Электрический ток в металлах упорядоченное движение. Электрический ток в металлах. Действия электрического тока. Направление тока. Темы кодификатора ЕГЭ: носители свободных электрических зарядов в металлах

«Электрический ток в металлах. Действия электрического тока. Направление»

Ход урока.

Здравствуйте ребята наш урок, я хочу начать с такого четверостишья:

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей.

Ребята, полученные знания, всегда помогают человеку в жизни, а незнания приводит к трагическим последствиям. В моем четверостишье упоминается о электрических лучах. Как вы думаете, что это такое? (электрический ток)

Вопросы:

  1. Что называется электрическим током?

Упорядоченное направленное движение частиц.

  1. Что необходимо, чтобы в цепи существовал электрический ток?

Источник тока, проводники, потребитель тока, и все эти элементы должны быть замкнуты.

3) Работа со схемами.

На прошлом уроке вы изучали электрическую цепь и ее составные части. Проверим, как вы видите запомнили прошлый материал. Из каких частей состоит электрическая цепь?

Батарея элементов, лампа,ключ, провода.

Перед вами электрическая цепь.

Что входит в состав цепей?(РИс1: ключ, лампа,звонок,аккумулятор)

  1. Почему не горит исправная лампа при замыкании ключа? (Рис. 1)

Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

Учитель. Хочу вам напомнить, что при работе с электрическими цепями необходимо соблюдать правила по технике безопасности. Недопустимо касаться оголенных проводников, неисправных участков цепи и полюсов источника.

2.Изучение нового материала «Электрический ток в металлах» - 10 мин .

Слайд №1 Тема нашего урока: «Электрический ток в металлах. Действия электрического тока»

Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением?(защита от статического электричества)

Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд.

Учитель. Из каких материалов выполняется заземление?

Заземление выполняют из металла .

Учитель. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Электрический ток может проходить через различные вещества: металлы, растворы и расплавы электролитов - это вещества, которые проводят электрический ток. Вы уже знаете, что для возникновения электрического тока в какой-либо среде необходимо, что бы в ней имелись заряженная частица, которая будет перемещаться под действием электрического поля. Этими частицами могут быть как электроны, так и ионы.

Вспомним строение металлов. Кто нибудь знает какого строение металлов в твердом состоянии? В твердом состоянии, металлы имеют кристаллическое строение. Модель металла - кристаллическая решетка, в узлах которой расположены положительные ионы, а в пространстве между ними хаотично движутся свободные электроны.

Как вам уже известно, что количество отрицательных зарядов равен количеству положительных зарядов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Мы можем предположить, что под действием электрического поля движутся свободные электроны.

Но это наше предположение нуждается в доказательстве. Так в 1913 году физиками нашей страны Л. И. Мандельштамом и Н. Д. Папалекси, а также американскими физиками Бальфур Стюарт и Р. Толменом был проведен опыт. Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле - свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию.

Давайте посмотрим движение электронов на видеоролике. Повторимся, если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если в металле создать электрическое поле, то свободные электроны начнут двигаться упорядоченно в направлении действия электрических сил. То есть, возникает электрический ток. Но следует отметить, что движение электронов будет не прямолинейно, не так как это показано на видео. Траектория их движения сложная, из-за взаимодействия с другими частицами. (Пример человека идущего на толпу)

Итак, электрический ток в метталах осуществляется движением свободных электронов. Запишем.

Скорость упорядоченного движения электронов в проводнике под действием электрического поля - несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (3*10^8 м /с), распространяется по всей длине проводника.
Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника.

Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля - с распространением давления воды. При подъёме воды в водонапорную башню очень быстро по всей водопроводной системе распространяется напор воды. Когда мы открываем кран, то вода уже находится под давлением и начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, т.к. движение воды происходит с меньшей скоростью, чем распространение давления.
Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
Закончили электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока.. Некоторые из этих действий легко наблюдать на опыте. Существует три явления действия тока: тепловое, химическое, магнитное . Запишем

Тепловое действие тока. Рассмотрим привер теплового действия тока на примере приведенном в ролике. Какие вы можете привести примеры теплового действия?

