Изображение шара и его сечений. Сечение сферы плоскостью

Шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.

Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.

Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из - перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом - радиус окружности сечения.

Из трех сторон этого треугольника заданы два - радиус шара R и расстояние b, то есть гипотенуза . По теореме Пифагора длина второго катета должна быть равна √(R^2 - b^2). Это и есть радиус окружности сечения. Подставляя найденное значение в формулу площади круга, легко к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 - b^2).В частных случаях, когда b = R или b = 0, выведенная полностью согласуется с уже найденными результатами.

Видео по теме

Источники:

  • сечение шара плоскостью

Все планеты солнечной системы имеют форму шара . Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара . Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара , и ее окружность. От шара она отличается тем, что является полой. Ось как у шара , так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.

Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара , и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара , может проходить бесконечное количество кругов или окружностей. Именно по этой причине через

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.  

1. Изображение шара. Пусть F 0 – шар. Выберем направление проектирования и рассмотрим касательные к шару, принадлежащие выбранному направлению. Эти касательные образуют цилиндрическую поверхность и проходят через точки большой окружности шара, плоскость которой перпендикулярна направлению проектирования.

Выберем плоскость изображения. В общем случае цилиндрическая поверхность пересечет эту плоскость по эллипсу, а проекция F 1 шара F 0 будет частью плоскости, ограниченной этим эллипсом. Такое изображение шара не является наглядным (рис. 59). Если плоскость изображения выбрать перпендикулярной направлению проектирования, то изображением шара будет круг F . Круг, конечно, дает о шаре более наглядное представление, но в круг можно спроектировать и равный ему круг, и цилиндр (если проектирование вести параллельно его образующим).


Прежде чем продолжить разговор о том, как сделать изображение шара наглядным, вспомним известные со школы понятия, связанные с шаром. Сечение шара плоскостью, проходящей через центр шара, называется большим кругом , а его окружность – экватором. Точки пересечения прямой, перпендикулярной плоскости экватора, с поверхностью шара называются полюсами, соответствующими этому экватору, а соединяющий их диаметр – полярной осью .

Если на проекционном чертеже шара изобразить какой-либо экватор и соответствующие ему полюсы, то у изображения появится объемность. Оно станет наглядным.

Какой экватор изображать? Во-первых, желательно, чтобы отрезок, соединяющий изображения полюсов, был на чертеже вертикальным. Это желание будет выполнено, если плоскость изображения p будет вертикальной, а плоскость a , проходящая через полюсы N 0 , S 0 шара, – ей перпендикулярной и тоже вертикальной. (Напомним, что мы договорились использовать ортогональное проектирование.) Более того, можно считать, что плоскость изображения p проходит через центр шара, и, значит, пересекает его по окружности большого круга. Эту окружность обычно называют очерковой окружностью шара.

Обозначим точки пересечения прямой с поверхностью шара буквами P 0 и Q 0 . Если плоскость экватора также выбрать перпендикулярной плоскости p , то экватор и диаметр, соединяющий полюсы, изобразятся перпендикулярными диаметрами окружности (рис. 60) и изображение шара не станет нагляднее. Поэтому плоскость экватора не должна быть перпендикулярной плоскости изображения. На рис. 61 дано сечение шара плоскостью a . На этом рисунке P 0 Q 0 – прямая пересечения плоскостей a и p ; C 0 D 0 – пересечение a и экваториального круга, N 0 S 0 – диаметр, соединяющий полюсы. При проектировании на плоскость p полюсы N 0 и S 0 спроектируется в точки N и S соответственно, диаметр C 0 D 0 экватора – в малую ось эллипса, изображающего этот экватор.


Большая ось эллипса (рис. 62) будет проекцией диаметра экватора, перпендикулярного диаметру и, следовательно, параллельного плоскости .

Чтобы указать положение полюсов, вернемся к рис. 61. Прямоугольные треугольники и на этом рисунке равны по гипотенузе и острому углу (углы с соответственно перпендикулярными сторонами). Поэтому . Но в свою очередь , где – отрезок касательной к эллипсу, изображающему экватор (рис. 62).

Итак, наглядное изображение шара можно построить следующим образом:

1) Строим эллипс, который принимаем за изображение экватора, и его оси.

2) Проводим окружность с центром в центре эллипса, радиус которой равен большой полуоси эллипса.


3) Строим отрезок касательной к эллипсу, параллельные его большой оси, а затем изображения полюсов.

На рис. 63 показана достаточно типичная ошибка, когда полюсы изображаются на очерковой окружности, а экватор при этом изображен эллипсом.

2. Изображение параллелей и меридианов. Рассмотрим изображение полюсов и меридианов сферы, являющейся поверхностью шара. Напомним, что параллелями сферы называются ее сечения плоскостями, параллельными плоскости экватора. Сечения сферы плоскостями, проходящими через полярную ось, называются меридианами.

Через каждую точку сферы, отличную от полюса, проходит точно один меридиан и одна параллель. Каждый меридиан проходит через оба полюса.

