номера горизонтального ряда труб. Однако, начиная с нек-рого ряда, в результате натекания конденсата течение пленки возмущается и ее термич. сопротивление снижается. Благодаря этому коэф. теплоотдачи могут стабилизироваться, а при возрастающем воздействии возмущения течения пленки на ниж. трубках - увеличиваться с возрастанием номера ряда. Интенсификация теплоотдачи при пленочной К. может достигаться профилированием ее пов-сти (напр., применением т, наз. мелковолнистой пов-сти), к-рое способствует уменьшению средней толщины пленки конденсата, созданием на пов-сти искусств, шероховатости, приводящей к тур-булизации пленки, воздействием на нее при диэлектрич. жидкой фазе (напр., при К. хладонов) электростатич. полем, отсосом конденсата через пористую пов-сть и др. При конденсации паров жидких металлов теплопроводность жидкой фазы весьма высока. Поэтому доля термич. сопротивления пленки конденсата в суммарном сопротивлении передаче тепла незначительна, и определяющим оказывается межфазное термич. сопротивление, обусловленное молекулярно-кинетич. эффектами на границе раздела фаз. Иногда пленочная К. на пов-сти сопровождается гомог. К. в прилегающем к пов-сти раздела фаз слое пара. Если образование тумана при этом нежелательно (напр., в произ-ве H2SO4 нитрозным способом или при улавливании летучих р-рителей), процесс проводят при макс. пересыщении пара ниже П кр. При капельной К. первичные мелкие капли, образовавшиеся на сухой вертикальной или наклонной пов-сти, растут в результате продолжения процесса, слияния близко расположенных и касающихся друг друга капель и подтягивания к ним возникающей между каплями и быстро разрывающейся тонкой пленки конденсата. Капли, достигшие "отрывного" диаметра, стекают вниз, объединяясь (коалес-цируя) с нижележащими мелкими каплями, после чего на освободившейся пов-сти опять образуются мелкие капли, и цикл повторяется. Условия, определяющие самопроизвольное возникновение капельной К., наблюдаются редко. Обычно же для осуществления капельной К. на твердую пов-сть наносят тонкий слой лиофобизатора - в-ва, обладающего низким поверхностным натяжением и несмачиваемого конденсатом (напр., жиры, воски). В случае капельной К. коэф. теплоотдачи намного выше (в 5-10 раз и более), чем при пленочной. Однако поддержание в условиях эксплуатации пром. аппаратов устойчивой капельной К. затруднительно. Поэтому конденсац. устройства хим. пром-сти, как правило, работают в режиме пленочной К. Конденсация пара на пов-сти жидкости того же в-ва происходит в технол. аппаратах на пов-сти подаваемых в объем пара диспергированных (напр., с помощью распылит, форсунок) струй или стекающих по насадке тонких пленок жидкости. Диспергирование или распределение жидкости на тонкие пленки позволяет сильно развить пов-сть контакта фаз. В ряде случаев К. наблюдается при поступлении пара в объем жидкости в виде струй или пузырьков (барботаж), а также при образовании паровых пузырьков в объеме жидкости, напр. при кавитации. К. пара из смеси его с неконденсирующимися газами (или неконденсирующимися при данной т-ре парами) на пов-сти твердого тела или жидкости менее интенсивна по сравнению с К. чистого пара. Поскольку при К. из парогазовой смеси т-ра и парциальное давление (концентрация) пара в ее осн. массе выше, чем на твердой пов-сти, в прилегающем к последней слое смеси (при движении смеси - в пограничном слое) происходит совместный тепло- и массообмен. Если пар неподвижен, даже незначит. содержание в нем газа приводит к резкому снижению интенсивности К. По мере увеличения скорости (числа Рейнольдса Re см) парогазовой смеси влияние газа на интенсивность процесса постепенно ослабляется. При К. паров из многокомпонентных смесей (паровых или парогазовых) в газовой фазе также происходят взаимосвязанные тепло- и массоперенос. При этом эффективный коэф. теплопроводности смеси и эффективные коэф. диффузии ее отдельных компонентов определяются природой и концентрациями др. компонентов. В случае гомог. смеси конденсатов на пов-сти твердого тела происходит только пленочная К., в случае гетерогенной - смешанная. Напр., при К. бинарной смеси водяного пара и орг. в-ва на твердой пов-сти образуется жидкая пленка этого в-ва, покрывающаяся каплями влаги. Десублимация. В данном процессе конденсированная (твердая) фаза не может стекать с пов-сти твердого тела и толщина ее слоя непрерывно возрастает. Поэтому процесс нестационарный и скорость его постепенно снижается. При проведении К. в глубоком вакууме (средняя длина своб. пробега молекул соизмерима с характерным размером аппарата), напр., при разделении паровых или очистке парогазовых смесей необходимо учитывать изменения механизма и закономерностей тепло- и массопереноса. Это приводит к изменению условий К. чистых паров и паров, содержащих примеси неконденсирующихся газов. См. также Газов осушка, Газов разделение, Дистилляция, Сублимация, Теплообмен. Лит.: Кутателадзе С. С., Теплопередача при конденсации и кипении. 2 изд., М. Л., 1952; его же, Основы теории теплообмена, 5 изд., М. 1979; Амелин А. Г.,Теоретические основы образования тумана при конденсации пара, 3 изд., М., 1972; Исаченко В. П., Теплообмен при конденсации, М., 1977; Бeрман Л. Д., "Теплоэнергетика", 1979, №5, с. 16-20; его же, там же, 1980, №4, с. 8 13; его же, там же, 1981, № 4, с. 22-29; Горелик А. Г.. Амятин А. В., Десублимация в химической промышленности, М., 1986. Л. Д. Берман.