Химическое действие тока. Химическое действие эл. тока впервые было открыто в 1800 г.

Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSo4) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов.

Путем электролиза получают алюминий (это единственный промышленный способ его получения), химические чистые металлы.

Магнитное действие тока.

Использование магнитного действия тока в гальванометрах.

Гальванометр. Схематическое обозначение

Направление электрического тока

Мы знаем, что электрический ток - это упорядоченное движение заряженных частиц в проводнике. В металлических проводниках электрический ток представляет собой упорядоченное движение свободных электронов (отрицательных зарядов). В растворах кислот, электрический ток обусловлен движением ионов обоих знаков.

Тогда какие же заряженные частицы принять за направлением тока?

Так как в большинстве случаев мы имеем дела с электрическим током в металлах, то за направление тока в цепи разумно принять направление движения электронов в электрическом поле, т. е. считать, что ток направление от отрицательного полюса к положительному. Однока вопрос о направлении тока возник в науке тогда, когда об электронах и ионах еще ничего не было известно. В то время предлагали, что во всех проводниках могут перемещаться как положительные так и отрицательные электрические заряды. За направление тока условно приняли то направлени, по которому движутся в проводнике положительные заряды, т. е. направление от положетильного полюса источника тока к отрицательному.

Запишем: условно принято считать за направлением тока движение положеительных зарядов

Открытый урок по физике в 8 классе.

Тема «Электрический ток в металлах. Действия электрического тока.»

Цель урока : Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.

Задачи урока:

Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.

Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.

Воспитательная – воспитывать чувство любви к своей Родине, прививать любовь к художественной литературе, формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение.

Оборудование и материалы : источники тока, электрическая лампочка для карманного фонаря, электрический звонок, выключатели, подводящие провода, раствор медно купороса, электромагнит, медная и цинковая пластинки, модель кристаллической решетки,гальванометр.

ТСО : компьютерная презентация, диск с программным обеспечением «Кирилл и Мефодий» Физика8 класс, мультимедийный проектор.

Демонстрации:

1) Сборка простейших электрических цепей.

2) Выделение меди при электролизе CuSO4.

3)Действие катушки с током, как электромагнита.

4)Получение источника тока используя лимон и медную и цинковую пластинку.

План урока.

    Актуализация опорных знаний -10 мин.

    Изучение нового материала «Электрический ток в металлах» - 10 мин

    Закрепление -3 мин

    Минутка отдыха -1 мин

    Изучение нового материала «Действия электрического тока». 12 мин

    Закрепление -5 мин.

    Домашнее задание -2мин.

    Итоги урока -2 мин.

Ход урока.

1) Актуализация опорных знаний -10 мин.

Здравствуйте ребята наш урок, я хочу начать с такого четверостишья:

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей.

Ребята, знания науки всегда, помогает человеку в жизни, а незнания приводит подчас к трагическим последствиям. Сделайте из этих слов для себя правильные выводы.

В моем четверостишье упоминается о электрических лучах. Как вы думаете, что это такое? (электрический ток)

    Что называется электрическим током?

Эталон ответа. Упорядоченное направленное движение частиц.

    Что необходимо, чтобы в цепи существовал электрический ток?

Э.ответа . Источник тока, проводники, потребитель тока, и все эти элементы должны быть замкнуты.

3) Работа со схемами.

А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две эл. цепи, схемы которых представлены на экране.

1. Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1)

Ответ учащихся.

Эталон ответа. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

Учитель. А чем проводники отличаются от непроводников или изоляторов?

Ответ учащихся.

Эталон ответа. Проводники – такие тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. А в изоляторах такие переходы невозможны, и лампа загорается.

Приглашается ученик, который дал правильный ответ и он, устранив разрыв, демонстрирует правильный ответ. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

Ответ учащихся.

Эталон ответа. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит.

Приглашается ученик, который дал правильный ответ и он, подсоединив к цепи источник тока, демонстрирует правильный ответ.

    Зашифрованное слово.

Ребята, а сейчас прочитаем зашифрованное слово, но для этого вам нужно вспомнить условные обозначения, применяемые на схемах для электроприборов. Поставте буквы напротив соответствующих приборов и начав со стрелки, прочитайте слово.