Параллели и меридианы являются окружностями, поэтому также изображаются эллипсами.

Начнем с изображения параллелей. Параллель будет определена, если задать точку, в которой ее плоскость пересекает полярную ось. Поскольку плоскость параллели параллельна плоскости экватора, изображением параллели будет эллипс, подобный эллипсу, изображающему экватор.

Для построения этого эллипса рассмотрим сечение сферы (шара) плоскостью, проходящей через полярную ось перпендикулярно плоскости изображения (правая часть рис. 64). Построенное вспомогательное сечение позволяет легко найти малую ось эллипса, изображающего экватор, и изображения соответствующих ему полюсов.


Пусть параллель задана точкой , тогда плоскость параллели пересекает шар по отрезку , перпендикулярному оси . Этот отрезок равен большой оси эллипса, являющегося изображением параллели. Малая ось находится с помощью проектирования точек , на прямую . Наконец, с помощью прямой находятся точки , касания изображения параллели с очерковой окружностью. Точки , разделяют видимую и невидимую части изображения параллели.

При построении эллипса, являющегося изображением параллели, совсем не обязательно строить эллипс, являющийся изображением экватора, которому он подобен. Более того, можно отдельно не выполнять и построение вспомогательного сечения (рис. 65).

Как можно увидеть из рис. 66, в каждом из полушарий можно построить по эллипсу-параллели, которые касаются очерковой окружности только в одной точке. В верхнем полушарии изображения параллелей, лежащих севернее такой параллели будут полностью видимыми, а в нижнем полушарии изображения параллелей, лежащих южнее такой параллели – полностью невидимыми.


Задача. Построить изображение цилиндра, вписанного в шар, если высота цилиндра равна радиусу шара.

Решение. Построим изображение очерковой окружности шара и на ее вертикальном диаметре отметим изображения полюсов (рис. 67).

На этом же диаметре строим изображения центров , оснований цилиндра. Из условия задачи , где – радиус шара, равный радиусу очерковой окружности. Поэтому . Тем самым задано положение параллелей. В соответствии с рассмотренными правилами строим эллипс-изображение верхнего основания. Эллипс, изображающий нижнее основание, можно получить с помощью параллельного переноса на вектор .

В заключение рассмотрим, как строится изображение меридианов, если задано изображение сферы, ее экватора и соответствующих ему полюсов.

Пусть задано изображение точки , через которую проходит изображаемый экватор (рис. 68). В оригинале диаметр перпендикулярен полярной оси , поэтому отрезки , являются сопряженными диаметрами эллипса, изображающего рассматриваемый меридиан. Значит, эллипс – изображение меридиана – по этим сопряженным диаметрам можно построить.

При построениях меридиана «от руки» обычно дополнительно ищут точки , касания эллипса с очерковой окружностью (рис.68). Диаметр очерковой окружности для эллипса будет большой осью, причем , а значит, диаметр сферы параллелен плоскости проекции.

Точки и можно найти из следующих соображений. Построим диаметр эллипса-экватора, сопряженный диаметру . В оригинале , , поэтому диаметр перпендикулярен плоскости рассматриваемого меридиана. Отсюда следует, что , но тогда и (проектирование ортогональное). Точки и разделяют видимую и невидимую части изображения меридиана.

Изображение теней

Иногда для придания чертежу большей наглядности используют тени. Кроме того, построение теней – интересная геометрическая задача, способствующая развитию пространственного мышления, сущность которой состоит в следующем.

Пусть из светящейся точки прямолинейно во всех направлениях распространяются лучи света. Если луч встречает на своем пути непрозрачное тело , то он задерживается на нем и не доходит до некоторого экрана . На последнем при этом образуется темная область , которую называют падающей тенью от тела (рис. 69).

Само тело при этом также оказывается разделенным на две части: освещенную и темную (неосвещенную). Темную часть тела называют его собственной тенью .


Границу падающей тени образуют точки пересечения с экраном лучей, касающихся поверхности тела и образующих световой конус с вершиной точке . Линия, вдоль которой эти лучи касаются поверхности тела, называется линией раздела света и тени.

В случае, представленном на рис. 69, освещение называется факельным , такое же название имеет и соответствующая тень. Подобного рода освещение возникает при использовании источников искусственного освещения: электрической лампочки в комнате, фонаря на улице, пламени свечи и т.п.


Можно считать, что естественные источники (солнце, луна) находятся в бесконечности и лучи от них являются параллельными. Поэтому освещение, производимое пучком параллельных лучей, называют солнечным. Солнечное освещение показано на рис. 70.

Для того чтобы перейти к задачам на построение теней, условимся о том, как будем задавать лучи света на проекционном чертеже. При солнечном освещении такой световой луч можно задать прямой и ее проекцией на основную плоскость (рис. 71). Пусть требуется построить падающую тень от точки на основную плоскость (экран). Чтобы сама точка была определена, необходимо указать ее проекцию на основную плоскость. Построение тени сводится к отысканию точки пересечения прямой, проходящей через точку параллельно , и прямой, проходящей через точку параллельно . Заметим, что при этом отрезок является падающей тенью отрезка .