Словарь медицинских терминов

Толковый словарь русского языка. Д.Н. Ушаков

конденсация

конденсации, ж. (спец.). Действие по глаг. конденсировать и конденсироваться. Конденсация электричества. Конденсация пара (превращение его в жидкость).

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

конденсация

[дэ], -и, ж. (спец.).

    Переход вещества из газообразного состояния в жидкое или кристаллическое. К. пара.

    Накопление в каком-н. количестве. К. энергии.

    прил. конденсационный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

конденсация

    Накапливание чего-л. в каком-л. количестве.

    Переход вещества из газообразного состояния в жидкое или твердое вследствие охлаждения или сжатия.

Энциклопедический словарь, 1998 г.

конденсация

КОНДЕНСАЦИЯ (от позднелат. condensatio - уплотнение, сгущение) переход вещества из газообразного состояния в жидкое или твердое. Конденсация возможна только при температурах ниже критической температуры.

Конденсация

(позднелатинское condensatio ≈ сгущение, от латинского condenso уплотняю, сгущаю), переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. К. пара возможна только при температурах ниже критической для данного вещества (см. Критическое состояние). К., как и обратный процесс ≈ испарение , является примером фазовых превращений вещества (фазовых переходов 1-го рода). При К. выделяется то же количество теплоты, которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней ≈ все эти явления природы представляют собой следствие конденсации водяного пара в атмосфере. К. широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации), в холодильной и криогенной технике, в опреснительных установках и т. д. Жидкость, образующаяся при К., носит название конденсата. В технике К. обычно осуществляется на охлаждаемых поверхностях. Известны два режима поверхностной К.: плёночный и капельный. Первый наблюдается при К. на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата. На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной К. интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен (см. Кипение).

Скорость поверхностной К. тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении. Наличие другого газа уменьшает скорость поверхностной К., т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов К. начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке).

К. может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной К. пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps, находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1, при p/ps = 1 пар насыщен. Степень пересыщения p/ps, необходимая для начала. К., зависит от содержания в паре мельчайших пылинок (аэрозолей), которые являются готовыми центрами, или ядрами, К. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами К. могут служить также электрически заряженные частицы, в частности ионизованные атомы. На этом основано, например, действие ряда приборов ядерной физики (см. Вильсона камера).

Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Исаченко В. П., Осипова В. А., Сукомел А. С., Теплопередача, 2 изд., М., 1969; Кутателадзе С. С., Теплопередача при конденсации и кипении, 2 изд., М.≈Л., 1952.

Д. А. Лабунцов.

Википедия

Конденсация (значения)

  • Конденсация.
  • Конденсация.
  • Конденсация.
  • Реакция конденсации
  • Конденсация Клайзена
  • Конденсация по Кневенагелю
  • Конденсация Бозе-Эйнштейна
  • Конденсация Доджсона

Конденсация

Конденса́ция паров - переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация ). Максимальная температура , ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

Конденсация (химия)

Реакция конденсации - реакция образования больших молекул из молекул с меньшей молекулярной массой, протекающая с отщеплением атомов или атомных групп; например, продуктом конденсации фенола с формальдегидом являются фенолформальдегидные смолы.

Примеры употребления слова конденсация в литературе.

Карл наклонился над столом, он вкладывал пластинку в конденсаторную печь на доконденсацию , он собирался щелкнуть затвором и отойти, после этого Эрвин должен был сфокусировать лучевой генератор в горнило печи и включить конденсацию .

Англичанин Вильсон использовал конденсационную камеру так, что в ней пути ядер атомов и других заряженных частичек стали видимыми для человеческого глаза в виде следов конденсации .

Я много раз рисовал себе и синтетические мясные грибы, и пирожки, с начинкой из искусственных сыров, и рыбное жареное филе наших подземных химических предприятий, и жирные мясные колбасы, продукт многостепенной переработки древесины, и свежайшую розовую ветчину с нежным жирком, полученную в результате конденсации горючих газов, и сочные сливочные торты, поставляемые заводами по перегонке нефти, и даже тот неудачный шашлык из бедного натурального барашка, каким пытался нас угостить Ромеро.

Когда пациенту разъяснили все эти пункты, ему настойчиво посоветовали использовать все три механизма: изменение ощущений тела, дезориентация тела, диссоциация, анестезия, амнезия и субъективная конденсация времени.

Как только температура его дойдет до точки превращения пара в туман - это будет уровень конденсации , нижняя кромка облака.

В сновидениях Лакан вслед за Фрейдом выделяет два основПроцессы внутри ных процесса: конденсацию и замещение.

Я нагревал металлический натрий в железной ложке под куском белого гипса, ожидая, что конденсация пара на холодной поверхности даст необходимое падение плотности с расстоянием.

Примерно в 1900 году дядя Карл экспериментировал с рентгеновским излучением и радиоактивностью при конденсации в пузырьковой камере, деревянном цилиндре, наполненном туманом.

Энциклопедичный YouTube

  • 1 / 5

    Соотношения для разных видов конденсации выведены на основе опытных данных, а также статистической физики и термодинамики .

    Конденсация насыщенных паров

    При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона - Клаузиуса определяет параметры этого равновесия - в частности, выделение тепла при конденсации и охлаждение при испарении.

    Конденсация перенасыщенного пара

    Наличие перенасыщенного пара возможно в следующих случаях:

    • отсутствие жидкой или твёрдой фазы того же вещества.
    • отсутствие ядер конденсации - взвешенных в атмосфере твёрдых частиц или капелек жидкости, а также ионов (наиболее активные ядра конденсации).
    • конденсация в атмосфере другого газа - в этом случае скорость конденсации ограничена скоростью диффузии паров из газа к поверхности жидкости.

    Конденсация в твёрдую фазу

    Конденсация, минуя жидкую фазу, происходит через образование мелких кристалликов (десублимация). Это возможно в случае давления паров ниже давления в тройной точке при пониженной температуре.

    Конденсат на окнах

    Образование конденсата на стеклах происходит в холодное время года. С точки зрения физики, образование конденсата на окнах происходит из-за понижения температуры поверхности ниже температуры точки росы . Температура точки росы зависит от температуры и влажности воздуха в помещении. Причина образования конденсата на окнах может состоять как в чрезмерном повышении влажности внутри помещения, вызванном нарушением вентиляции, так и в невысоких теплоизолирующих свойствах стеклопакета, металлопластиковой рамы, оконной коробки, в неправильной глубине монтажа окна в однородной стене, неправильной глубине монтажа относительно слоя стенового утеплителя, в полном отсутствии, либо в некачественном утеплении оконных откосов.

    Конденсация пара в трубах

    По мере прохождения по трубе пар постепенно конденсируется и на стенках образуется пленка конденсата. При этом расход пара G" и его скорость в связи с уменьшением массы пара уменьшаются по длине трубы, а расход конденсата G увеличивается. Основной особенностью процесса конденсации в трубах является наличие динамического взаимодействия между паровым потоком и пленкой. На пленку конденсата действует также сила тяжести. В итоге в зависимости от ориентации трубы в пространстве и скорости пара характер движения конденсата может быть различным. В вертикальных трубах при движении пара сверху вниз силы тяжести и динамического воздействия парового потока совпадают по направлению и пленка конденсата стекает вниз. В коротких трубах при небольшой скорости парового потока течение пленки в основном определяется силой тяжести аналогично случаю конденсации неподвижного пара на вертикальной стенке. Такой же оказывается и интенсивность теплоотдачи. При увеличении скорости пара интенсивность теплоотдачи растет. Это объясняется уменьшением толщины конденсатной пленки, которая под воздействием парового потока течёт быстрее. В длинных трубах при больших скоростях движения пара картина процесса усложняется. В этих условиях наблюдаются частичный срыв жидкости с поверхности пленки и образование парожидкостной смеси в ядре потока. При этом влияние силы тяжести постепенно утрачивается, и закономерности процесса перестают зависеть от ориентации трубы в пространстве. В горизонтальных трубах при не очень больших скоростях парового потока взаимодействие сил тяжести и трения пара о пленку приводит к иной картине течения. Под влиянием силы тяжести пленка конденсата стекает по внутренней поверхности трубы вниз. Здесь конденсат накапливается и образует ручей. На это движение накладывается движение конденсата в продольном направлении под воздействием парового потока. В итоге интенсивность теплоотдачи оказывается переменной по окружности трубы: в верхней части более высокая, чем в нижней. Из-за затопления нижней части сечения горизонтальной трубы конденсатом средняя интенсивность теплоотдачи при небольших скоростях пара может оказываться даже более низкой, чем при конденсации неподвижного пара снаружи горизонтальной трубы того же диаметра.