Слайд №4 Ответ:«Рузаевка»

Слайд №5 «Ординоносная Рузаевка – железнодорожные ворота Мордовии»

Слайд №6 Задач: С какой целью на стыках рельсов электрофицированных железных дорог делают толстые медныеперемычки или сваривают рельсы?

Ответ. Рельсы проводят электрический ток и, следовательно, чтобы цепь не была разомкнута, делают медные перемычки или сваривают рельсы.

2.Изучение нового материала «Электрический ток в металлах» - 10 мин.

Слайд №1 Тема нашего урока: «Электрический ток в металлах. Действия электрического тока»

Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением?

Эталон ответа. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд.

Учитель. Из каких материалов выполняется заземление?

Ответ учащихся.

Эталон ответа. Заземление выполняют из металла.

Учитель. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Итак, наш разговор пойдет о металлах. Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

Поэтому сегодня, в общем случае можно воспользоваться определением М.В.Ломоносова первый русский ученый – естествоиспытатель мирового значения., добавив к первым двум свойствам, им предложенным, еще три. Вы узнаете все свойства металлов. Начнем знакомство с одним из них – электропроводностью.

Вспомним строение металлов. Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение. (Представлена модель кристаллической решетки, а на экране проецируется изображение модели строения металлов).

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку. Как вам уже известно, в любом металле часть валентных электронов покидает свои места в атоме, в результате чего атом превращается в положительный ион. В узлах кристал-лической решётки металла расположены положительные ионы, а в пространстве между ни-ми движутся свободные электроны (электронный газ), т.е. не связанные с ядрами своих атомов.
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.
Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Мы можем предположить, что под действием электрического поля движутся свободные электроны. Но это наше предположение нуждается в доказательстве.
В 1899 г. К. Рикке на трамвайной подстанции в Штуттгарте включил в главный провод, питающий трамвайные линии, последовательно друг другу торцами три тесно прижатых цилиндра; два крайних были медными, а средний - алюминиевым.

Через эти цилиндры более года проходил электрический ток. Произведя тщательный анализ того места, где цилиндры контактировали, К. Рикке не обнаружил в меди атомов алюминия, а в алюминии - атомов меди, т. е. диффузия не произошла. Таким образом, он экспериментально доказал, что при прохождении по проводнику электрического тока ионы не перемещаются. Следователь-но, перемещаются одни лишь свободные электроны, а они у всех веществ одинаковые.

Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л. И. Мандельштамом и Н. Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом. Посмотрите рисунок на экране. Слайд №

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле - свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся.

электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов, под действием электрического поля
Если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если же в проводнике создано электрическое поле, то электроны, сохраняя свое хаотичное движение, начинают смещаться в сторону положительного полюса источника. Вместе с беспорядочным движением электронов возникает и упорядоченный их перенос - дрейф.

Скорость упорядоченного движения электронов в проводнике под действием электрического поля - несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км /с), распространяется по всей длине проводника.
Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.
Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля - с распространением давления воды. При подъёме воды в водонапорную башню очень быстро по всей водопроводной системе распространяется давление (напор) воды. Когда мы открываем кран, то вода уже находится под давлением и начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, т.к. движение воды происходит с меньшей скоростью, чем распростра-нение давления.
Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03с.

Минутка отдыха .

Ребята, однажды великого мыслителя Сократа спросили о том, что, по его мнению, легче всего в жизни? Он ответил, что легче всего – поучать других, а труднее – познать самого себя.

На уроках физики мы говорим о познании природы. Но сегодня давайте лянем « в себя». Как мы воспринимаем окружающий мир? Как художники или как мыслители?.

    Встаньте, поднимите руки в верх, потянитесь.

    Переплетите пальцы рук.

    Посмотрите какой палец левой или правой руки оказался у вас вверху? Результат запишите «Л» или «П»

    Скрестите руки на груди. («поза Наполеона») Какая рука сверху?

    Поаплодируйте. Какая рука сверху?

Подведем итоги.

Учитывая, что результат «ЛЛЛ» соответствует художественному типу личности, а «ППП» - типу мышления.

Какой же тип мышления преобладает у вашего класса?

Несколько «художников», несколько «мыслителей», а большинство ребят – гармонично развитые личности, которым свойственно, как логическое, так и образное мышление.

А теперь можно переходить к познанию внешнего мира. Закончили э

Электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Изучение нового материала «Действия электрического тока.»

Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока.. Некоторые из этих действий легко наблюдать на опыте.

Тепловое действие тока. (Слайд № ,) Программный диск Уроки физики 8 класс Вертуальная школа Кирилла и Мефодия. Урок 08 (пункт 7,9)

Химическое действие тока. Химическое действие эл. тока впервые было открыто в 1800 г.

Опыт. Проведем опыт с раствором медного купороса. Два угольных электрода, опускаем в дисцилированную воду замыкаем цепь. Наблюдаем, что Эл. лампочка не загорается. Берем раствор медного купороса и подсоединяем к источнику тока. Эл лампочка загорается.

Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSo4) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов.

Путем электролиза получают алюминий (это единственный промышленный способ его получения), химические чистые металлы, производят никилирование, хромирование, золочение.

Для предохранения металлов от ккорозии их поверхность часто покрывают трудно окисляемыми металлами, т. е. производят никелирование или хромирование. Этот процесс называется гальваностегией.

Магнитное действие тока.

Опыт. Катушку с железным сердечником включаем в цепь и наблюдает притяжение металлических предметов.

Использование магнитного действия тока в гальванометрах.

Слайд№

Гальванометр. Схематическое обозначение

Закрепление изученного материала.

К итайский философ Конфуций как – то сказал, словно для нас с вами

«Хорошо обладать природным дарованием, но упражнения, друзья, дают нам больше, чем природное дарование».

Русская пословица гласит: « Учиться всегда пригодится».

Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками?

(Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Ребята я вам зачитаю отрывок из рассказа К.Г.Паустовского «Подарок»

«Лесничий – мужик хитрый, он, когда в Москве жил, так, говорят, на электрическом току пищу себе готовил. Может это быть или нет?

-Может, ответил Рувим.

Может, может! – передразнил его дет. –А ты этот электрический ток видел? Как же ты его видал, когда он видимости не имеет, вроде как воздух?»

? Как бы вы объяснили деду, что такое электрический ток?. И как с его помощью можно готовить пищу?.

Задание на дом. Параграф. 34,35Л. №1260, 1261. Придумать стихотворение, или загадку про эл. ток, или рисунок.

Металлы в твёрдом состоянии имеют кристаллическое строение.
Модель металла - кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение.

Обрати внимание!

В узлах кристаллической решётки расположены положительные ионы. В пространстве между ними движутся свободные электроны.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны движутся в нём беспорядочно. Если создать в металле электрическое поле, то свободные электроны начнут двигаться направленно (упорядоченно), т.е. возникнет электрический ток. Однако беспорядочное движение электронов сохраняется.

Обрати внимание!

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов.

Какова же скорость движения электронов в проводнике под действием электрического поля? Невелика - всего несколько миллиметров в секунду, а иногда и ещё меньше.
Если возникает в проводнике электрическое поле, оно с огромной скоростью распространяется по всей длине проводника (близкой к скорости света - 300 000 км/с), одновременно начинают двигаться электроны в одном направлении по всей длине проводника.
Доказательством того, что ток в металлах обусловлен электронами, явились опыты. Опыт Мандельштама и Папалекси был проведён в 1916 году. Цель опыта состояла в проверке того, есть ли масса у носителя электрического тока - электрона. Если масса у электрона есть, то он должен подчиняться законам механики, в частности, закону инерции. К примеру, если движущийся проводник резко затормозить, то электроны ещё некоторое время будут двигаться в том же направлении по инерции.
Для этой проверки исследователи вращали катушку с проходящим током, а затем резко останавливали её. Возникающий бросок тока регистрировали с помощью телефона.
По щелчку тока в телефонах Мандельштам и Папалекси установили, что электрон обладает массой. Но измерить эту массу они не смогли. Поэтому этот опыт - качественный. Позже американские физики Толмен и Стюарт, используя ту же идею вращения катушки, измерили массу электрона. Для этого они измеряли возникающий при торможении катушки заряд на её выводах.

Электрический ток может существовать не только в металлах, но и в других средах: в полупроводниках, газах и растворах электролитов. Носители электрических зарядов в разных средах разные.

Обрати внимание!

Так, в растворах электролитов (солей, кислот и щелочей) носителями являются положительные и отрицательные ионы, в газах - положительные и отрицательные ионы, а также электроны. В полупроводниках носителями заряда являются электроны и дырки (дырка - придуманная частица для объяснения механизма проводимости, по сути - свободное место, не занятое электроном).

Из полупроводников изготавливают полупроводниковые приборы. Вот некоторые из них:

Фотоэлемент

Фоторезистор

Фотодиоды

Интегральные схемы

Транзисторы

Полупроводники при низкой температуре не проводят электрический ток, т.е. являются диэлектриками. При повышении температуры число носителей электрического заряда увеличивается, полупроводник становится проводником. Почему это происходит? Валентные электроны, находящиеся на внешней оболочке атома, становятся свободными, и под действием электрического поля в полупроводнике возникает электрический ток. Аналогичный процесс происходит в полупроводнике при воздействии на него света, примесей и т.д.
Изменение электропроводимости полупроводников под действием температуры позволяет применять их в качестве термометров.

Изменение электропроводимости полупроводников под воздействием света используется в фотосопротивлениях. Их применяют для сигнализации, при управлении производственными процессами на расстоянии, сортировке деталей. В экстренных ситуациях они позволяют автоматически останавливать станки и конвейеры, предупреждая несчастные случаи.

Исторически принято следующее:

Направление тока совпадает с направлением движения положительных зарядов в проводнике.

При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Прохождение тока по проводнику сопровождается следующими его действиями:

Магнитным (наблюдается во всех проводниках).

Используя это свойство, можно найти место обрыва фазового провода приборами, реагирующими на изменения в электромагнитном поле, к примеру, индикаторной отвёрткой с фазоискателем.

Если проволочную рамку, по которой течёт ток, поместить между полюсами магнита, то она станет поворачиваться. Данное явление используют в устройстве гальванометра.

Стрелка гальванометра связана с подвижной катушкой, находящейся в магнитном поле. Когда по катушке протекает ток, стрелка отклоняется. Таким образом, с помощью гальванометра можно сделать вывод о наличии тока в цепи. Магнитное действие тока проявляется вне зависимости от агрегатного состояния вещества. При замыкании ключа можно наблюдать, как проволока, намотанная на гвоздь, начинает притягивать небольшие железные предметы.

Практически все металлы можно рассматривать, как проводники электрического тока. Это обусловлено их строением, представляющим собой кристаллическую пространственную решетку. Узлы этой решетки совпадают с центрами положительных ионов, вокруг которых наблюдается хаотическое движение свободных электронов. Этим объясняется явление проводимости, благодаря которому применение электрического тока в металлах получило наиболее широкое распространение.

Физические свойства металлов

Свойства металлов полностью зависят от их внутреннего строения. Твердое состояние металлов представляет собой кристаллическую решетку пространственного типа, где кристаллы расположены упорядоченно. Как уже было отмечено, между узлами кристаллической решетки наблюдается движение свободных электронов.

Абсолютное значение их отрицательных зарядов совпадает с положительным зарядом всех ионов, расположенных в узлах кристаллической решетки. Когда пропускается электрический ток, ионы остаются на своем месте. Происходит перемещение свободных электронов, одинаковых в любом веществе.

Электрический ток в металлах: применение

То, что в металлах существуют электроны, проводящие ток, было доказано очень давно. Прежде всего, эти полезные свойства используются при передаче электроэнергии от источника к потребителям. В основе работы генераторов и электродвигателей также используются физические свойства металлов. Они применяются и в нагревательных приборах всех типов, предназначенных для промышленного производства и домашних условий.

Таким образом, электрический ток в металлах является упорядоченным движением свободных электронов, на которые воздействует электрическое поле. При его отсутствии, движение электронов становится хаотичным, подобно движению молекул жидкостей или газов. Однако, при наличии в проводнике электрического поля, происходит смещение электронов к положительному полюсу источника тока, то есть их движение становится упорядоченным.

Сами электроны в проводнике перемещаются с невысокой скоростью, в отличие от электрического поля, которое перемещается в проводнике со скоростью, приближающейся к скорости света. Именно эта величина служит показателем скорости распространения в .

Электрический ток в металле: электронная проводимость

Цель урока : Продолжить изучение природы электрического тока в металлах, экспериментальным путем изучить действие электрического тока.

Задачи урока:

  • Образовательная – формирование единых взглядов на природу электрического тока, формирование умения работать с электрическими схемами, собирать электрические цепи.
  • Развивающая – формирование умения находить ошибки и не допускать их при применении знаний на практике, а также логично объяснять новые явления, применять свои знания в нестандартных ситуациях.
  • Воспитательная – воспитывать чувство любви к своей Родине, формирование умения концентрировать внимание, вести диалог, аргументировано отстаивать свое мнение.

Оборудование и материалы : источники тока, электрическая лампочка для карманного фонаря, электрический звонок, выключатели, подводящие провода, раствор медно купороса, электромагнит, медная и цинковая пластинки, модель кристаллической решетки, гальванометр.

ТСО : компьютерная презентация , мультимедийный проектор.

Демонстрации:

  1. Сборка простейших электрических цепей.
  2. Выделение меди при электролизе CuSO4.
  3. Действие катушки с током, как электромагнита.
  4. Получение источника тока используя лимон и медную и цинковую пластинку.

План урока.

  1. Актуализация опорных знаний – 10 мин.
  2. Изучение нового материала «Электрический ток в металлах» – 10 мин.
  3. Закрепление – 3 мин.
  4. Минутка отдыха – 1 мин.
  5. Изучение нового материала «Действия электрического тока». 12 мин.
  6. Закрепление – 5 мин.
  7. Домашнее задание – 2 мин.
  8. Итоги урока – 2 мин.

Ход урока

1. Актуализация опорных знаний – 10 мин.

– Здравствуйте ребята.Сегодня мы продолжим изучение темы «электрический ток»

Для вспоминания пройденный темы, давайте ответим на следующие вопросы

1) Что называется электрическим током?

Эталон ответа. Упорядоченное направленное движение частиц.

2) Что необходимо, чтобы в цепи существовал электрический ток или назовите элементы цепи?

Э. ответа . Источник тока, проводники, потребитель тока, и все эти элементы должны быть замкнуты.

3) Работа со схемами.

А теперь проверим, как вы видите нарушения в составлении электрических цепей.

Перед вами две эл. цепи, схемы которых представлены на экране.

1. Почему не горит исправная лампа в первой цепи при замыкании ключа? (Рис. 1)

Ответ учащихся.

Эталон ответа. Электрическая цепь имеет разрыв. Чтобы лампа загорелась, в цепи должен существовать электрический ток, а это возможно при замкнутой цепи, состоящей только из проводников электричества.

Учитель. А чем проводники отличаются от непроводников или изоляторов?

Ответ учащихся.

Эталон ответа. Проводники – такие тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. А в изоляторах такие переходы невозможны, и лампа загорается.

Приглашается ученик, который дал правильный ответ и он, устранив разрыв, демонстрирует правильный ответ. Лампа загорается.

2. Почему не звенит звонок во второй цепи при замыкании цепи? (Рис. 2)

Ответ учащихся.

Эталон ответа. Для получения электрического тока в проводнике, надо в нем создать электрическое поле. Под действием этого поля свободные заряженные частицы начнут двигаться упорядоченно, а это и есть электрический ток. Электрическое поле в проводниках создается и может длительно поддерживаться источниками электрического поля. Электрическая цепь должна иметь источник тока. Подключаем цепь к источнику тока и звонок звенит.

Приглашается ученик, который дал правильный ответ и он, подсоединив к цепи источник тока, демонстрирует правильный ответ.

Учитель Ребята, мы наблюдали работающий цепь. Скажите, можно ли сказать смотрев на провода, что здесь течет ток?

Ответ учащихся.

Ответ нет, потому что мы не видим движение зарядов.

Учитель И так, для подробного получения ответа на этот вопрос, мы перейдем к изучению новой темы.

2. Изучение нового материала «Электрический ток в металлах» – 10 мин.

Слайд Тема нашего урока: «Электрический ток в металлах. Действия электрического тока»

Ребята кто знает, как можно избежать действия электрического тока при случайном прикосновении к электроприбору, которое оказалось под напряжением?

Эталон ответа. Для этого необходимо заземление, так как земля является проводником и, благодаря своим огромным размерам, может удерживать большой заряд.

Учитель. Из каких материалов выполняется заземление?

Ответ учащихся.

Эталон ответа. Заземление выполняют из металла.

Учитель. Почему предпочитают именно эти вещества, мы ответим после изучения новой темы “Электрический ток в металлах”. Запишите тему урока в тетрадь.

Итак, наш разговор пойдет о металлах. Самое известное из ранних определений металла было дано в середине XVIII века М.В. Ломоносовым: “Металлом называется светлое тело, которое ковать можно. Таких тел только шесть: золото, серебро, медь, олово, железо и свинец”. Спустя два с половиной века многое стало известно о металлах. К числу металлов относится более 75% всех элементов таблицы Д. И. Менделеева, и подобрать абсолютно точное определение для металлов – почти безнадежная задача.

Поэтому сегодня, в общем случае можно воспользоваться определением М.В.Ломоносова первый русский ученый – естествоиспытатель мирового значения, добавив к первым двум свойствам, им предложенным, еще три. Вы узнаете все свойства металлов. Начнем знакомство с одним из них – электропроводностью.

Вспомним строение металлов. Модель металла – кристаллическая решетка, в узлах которой частицы совершают хаотичное колебательное движение. (Представлена модель кристаллической решетки, а на экране проецируется изображение модели строения металлов).

Металлы в твёрдом состоянии имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку. Как вам уже известно, в любом металле часть валентных электронов покидает свои места в атоме, в результате чего атом превращается в положительный ион. В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны (электронный газ), т.е. не связанные с ядрами своих атомов.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Какие же электрические заряды движутся под действием электрического поля в металлических проводниках? Мы можем предположить, что под действием электрического поля движутся свободные электроны. Но это наше предположение нуждается в доказательстве.

В 1899 г. К. Рикке на трамвайной подстанции в Штуттгарте включил в главный провод, питающий трамвайные линии, последовательно друг другу торцами три тесно прижатых цилиндра; два крайних были медными, а средний – алюминиевым.

Через эти цилиндры более года проходил электрический ток. Произведя тщательный анализ того места, где цилиндры контактировали, К. Рикке не обнаружил в меди атомов алюминия, а в алюминии – атомов меди, т. е. диффузия не произошла. Таким образом, он экспериментально доказал, что при прохождении по проводнику электрического тока ионы не перемещаются. Следовательно, перемещаются одни лишь свободные электроны, а они у всех веществ одинаковые.

Заключительным подтверждением этому факту явился опыт, проведенный в 1913 году физиками нашей страны Л.И. Мандельштамом и Н.Д. Папалекси, а также американскими физиками Б. Стюартом и Р. Толменом. Посмотрите рисунок на экране. Слайд

Ученые приводили в очень быстрое вращение многовитковую катушку вокруг ее оси. Затем, при резком торможении катушки концы ее замыкались на гальванометр, и прибор регистрировал кратковременный электрический ток. Причина возникновения, которого вызвана движением по инерции свободных заряженных частиц между узлов кристаллической решетки металла. Так как из опыта известно направление начальной скорости и направление получаемого тока, то можно найти знак заряда носителей: он оказывается отрицательным. Следовательно, свободные носители зарядов в металле – свободные электроны. По отклонению стрелки гальванометра можно судить о величине протекающего в цепи электрического заряда. Опыт подтвердил теорию. Триумф классической теории электричества состоялся.

электрический ток в металлических проводниках представляет собой упорядоченное движение свободных электронов, под действием электрического поля

Если в проводнике нет электрического поля, то электроны движутся хаотично, аналогично тому, как движутся молекулы газов или жидкостей. В каждый момент времени скорости различных электронов отличаются по модулям и по направлениям. Если же в проводнике создано электрическое поле, то электроны, сохраняя свое хаотичное движение, начинают смещаться в сторону положительного полюса источника. Вместе с беспорядочным движением электронов возникает и упорядоченный их перенос – дрейф.