При факельном освещении на проекционном чертеже надо задать точку, являющуюся световым источником. Она определяется точкой и ее проекцией на основную плоскость (рис. 72). Здесь падающая тень точки – точка пересечения прямых и .

Ясно, что в качестве экрана можно выбирать не только основную плоскость. Наиболее интересные случаи построения теней имеют место именно тогда, когда приходится строить падающие тени на другие плоскости. (Например, падающую тень одного многогранника на поверхность другого.)

Задача 1. На рис. 73 изображены треугольная пирамида, ее высота и параллелепипед. Построить собственные и падающие тени этих непрозрачных фигур при заданном освещении.

Решение. Имеем дело с солнечным освещением. Прежде всего, найдем падающую тень параллелепипеда на основной плоскости . Падающей тенью ребра является отрезок , где , . Аналогично находятся падающие тени , ребер , соответственно. Отсюда следует, что – падающая тень грани , а – падающая тень грани (частично закрыта изображением параллелепипеда). Попутно отметим, что – собственная тень параллелепипеда.


Чтобы найти падающие тени пирамиды на гранях параллелепипеда, найдем сначала ее падающую тень на основной плоскости . Это треугольник ( , ), треугольник будет собственной тенью пирамиды. Проектирующая плоскость прямой пересекает грань параллелепипеда по отрезку . Проведя через точку прямую, параллельную , находим падающую тень вершины на верхнем основании параллелепипеда. Прямые , , проходящие через точку параллельно прямым , соответственно, определяют падающую тень пирамиды на верхнем основании параллелепипеда.

Остается найти падающую тень на боковой грани параллелепипеда. Для этого заметим, что – след плоскости на основной плоскости. Грань пересекает след в точке , а точка принадлежит плоскостям и . Отсюда заключаем, что плоскость пересекает боковое ребро параллелепипеда в точке , и строим падающую тень пирамиды на грани .

Наименование параметра Значение
Тема статьи: Сечение сферы
Рубрика (тематическая категория) Образование

Плоскостью частного положения

Сфера пересечена фронтально- прое-цирующей плоскостью (рис.9.19.)

Рис.9.19.
Окружность, по которой плоскость a пересекает сферу, на плоскость Н проецируется в эллипс. На фронтальную плоскость проекций эта окружность проецируется в отрезок 1¢¢2¢¢, лежащей на следе a v . Строим точки 1¢ и 2¢, это горизонтальные проекции самой высокой и самой низкой точками сечения. Большая ось эллипса на горизонтальной плоскости проекций определяется точками 5 и 6, которые получаются при пересечении плоскости Т, проходящей через центр сферы, перпендикулярной плоскости a.

Для построения горизонтальных проекций точек воспользуемся параллелями сферы, проходящими через выбранные точки. Обязательно нужно выбрать точки 3 и 4, лежащие на экваторе, так как являются точками перехода с видимой на невидимую сторону поверхности (рис.9.19.).

РАЗВЕРТКИ

При изучении построения разверток поверхности рассматривают как гибкую нерастяжимую пленку. Некоторые поверхности при изгибании можно совместить с плоскостью без разрывов и склеивания. Такие поверхности называют развертывающимися, а полученную плоскую фигуру - разверткой. Поверхности, которые нельзя совместить с плоскостью, относятся к неразвертываемым.

Построение разверток имеет большое практическое применение, так как позволяет изготавливать разнообразные изделия из листового материала путем его изгибания.

Основные свойства разверток поверхностей

Каждой точке (фигуре) на поверхности соответствует точка (фигура) на развертке и наоборот.

На основании этого можно сформулировать следующие свойства:

1. Длины двух соответствующих линий поверхности и ее развертки равны между собой. Следствие: замкнутая линия на поверхности и соответствующая ей линия на развертке ограничивают одинаковую площадь.

2. Угол между линиями на поверхности равен углу между соответствующими им линиями на развертке.

3. Прямой на поверхности соответствуют прямая на развертке.

4. Параллельным прямым на поверхности соответствуют также параллельные на развертке

Развертка поверхности многогранников

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) Способ треугольников (триангуляции);

2) Способ нормального сечения;

3) Способ раскатки.

Сечение сферы - понятие и виды. Классификация и особенности категории "Сечение сферы" 2017, 2018.

Введение

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называемой радиусом.

Отрезок, соединяющий две точки шаровой поверхности проходящей через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, также как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Сечение шара плоскостью

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство: Пусть - секущая плоскость и О - центр шара (рис. 1) Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора ОХ2=ОО"2+О"Х2. Так как ОХ не больше радиуса R шара, то О"Х?, т.е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом. Обратно: любая точка Х этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Площадь, проходящая через центр шара, называется диаметрально плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью.