Как преобразовать выражение в тождественно равное. Тождественные преобразования многочленов. Преобразование выражений. краткое изложение и основные формулы

В ходе изучения алгебры мы сталкивались с понятиями многочлен (например ($y-x$ ,$\ 2x^2-2x$ и тд) и алгебраическая дробь(например $\frac{x+5}{x}$ , $\frac{2x^2}{2x^2-2x}$,$\ \frac{x-y}{y-x}$ и тд). Сходство этих понятий в том, что и в многочленах, и в алгебраических дробях присутствуют переменные и числовые значения, выполняются арифметические действия: сложение, вычитание, умножение, возведение в степень. Отличие этих понятий состоит в том, что в многочленах не производится деление на переменную, а в алгебраических дробях деление на переменную можно производить.

И многочлены , и алгебраические дроби в математике называются рациональными алгебраическими выражениями. Но многочлены являются целыми рациональными выражениями, а алгебраические дроби- дробно- рациональными выражениями.

Можно получить из дробно --рационального выражения целое алгебраическое выражение используя тождественное преобразование, которое в данном случае будет являться основным свойством дроби - сокращением дробей. Проверим это на практике:

Пример 1

Выполнить преобразование:$\ \frac{x^2-4x+4}{x-2}$

Решение: Преобразовать данное дробно-рациональное уравнение можно путем использования основного свойства дроби- сокращения, т.е. деления числителя и знаменателя на одно и то же число или выражение, отличное от $0$.

Сразу данную дробь сократить нельзя,необходимо преобразовать числитель.

Преобразуем выражние стоящее в числителе дроби,для этого воспользуемся формулой квадрата разности :$a^2-2ab+b^2={(a-b)}^2$

Дробь имеет вид

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}\]

Теперь мы видим, что в числителе и в знаменателе есть общий множитель --это выражение $x-2$, на которое произведем сокращение дроби

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}=x-2\]

После сокращения мы получили, что исходное дробно-рациональное выражение $\frac{x^2-4x+4}{x-2}$ стало многочленом $x-2$, т.е. целым рациональным.

Теперь обратим внимание на то, что тождественными можно считать выражения $\frac{x^2-4x+4}{x-2}$ и $x-2\ $ не при всех значениях переменной, т.к. для того, чтобы дробно-рациональное выражение существовало и было возможно сокращение на многочлен $x-2$ знаменатель дроби не должен быть равен $0$ (так же как и множитель, на который мы производим сокращение. В данном примере знаменатель и множитель совпадают, но так бывает не всегда).

Значения переменной, при которых алгебраическая дробь будет существовать называются допустимыми значениями переменной.

Поставим условие на знаменатель дроби: $x-2≠0$,тогда $x≠2$.

Значит выражения $\frac{x^2-4x+4}{x-2}$ и $x-2$ тождественны при всех значениях переменной, кроме $2$.

Определение 1

Тождественно равными выражениями называются те, которые равны при всех допустимых значениях переменной.

Тождественным преобразованием является любая замена исходного выражения на тождественно равное ему.К таким преобразованиям относятся выполнение действий: сложения, вычитания, умножение, вынесение общего множителя за скобку, приведение алгебраических дробей к общему знаменателю, сокращение алгебраических дробей, приведение подобных слагаемых и т.д. Необходимо учитывать,что ряд преобразований, такие как, сокращение, приведение подобных слагаемых могут изменить допустимые значения переменной.

Приемы, использующиеся для доказательств тождеств

    Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

    Привести обе части к одному и тому же выражению с помощью тождественных преобразований

    Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение: Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\[{(a+b+c)}^2=a^2+b^2+c^2+2ab+2ac+2bc\]

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество --верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной.

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».

То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители).

Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров:

Примеры:

Решения:

1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

Первым действием должно быть разложение на множители:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.

Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

Ответы:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».

Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

Тут надо вспомнить еще одну - разность кубов:

Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

Что делать, если дробей аж три штуки?

Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

То, что нужно!

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Решение:

Перво-наперво определим порядок действий.

Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.

Потом выполним деление дробей. Ну и результат сложим с последней дробью.

Схематически пронумерую действия:

Теперь покажу весть процесс, подкрашивая текущее действие красным:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Ответы:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;
Содержание урока

Возведение двучлена в степень

Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:

(a + b ) 2 = a 2 + 2ab + b 2

(a + b ) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.