Скорость упорядоченного движения электронов в проводнике под действием электрического поля – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км /с), распространяется по всей длине проводника.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.

Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля – с распространением давления воды. При подъёме воды в водонапорную башню очень быстро по всей водопроводной системе распространяется давление (напор) воды. Когда мы открываем кран, то вода уже находится под давлением и начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, т.к. движение воды происходит с меньшей скоростью, чем распространение давления.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s=8000 км), приходит туда примерно через 0,03 с.

Минутка отдыха .

Ребята, однажды великого мыслителя Сократа спросили о том, что, по его мнению, легче всего в жизни? Он ответил, что легче всего – поучать других, а труднее – познать самого себя.

На уроках физики мы говорим о познании природы. Но сегодня давайте лянем « в себя». Как мы воспринимаем окружающий мир? Как художники или как мыслители?

  1. Встаньте, поднимите руки в верх, потянитесь.
  2. Переплетите пальцы рук.
  3. Посмотрите какой палец левой или правой руки оказался у вас вверху? Результат запишите «Л» или «П»
  4. Скрестите руки на груди. («поза Наполеона») Какая рука сверху?
  5. Поаплодируйте. Какая рука сверху?

Подведем итоги.

Учитывая, что результат «ЛЛЛ» соответствует художественному типу личности, а «ППП» – типу мышления.

Какой же тип мышления преобладает у вашего класса?

Несколько «художников», несколько «мыслителей», а большинство ребят – гармонично развитые личности, которым свойственно, как логическое, так и образное мышление.

А теперь можно переходить к познанию внешнего мира.

Электрический ток в металлах. Переходим к следующему блоку «Действия электрического тока»

Изучение нового материала «Действия электрического тока»

Мы не можем видеть движущиеся в металлическом проводнике электроны. О наличии тока в цепи мы можем судить по различным явлениям, которые вызывает электрический ток. Такие явления называют действиями тока. Некоторые из этих действий легко наблюдать на опыте.

Тепловое действие тока. (Слайд)

Химическое действие тока. Химическое действие эл. тока впервые было открыто в 1800 г. (Слайд)

Опыт. Проведем опыт с раствором медного купороса. Два угольных электрода, опускаем в дисцилированную воду замыкаем цепь. Наблюдаем, что Эл. лампочка не загорается. Берем раствор медного купороса и подсоединяем к источнику тока. Эл лампочка загорается.

Вывод. Химическое действие тока состоит в том, что в некоторых растворах кислот (солей, щелочей) при прохождении через них электрического тока наблюдается выделение веществ. Вещества, содержащиеся в растворе, откладываются на электродах, опущенных в этот раствор. При пропускании тока через раствор медного купороса (CuSo4) на отрицательно заряженном электроде выделится чистая медь (Сu). Это используют для получения чистых металлов.

Путем электролиза получают алюминий (это единственный промышленный способ его получения), химические чистые металлы, производят никелирование, хромирование, золочение.

Для предохранения металлов от коррозии их поверхность часто покрывают трудно окисляемыми металлами, т. е. производят никелирование или хромирование. Этот процесс называется гальваностегией.

Магнитное действие тока. Слайд

Опыт. Катушку с железным сердечником включаем в цепь и наблюдает притяжение металлических предметов.

Использование магнитного действия тока в гальванометрах.

Слайд

Гальванометр. Схематическое обозначение

Закрепление изученного материала.

Решаем задачи по сборнику задач В.И. Лукашик

  1. №1248
  2. №1250
  3. ? Почему нельзя прикасаться к неизолированным электрическим проводам голыми руками?

(Влага на руках всегда содержит раствор различных солей и является электролитом. Поэтому она создает хороший контакт между проводами и кожей.)

Анализируя ответы учащихся ставим оценки.

Задание на дом. Параграф. 34, 35Л. №1260, 1261. придумать схему управления звонком с двух точек (ребятам).