К примеру, возведём двучлен a + b в четвертую степень:

(a + b ) 4

Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена

(a + b )(a + b ) 3

Сомножитель (a + b ) 3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:

(a + b )(a 3 + 3a 2 b + 3ab 2 + b 3)

А это обычное перемножение многочленов. Выполним его:

То есть при возведении двучлена a + b в четвертую степень получается многочлен a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

(a + b ) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b ) 4 в виде произведения степеней (a + b ) 2 (a + b ) 2

(a + b ) 2 (a + b ) 2

Но выражение (a + b ) 2 равно a 2 + 2ab + b 2 . Заменим в выражении (a + b ) 2 (a + b ) 2 квадраты суммы на многочлен a 2 + 2ab + b 2

(a 2 + 2ab + b 2)(a 2 + 2ab + b 2)

А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:

Возведение трёхчлена в степень

Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.

Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c

(a + b + c ) 2

Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму a + b в скобки:

((a + b ) + c ) 2

В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:

(a + b ) 2 = a 2 + 2ab + b 2

Применим эту формулу к нашему примеру:

Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d

(a + b + c + d ) 2

Представим многочлен в виде суммы двух выражений: a + b и c + d . Для этого заключим их в скобки:

((a + b ) + (c + d )) 2

Теперь воспользуемся формулой квадрата суммы двух выражений:

Выделение полного квадрата из квадратного трёхчлена

Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.

Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:

Идея выделения полного квадрата из таких трехчленов заключается в том, чтобы представить исходный квадратный трехчлен в виде выражения (a + b ) 2 + c , где (a + b ) 2 полный квадрат, а c — некоторое числовое или буквенное выражение.

Например, выделим полный квадрат из трёхчлена 4x 2 + 16x + 19 .

Для начала нужно построить выражение вида a 2 + 2ab + b 2 . Строить мы его будем из трехчлена 4x 2 + 16x + 19 . Для начала определимся какие члены будут играть роли переменных a и b

Роль переменной a будет играть член 2x , поскольку первый член трехчлена 4x 2 + 16x + 19 , а именно 4x 2 получается если 2x возвести в квадрат:

(2x ) 2 = 4x 2

Итак, переменная a равна 2x

a = 2x

Теперь возвращаемся к исходному трёхчлену и сразу обращаем внимание на выражение 16x . Это выражение является удвоенным произведением первого выражения a (в нашем случае это 2x ) и второго пока неизвестного нам выражения b . Временно поставим на его место вопросительный знак:

2 × 2x × ? = 16x

Если внимательно посмотреть на выражение 2 × 2x × ? = 16x , то интуитивно станет понятно, что членом b в данной ситуации является число 4, поскольку выражение 2 × 2x равно 4x , и чтобы получить 16x нужно домножить 4x на 4 .

2 × 2x × 4 = 16x

Отсюда делаем вывод, что переменная b равна 4

b = 4

Значит, нашим полным квадратом будет выражение (2x ) 2 + 2 × 2x × 4 + 4 2

Теперь у нас всё готово для выделения полного квадрата из трёхчлена 4x 2 + 16x + 19 .

Итак, возвратимся к исходному трехчлену 4x 2 + 16x + 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x ) 2 + 2 × 2x × 4 + 4 2

4x 2 + 16x + 19 =

Вместо 4x 2 записываем (2x ) 2

4x 2 + 16x + 19 = (2x ) 2

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4 + 4 2

А член 19 пока переписываем как есть:

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4 + 4 2 + 19

Теперь обратим внимание на то, что полученный нами многочлен (2x ) 2 + 2 × 2x × 4 + 4 2 + 19 не тождественен изначальному трёхчлену 4x 2 + 16x + 19 . Убедиться в этом можно приведя многочлен (2x ) 2 + 2 × 2x × 4 + 4 2 + 19 к стандартному виду:

(2x ) 2 + 2 × 2x × 4 + 4 2 + 19 = 4x 2 + 16x + 4 2 + 19

Видим, что получается многочлен 4x 2 + 16x + 4 2 + 19 , а должен был получиться 4x 2 + 16x + 19 . Это по причине того, что член 4 2 был искусственно внедрён в изначальный трёхчлен с целью организовать полный квадрата из трёхчлена 4x 2 + 16x + 19 .

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19

Теперь выражение (2x ) 2 + 2 × 2x × 4 + 4 2 можно свернуть, то есть записать в виде (a + b ) 2 . В нашем случае получится выражение (2x + 4) 2

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19

Оставшиеся члены −4 2 и 19 можно сложить. −4 2 это −16 , отсюда −16 + 19 = 3

4x 2 + 16x + 19 = (2x ) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19 = (2x + 4) 2 + 3

Значит, 4x 2 + 16x + 19 = (2x + 4) 2 + 3

Пример 2 . Выделить полный квадрат из квадратного трёхчлена x 2 + 2x + 2

Сначала построим выражение вида a 2 + 2 ab + b 2 . Роль переменной a в данном случае играет x, поскольку x 2 = x 2 .

Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x ) и второго выражения b (это будет 1).

2 × x × 1 = 2x

Если b = 1 , то полным квадратом будет выражение x 2 + 2x + 1 2 .

Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x 2 + 2x + 1 2

x 2 + 2x + 2 = x 2 + 2x + 1 2 − 1 2 + 2 = (x + 1) 2 + 1

Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.

Рассмотрим следующее числовое выражение:

9 + 6 + 2

Значение этого выражения равно 17

9 + 6 + 2 = 17

Попробуем выделить в этом числовом выражении полный квадрат. Для этого сначала построим выражение вида a 2 + 2ab + b 2 . Роль переменной a в данном случае играет число 3 , поскольку первый член выражения 9 + 6 + 2 , а именно 9 можно представить как 3 2 .

Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1

2 × 3 × 1 = 6

То есть переменная b будет равна единице. Тогда полным квадратом будет выражение 3 2 + 2 × 3 × 1 + 1 2 . Внедрим его в исходное выражение:

− 1 2 + 2

Свернем полный квадрат, а члены −1 2 и 2 слóжим:

3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Получилось выражение (3 + 1) 2 + 2 , которое по прежнему равно 17

(3 + 1) 2 +1 = 4 2 + 1 = 17

Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см

Вычислим площадь каждой фигуры. Площадь квадрата будет составлять 3 2 = 9 см 2 , площадь розового прямоугольника — 2 × 3 = 6 см 2 , площадь сиреневого — 1 × 2 = 2 см 2

Запишем сумму площадей этих прямоугольников:

9 + 6 + 2

Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:

Тогда получается фигура, площадь которой 17 см 2 . Действительно, в представленной фигуре содержится 17 квадратов со стороной 1 см.

Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.

Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:

Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:

Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?

(3 + 1) 2

Выражение (3 + 1) 2 равно 16 , поскольку 3 + 1 = 4 , а 4 2 = 16 . Этот же результат можно получить, если воспользоваться формулой квадрата суммы двух выражений:

(3 + 1) 2 = 3 2 + 6 + 1 = 9 + 6 + 1 = 16

Действительно, в образовавшемся квадрате содержится 16 квадратов.

Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:

(3 + 1) 2 + 1

Прикрепление маленького квадратика к имеющемуся большому квадрату описывается выражением (3 + 1) 2 + 1 . А это есть выделение полного квадрата из выражения 9 + 6 + 2

9 + 6 + 2 = 3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Выражение (3 + 1) 2 + 1 , как и выражение 9 + 6 + 2 равно 17 . Действительно, площадь образовавшейся фигуры равна 17 см 2 .

Пример 4 . Выполним выделение полного квадрата из квадратного трёхчлена x 2 + 6x + 8

x 2 + 6x + 8 = x 2 + 2 × x × 3 + 3 2 − 3 2 + 8 = (x + 3) 2 − 1

В некоторых примерах при построении выражения a 2 + 2ab + b 2 не бывает возможным сразу определить значения переменных a и b .

Например, выполним выделение полного квадрата из квадратного трёхчлена x 2 + 3x + 2

Переменной a соответствует x . Второй член 3x нельзя представить в виде удвоенного произведения первого выражения и второго. В этом случае второй член следует умножить на 2, и чтобы значение исходного многочлена не изменилось, сразу же выполнить деление на 2. Выглядеть это будет так.

Итак, друзья, в прошлом уроке мы познакомились с Поняли, что означают слова "выражение не имеет смысла" . А теперь пришла пора разобраться, что же такое преобразование выражений. И самое главное – зачем оно нужно.

Что такое преобразование выражения?

Ответ прост, до неприличия.) Это любое действие с выражением. И всё. Все эти преобразования вы делали с первого класса. Любое не буквально, конечно… Об этом чуть ниже будет.)

Например, возьмём какое-нибудь суперкрутое числовое выражение Скажем, 3+2. Как его можно преобразовать? Да очень просто! Хотя бы взять да посчитать:

3+2 = 5

Вот этот расчёт детского садика и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

3+2 = 2+3

А тут мы вообще ничего не считали. Просто взяли и переписали наше выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать и по-другому. Например, вот так:

3+2 = 10-5

И эта запись – тоже преобразование выражения.

Или так:

3+2 = 10:2

Тоже преобразование выражения!

Если мы с вами постарше, с алгеброй дружим, то напишем:

Кто на "ты" с алгеброй, тот, даже особо не напрягаясь и ничего не считая, в уме сообразит, что слева и справа стоит обыкновенная пятёрка. Напрягитесь и попробуйте.)

А если мы совсем уж старшенькие, то можем записать и такие ужастики:

log 2 8+ log 2 4 = log 2 32

Или даже такие:

5 sin 2 x +5 cos 2 x =5 tgx·ctgx

Внушает? И таких преобразований, очевидно, можно понаделать сколько хочешь! Насколько позволяет фантазия. И набор знаний математики.)

Уловили смысл?

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто.

Простота, конечно, дело всегда хорошее и приятное, но за любую простоту где-то надо платить, да…. Есть здесь одно существенное "но". Все эти загадочные превращения всегда подчиняются одному оч-чень важному правилу. Правило это настолько важное, что его смело можно назвать главным правилом всей математики. И нарушение этого простого правила неизбежно будет приводить к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, от балды, как-нибудь вот так:

3+2 = 6+1

Преобразование? Конечно. Мы же записали выражение в другом виде! Но… что здесь не так?

Ответ: всё не так.) Дело всё в том, что преобразования "как попало и от балды" математику не интересуют вообще.) Почему? Потому, что вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Таково её жёсткое требование. И нарушение этого требования будет приводить к ошибкам. Три плюс два можно записать в каком угодно виде. В каком пример требует, в том виде и запишем. Но по своей сути это всегда должно быть пять. В каком бы виде мы эти самые 3+2 ни записали. А вот, если, вдруг, после записи выражения 3+2 в другом виде, у вас вместо пяти окажется двадцать пять, где-то вы ошиблись по дороге. Вернитесь да ляп-то и устраните.)

А теперь пришла пора мудрых зелёных мыслей.)

Запоминаем:

1. Любое действие над выражением, запись его в другом виде, называется преобразованием выражения.

2. Преобразования, не меняющие сути выражения , называются тождественными.

3. Вся математика построена на тождественных преобразованиях выражений.

Именно тождественные преобразования и позволяют нам, шаг за шагом, потихоньку-помаленьку, превращать сложный пример в простое, белое и пушистое выражение, сохраняя суть примера. Если, вдруг, в цепочке наших преобразований мы где-то ошибёмся, и на каком-то шаге сделаем НЕ ТОЖДЕСТВЕННОЕ преобразование, то дальше мы будем решать уже совсем другой пример. С другими ответами, да… Которые уже не будут иметь никакого отношения к правильным.) Нарушим тождественность и накосячим ещё где-то - приступим к решению уже третьего примера. И так далее, в зависимости от количества косяков, от задачки про поезд и автомобиль можно прийти к задачке про полтора землекопа.)

Ещё пример. Для школьников, уже вовсю изучающих алгебру. Допустим, нам надо найти значение выражения (40+7) 2 . Как можно выкрутиться, т.е. преобразовать наше злое выражение? Можно просто посчитать выражение в скобках (получим 47), перемножить столбиком само на себя и получить (если сосчитать) 2209. А можно воспользоваться формулой

(a+b) 2 = a 2 +2ab+b 2 .

Получим: (40+7) 2 = 40 2 +2∙40∙7+7 2 = 1600+560+49 = 2209.

Но! Есть соблазн (скажем, в силу незнания формулы) при возведении в квадрат записать просто:

(40+7) 2 = 40 2 +7 2 .

К сожалению, на данном простом и, казалось бы, очевидном переходе, тождественность наших преобразований нарушается . Слева всё как надо, 2209, а вот справа – уже другое число. 1649. Посчитайте – и всё станет понятно. Вот вам типичный пример НЕ тождественного преобразования. И соответственно вылезшей ошибки. )

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражениями 3+2 и (40+7) 2 я привёл чисто для наглядности.

А что же с алгебраическими выражениями? Всё то же самое! Только в алгебраических выражениях тождественные преобразования задаются формулами и правилами. Скажем, в алгебре есть формула:

a(b-c) = ab - ac

Значит, в любом примере мы имеем полное право вместо выражения a(b-c) смело написать альтернативное выражение ab - ac . И наоборот. Это Математика предоставляет нам на выбор эти два выражения. А уж какое из них писать - от конкретного примера зависит.

Или популярное:

a 2 - b 2 = (a - b )(a + b )

Опять же, два возможных варианта. Оба правильные.) Это тоже тождественное преобразование. Что выгоднее писать – разность квадратов или же произведение скобок – пример сам подскажет.)

Ещё пример. Одно из самых главных и нужных преобразований в математике - это основное свойство дроби. Подробнее можно (будет) по ссылочке почитать и посмотреть (когда урок сделаю), а здесь я просто напомню правило:

Если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится.

Вот вам пример тождественных преобразований по этому свойству:

Как вы, наверняка, догадались, эту славную цепочку можно продолжать до бесконечности...) Насколько хватит творческого порыва. Всякие там минусы, корни, пусть вас не смущают. Это всё одна и та же дробь. По своей сути. Две трети. 2/3. Просто записанная в разном виде. :) Очень важное свойство. Именно оно очень часто позволяет превращать всякие монстры-примеры в белые и пушистые.)

Конечно же, формул и правил, задающих тождественные преобразования, - много. Я бы даже сказал, очень много. Но самых главных, без которых в математике хотя бы троечного уровня обойтись нельзя , - вполне разумное количество.

Вот одни из базовых преобразований:

1. Работа с одночленами и многочленами. Приведение подобных слагаемых (или коротко – подобных);

2. Раскрытие скобок и заключение в скобки ;

3. Разложение на множители ;

4. и разложение квадратного трёхчлена .

5. Работа с дробями и дробными выражениями.

Эти пять базовых преобразований широко используются во всей математике . От элементарной до высшей. И, если вы не владеете хотя бы одной из этих пяти простых вещей, то вас неминуемо ждут большие проблемы как во всей математике средней школы, так и в старших классах, а уж в ВУЗе – тем более. Поэтому именно с них и начнём. В следующих уроках этого раздела.)

Есть и более крутые преобразования. Для продвинутых школьников и студентов.) Будь то:

6. , и всё что с ними связано;

7. Выделение полного квадрата из квадратного трёхчлена;

8. Деление многочленов уголком или по схеме Горнера ;

9. Разложение рациональной дроби в сумму элементарных (простейших) дробей. Полезнейшая фишка для студентов при работе

Итак, всё ясно насчёт тождественности преобразований и важности её соблюдения? Отлично! Тогда пора двигаться на следующий уровень и шагать из примитивной арифметики в более серьёзную алгебру окончательно. И с блеском в глазах.)

Тождественные преобразования представляют собой работу, которую мы проводим с числовыми и буквенными выражениями, а также с выражениями, которые содержат переменные. Все эти преобразования мы проводим для того, чтобы привести исходное выражение к такому виду, который будет удобен для решения задачи. Основные виды тождественных преобразований мы рассмотрим в этой теме.

Тождественное преобразование выражения. Что это такое?

Впервые встречаемся с понятием тождественных преобразованный мы на уроках алгебры в 7 классе. Тогда же мы впервые знакомимся с понятием тождественно равных выражений. Давайте разберемся с понятиями и определениями, чтобы облегчить усвоение темы.

Определение 1

Тождественное преобразование выражения – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Часто это определение используется в сокращенном виде, в котором опускается слово «тождественное». Предполагается, что мы в любом случае проводим преобразование выражения таким образом, чтобы получить выражение, тождественное исходному, и это не требуется отдельно подчеркивать.

Проиллюстрируем данное определение примерами.

Пример 1

Если мы заменим выражение x + 3 − 2 на тождественно равное ему выражение x + 1 , то мы проведем при этом тождественное преобразование выражения x + 3 − 2 .

Пример 2

Замена выражения 2 · a 6 на выражение a 3 – это тождественное преобразование, тогда как замена выражения x на выражение x 2 не является тождественным преобразованием, так как выражения x и x 2 не являются тождественно равными.

Обращаем ваше внимание на форму записи выражений при проведении тождественных преобразований. Обычно мы записываем исходное и полученное в ходе преобразования выражения в виде равенства. Так, запись x + 1 + 2 = x + 3 означает, что выражение x + 1 + 2 было приведено к виду x + 3 .

Последовательное выполнение действий приводит нас к цепочке равенств, которая представляет собой несколько расположенных подряд тождественных преобразований. Так, запись x + 1 + 2 = x + 3 = 3 + x мы понимаем как последовательное проведение двух преобразований: сначала выражение x + 1 + 2 привели к виду x + 3 , а его – к виду 3 + x .

Тождественные преобразования и ОДЗ

Ряд выражений, которые мы начинаем изучать в 8 классе, имеют смысл не при любых значениях переменных. Проведение тождественных преобразований в этих случаях требует от нас внимания к области допустимых значений переменных (ОДЗ). Выполнение тождественных преобразований может оставлять ОДЗ неизменной или же сужать ее.

Пример 3

При выполнении перехода от выражения a + (− b) к выражению a − b область допустимых значений переменных a и b остается прежней.

Пример 4

Переход от выражения x к выражению x 2 x приводит к сужению области допустимых значений переменной x от множества всех действительных чисел до множества всех действительных чисел, из которого был исключен ноль.

Пример 5

Тождественное преобразование выражения x 2 x выражением х приводит к расширению области допустимых значений переменной x от множества всех действительных чисел за исключением нуля до множества всех действительных чисел.

Сужение или расширение области допустимых значений переменных при проведении тождественных преобразований имеет значение при решении задач, так как может повлиять на точность проведения вычислений и привести к появлению ошибок.

Основные тождественные преобразования

Давайте теперь посмотрим, какими бывают тождественные преобразования и как они выполняются. Выделим те виды тождественных преобразований, с которыми нам приходится иметь дело чаще всего, в группу основных.

Помимо основных тождественных преобразований существует ряд преобразований, которые относятся к выражениям конкретного вида. Для дробей это приемы сокращения и приведения к новому знаменателю. Для выражений с корнями и степенями все действия, которые выполняются на базе свойств корней и степеней. Для логарифмических выражений действия, которые проводятся на основе свойств логарифмов. Для тригонометрических выражений все действия с использованием тригонометрических формул. Все эти частные преобразования подробно разбираются в отдельных темах, которые можно найти на нашем ресурсе. В связи с этим в этой стстье мы на них останавливаться не будем.

Перейдем к рассмотрению основных тождественных преобразований.

Перестановка местами слагаемых, множителей

Начнем с перестановки слагаемых местами. С этим тождественным преобразованием мы имеем дело чаще всего. И основным правилом здесь можно считать следующее утверждение: в любой сумме перестановка слагаемых местами не отражается на результате.

Основано это правило на переместительном и сочетательном свойствах сложения. Эти свойства позволяют нам переставлять слагаемые местами и получать при этом выражения, которые тождественно равны исходным. Именно поэтому перестановка слагаемых местами в сумме является тождественным преобразованием.

Пример 6

У нас есть сумма трех слагаемых 3 + 5 + 7 . Если мы поменяем местами слагаемые 3 и 5 , то выражение примет вид 5 + 3 + 7 . Вариантов перестановки местами слагаемых в данном случае несколько. Все они приводят к получению выражений, тождественно равных исходному.

В качестве слагаемых в сумме могут выступать не только числа, но и выражения. Их точно так же, как и числа, можно переставлять местами, не влияя на конечный результат вычислений.

Пример 7

В сумме трех слагаемых 1 a + b , a 2 + 2 · a + 5 + a 7 · a 3 и - 12 · a вида 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 + (- 12) · a слагаемые можно переставить, например, так (- 12) · a + 1 a + b + a 2 + 2 · a + 5 + a 7 · a 3 . В свою очередь можно переставить местами слагаемые в знаменателе дроби 1 a + b , при этом дробь примет вид 1 b + a . А выражение под знаком корня a 2 + 2 · a + 5 тоже является суммой, в которой можно поменять местами слагаемые.

Точно так же, как и слагаемые, в исходных выражениях можно менять местами множители и получать тождественно верные уравнения. Проведение этого действия регулируется следующим правилом:

Определение 2

В произведении перестановка множителей местами не влияет на результат вычислений.

Основано это правило на переместительном и сочетательном свойствах умножения, которые подтверждают верность тождественного преобразования.

Пример 8

Произведение 3 · 5 · 7 перестановкой множителей можно представить в одном из следующих видов: 5 · 3 · 7 , 5 · 7 · 3 , 7 · 3 · 5 , 7 · 5 · 3 или 3 · 7 · 5 .

Пример 9

Перестановка множителей в произведении x + 1 · x 2 - x + 1 x даст x 2 - x + 1 x · x + 1

Раскрытие скобок

Скобки могут содержать записи числовых выражений и выражений с переменными. Эти выражения могут быть преобразованы в тождественно равные выражения, в которых скобок не будет вообще или их будет меньше, чем в исходных выражениях. Этот способ преобразования выражений называют раскрытием скобок.

Пример 10

Проведем действия со скобками в выражении вида 3 + x − 1 x для того, чтобы получить тождественно верное выражение 3 + x − 1 x .

Выражение 3 · x - 1 + - 1 + x 1 - x можно преобразовать в тождественно равное выражение без скобок 3 · x - 3 - 1 + x 1 - x .

Правила преобразования выражений со скобками мы подробно разобрали в теме «Раскрытие скобок», которая размещена на нашем ресурсе.

Группировка слагаемых, множителей

В случаях, когда мы имеем дело с тремя и большим количеством слагаемых, мы можем прибегнуть к такому виду тождественных преобразований как группировка слагаемых. Под этим способом преобразований подразумевают объединение нескольких слагаемых в группу путем их перестановки и заключения в скобки.

При проведении группировки слагаемые меняются местами таким образом, чтобы группируемые слагаемые оказались в записи выражения рядом. После этого их можно заключить в скобки.

Пример 11

Возьмем выражение 5 + 7 + 1 . Если мы сгруппируем первое слагаемое с третьим, то получим (5 + 1) + 7 .

Группировка множителей проводится аналогично группировке слагаемых.

Пример 12

В произведении 2 · 3 · 4 · 5 можно сгруппировать первый множитель с третьим, а второй – с четвертым, при этом придем к выражению (2 · 4) · (3 · 5) . А если бы мы сгруппировали первый, второй и четвертый множители, то получили бы выражение (2 · 3 · 5) · 4 .

Слагаемые и множители, которые группируются, могут быть представлены как простыми числами, так и выражениями. Правила группировки были подробно разобраны в теме «Группировка слагаемых и множителей».

Замена разностей суммами, частных произведениями и обратно

Замена разностей суммами стала возможна благодаря нашему знакомству с противоположными числами. Теперь вычитание из числа a числа b можно рассматривать как прибавление к числу a числа − b . Равенство a − b = a + (− b) можно считать справедливым и на его основе проводить замену разностей суммами.

Пример 13

Возьмем выражение 4 + 3 − 2 , в котором разность чисел 3 − 2 мы можем записать как сумму 3 + (− 2) . Получим 4 + 3 + (− 2) .

Пример 14

Все разности в выражении 5 + 2 · x − x 2 − 3 · x 3 − 0 , 2 можно заменить суммами как 5 + 2 · x + (− x 2) + (− 3 · x 3) + (− 0 , 2) .

Мы можем переходить к суммам от любых разностей. Аналогично мы можем произвести обратную замену.

Замена деления на умножение на число, обратное делителю, становится возможным благодаря понятию взаимно обратных чисел. Это преобразование можно записать равенством a: b = a · (b − 1) .

Это правило было положено в основу правила деления обыкновенных дробей.

Пример 15

Частное 1 2: 3 5 можно заменить произведением вида 1 2 · 5 3 .

Точно также по аналогии деление может быть заменено умножением.

Пример 16

В случае с выражением 1 + 5: x: (x + 3) заменить деление на x можно на умножение на 1 x . Деление на x + 3 мы можем заменить умножением на 1 x + 3 . Преобразование позволяет нам получить выражение, тождественное исходному: 1 + 5 · 1 x · 1 x + 3 .

Замена умножения делением поводится по схеме a · b = a: (b − 1) .

Пример 17

В выражении 5 · x x 2 + 1 - 3 умножение можно заменить делением как 5: x 2 + 1 x - 3 .

Выполнение действий с числами

Выполнение действий с числами подчиняется правилу порядка выполнения действий. Сначала проводятся действия со степенями чисел и корнями из чисел. После этого мы заменяем логарифмы, тригонометрические и прочие функции на их значения. Затем выполняются действия в скобках. И затем уже можно проводить все остальные действия слева направо. Важно помнить, что умножение и деление проводят до сложения и вычитания.

Действия с числами позволяют преобразовать исходное выражение в тождественное равное ему.

Пример 18

Преобразуем выражение 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x ,выполнив все возможные действия с числами.

Решение

Первым делом обратим внимание на степень 2 3 и корень 4 и вычислим их значения: 2 3 = 8 и 4 = 2 2 = 2 .

Подставим полученные значения в исходное выражение и получим: 3 · (8 - 1) · a + 2 · (x 2 + 5 · x) .

Теперь проведем действия в скобках: 8 − 1 = 7 . И перейдем к выражению 3 · 7 · a + 2 · (x 2 + 5 · x) .

Нам осталось выполнить умножение чисел 3 и 7 . Получаем: 21 · a + 2 · (x 2 + 5 · x) .

Ответ: 3 · 2 3 - 1 · a + 4 · x 2 + 5 · x = 21 · a + 2 · (x 2 + 5 · x)

Действиям с числами могут предшествовать другие виды тождественных преобразований, таких, например, как группировка чисел или раскрытие скобок.

Пример 19

Возьмем выражение 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 .

Решение

Первым делом проведем замену частного в скобках 6: 3 на его значение 2 . Получим: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 .

Раскроем скобки: 3 + 2 · 2 · x · (y 3 · 4) − 2 + 11 = 3 + 2 · 2 · x · y 3 · 4 − 2 + 11 .

Сгруппируем числовые множители в произведении, а также слагаемые, являющиеся числами: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 .

Выполним действия в скобках: (3 − 2 + 11) + (2 · 2 · 4) · x · y 3 = 12 + 16 · x · y 3

Ответ: 3 + 2 · (6: 3) · x · (y 3 · 4) − 2 + 11 = 12 + 16 · x · y 3

Если мы работаем с числовыми выражениями, то целью нашей работы будет нахождение значения выражения. Если же мы преобразуем выражения с переменными, то целью наших действий будет упрощение выражения.

Вынесение за скобки общего множителя

В тех случаях, когда слагаемые в выражении имеют одинаковый множитель, то мы можем вынести этот общий множитель за скобки. Для этого нам сначала необходимо представить исходное выражение как произведение общего множителя и выражения в скобках, которое состоит из исходных слагаемых без общего множителя.

Пример 20

В числовом выражении 2 · 7 + 2 · 3 мы можем вынести общий множитель 2 за скобки и получить тождественно верное выражение вида 2 · (7 + 3) .

Освежить в памяти правил вынесения общего множителя за скобки вы можете в соответствующем разделе нашего ресурса. В материале подробно рассмотрены правила вынесения общего множителя за скобки и приведены многочисленные примеры.

Приведение подобных слагаемых

Теперь перейдем к суммам, которые содержат подобные слагаемые. Тут возможно два варианта: суммы, содержащие одинаковые слагаемые, и суммы, слагаемые которых отличаются числовым коэффициентом. Действия с суммами, содержащими подобные слагаемые, носит название приведения подобных слагаемых. Проводится оно следующим образом: мы выносим общую буквенную часть за скобки и проводим вычисление суммы числовых коэффициентов в скобках.

Пример 21

Рассмотрим выражение 1 + 4 · x − 2 · x . Мы можем вынести буквенную часть x за скобки и получить выражение 1 + x · (4 − 2) . Проведем вычисление значения выражения в скобках и получим сумму вида 1 + x · 2 .

Замена чисел и выражений тождественно равными им выражениями

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Пример 22 Пример 23

Рассмотрим выражение 1 + a 5 , в котором степень a 5 мы можем заменить тождественно равным ей произведением, например, вида a · a 4 . Это нам даст выражение 1 + a · a 4 .

Выполненное преобразование искусственное. Оно имеет смысл лишь при подготовке к проведению других преобразований.

Пример 24

Рассмотрим преобразование суммы 4 · x 3 + 2 · x 2 . Здесь слагаемое 4 · x 3 мы можем представить как произведение 2 · x 2 · 2 · x . В результате исходное выражение принимает вид 2 · x 2 · 2 · x + 2 · x 2 . Теперь мы можем выделить общий множитель 2 · x 2 и вынести его за скобки: 2 · x 2 · (2 · x + 1) .

Прибавление и вычитание одного и того же числа

Прибавление и одновременное вычитание одного и того же числа или выражения являетс искусственным приемом преобразования выражений.

Пример 25

Рассмотрим выражение x 2 + 2 · x . Мы можем прибавить или отнять от него единицу, что позволит нам в последующем провести еще одно тождественное преобразование - выделить квадрат двучлена: x 2 + 2 · x = x 2 + 2 · x + 1 − 1 = (x + 1) 2 − 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter