Планета, населенная роботами: как ищут жизнь на Марсе

Роботы не нуждаются в еде, питье и способны работать в крайне неблагоприятных условиях. Вдобавок, потеря автомата лучше гибели астронавта, хотя разработка и производство киберов - занятие недешевое.

Неоспоримое преимущество роботов в космических исследованиях заключается в том, что автоматы не нуждаются в еде, питье и способны работать в крайне неблагоприятных условиях. Что еще важнее, потеря автоматического исследователя гораздо предпочтительнее гибели астронавта, хотя разработка и производство киберов - занятие недешевое.

После "золотой эры" беспилотных исследований, когда зонды из СССР и США бороздили космические просторы Солнечной системы и проводили наблюдения на поверхности Луны, Венеры и Марса, мало уже кто сомневался в том, что автоматические исследовательские аппараты ждет большое будущее. Весьма скоро, в конце декабря этого года, посадочный модуль "Гюйгенс" отделится от аппарата "Кассини", чтобы впервые прилуниться на крупнейшем в Солнечной системе планетоиде Титане. Американские марсоходы Spirit и Opportunity уже доказали, что автоматам по силам исследовательские миссии чрезвычайной сложности, но киберпомощников конструируют не только в NASA.

В научно-техническом центре в Нидерландах (ESTEC) ведется активная работа по созданию автоматических помощников астронавтов, призванных заменить дорогостоящие пилотируемые экспедиции рачительными миссиями роботов.

На Земле роботы, как правило, подменяют людей на всевозможной рутинной работе или в условиях возможного риска для здоровья человека: собирают автомобили, разминируют взрывные устройства, варят трубопроводы на морском дне и трудятся в "горячих" зонах атомных электростанций. Однако использовать автоматы в космосе еще выгоднее, считает Джанфранко Висентин, возглавляющий Отдел автоматизации и роботизации ЕКА (ESTEC). Роботы должны помогать людям или вовсе заменять астронавтов при выполнении особо опасных или сложных задач, при выполнении повторяющихся операций, отнимающих много времени работ и даже миссий, которые человек выполнить просто не может. "Киберы выполняют задания быстрее и точнее людей, и вдобавок, работают круглосуточно, не нуждаясь в перерывах на обед и сон", - подчеркивает Висентин.

Что такое косморобот?

В среде инженеров, занимающихся разработкой беспилотных космических аппаратов, едва ли не всякий автоматический зонд называют космороботом, но Висентин предпочитает более точное определение: "мобильная система, способная манипулировать объектами и достаточно универсальная, чтобы выполнять любой набор подобных заданий автономно или под дистанционным контролем".

Главным образом, задача космических роботов заключается в исполнении определенного цикла операций: установить или направить прибор для проведения измерений, собрать образцы для исследования, собрать некую конструкцию или даже обеспечить астронавта средством передвижения.

В некотором смысле космороботы мало отличаются от своих земных собратьев, подменяя человека тогда, когда требуется выполнить какую-либо работу. Тем не менее, к автоматам для работы в безвоздушном пространстве предъявляются некоторые особые требования. Они должны:

* перенести запуск
* функционировать в сложных условиях враждебной среды, зачастую на большом удалении
* весить как можно меньше, так как каждый килограмм, выведенный на орбиту, стоит дорого
* потреблять мало энергии и иметь долгий срок службы
* работать в автоматическом режиме
* обладать чрезвычайной надежностью

Для соответствия всем этим требованиям требуются передовые и инновационные технологии, а также сложные системы и механизмы. Задача кажется трудновыполнимой, по крайней мере, вовсе не тривиальной, но только так можно конструировать роботы, способные работать за переделами земной атмосферы. При этом единственным преимуществом при работе в космосе является невесомость, позволяющая даже небольшому автомату прилагать минимум усилий для передвижения даже крупных объектов в безвоздушном пространстве.

Типы роботов

Самые распространенные из автоматических аппаратов, использующихся в космических исследованиях - это роверы (луноходы, марсоходы). Такой робот может передвигаться по поверхности другой планеты, неся на борту научные приборы. Как правило, и сам ровер, и научное оборудование на нем функционируют в автоматическом режиме.

Европейское космическое агентство в сотрудничестве с некоторыми промышленными концернами разработало необычайно мелкий микроровер Nanokhod ("Наноход"). Аппарат размером с книжный том весит всего два килограмма, способен нести на борту целый килограмм приборов, исследуя территорию небольшого радиуса вокруг посадочного минимодуля.

Nanokhod создан немецкой компанией von Hoerner & Sulger в сотрудничестве с учеными из Института Макса Планка.

Более крупный робот был спроектирован для сбора образцов грунта других планет. На двенадцатикилограммовом MIRO-2 имеется автоматический бур, который способен извлечь до десяти образцов с разных глубин до двух метров. После выполнения задания этот ровер возвращается на посадочный аппарат, где собранные материалы исследуются при помощи бортовых анализаторов.

MIRO-2 сконструирован компанией Space Systems Finland при участии финского научно-исследовательского центра VTT и Хельсинскского политехнического университета.

Третий минировер, разрабатывающийся в ЕКА - пятнадцатикилограммовый Solero, все энергопотребности которого обеспечиваются солнечной батареей и миниатюрными подзаряжаемыми аккумуляторами. Данный аппарат имеет принципиально новую конструкцию шасси: шесть колес, расположенных по вершинам шестиугольника, обеспечивают ему отличную проходимость.

SOLERO - совместная разработка Швейцарского федерального политехнического института и немецкой фирмы von Hoerner & Sulger.

Уроки природы

Конструкторы роботов черпают вдохновение в творениях природы. Хорошим примером тому служит автомат Aramies/Scorpion, разработкой которого также заведует Европейское космическое агентство. Восемь ног позволяют киберу передвигаться подобно скорпиону по очень пересеченной местности и песчаным дюнам.

Aramies/Scorpion разработан в Бременском университете (Германия)

Еще одним примером воплощения в разработках идей, позаимствованных у природы, является EUROBOT. Автомат величиной с человека предназначен для помощи астронавтам в выполнении разных работ на Международной космической станции. EUROBOT сможет передвигаться по обшивке МКС, удерживаться за поручни подобно астронавту и управляться по телесигналу вышедшими в открытый космос членами экипажа.

Не обошлось без природы и при создании прыгающего робота. При размерах даже меньше сорока сантиметров такой автомат способен перепрыгивать препятствия высотой в два метра. Подобное практически неосуществимо на Земле, с ее силой тяжести, зато вполне возможно на Луне или Марсе.

SHRIMP - это ровер Швейцарского федерального политехнического института (EPFL). Он выбран в качестве шасси для SOLERО.

Висентин особо отмечает, что исследователи ЕКА концентрируют усилия на разработках именно для космоса, от которых почти не будет пользы в земных условиях. "Однако, если такое возможно, мы не против использования наших разработок на нашей планете, просто некоторые функции здесь окажутся невостребованными, - говорит глава ESTEC. - Например, для проведения исследований на Земле едва ли кому-либо пригодится робот-биолог, так как даже с применением самых передовых технологий вряд ли автомат сможет добиться результата, сравнимого с усилиями человека, ученого-биолога. По крайней мере, в наши дни. А вот на Марсе кибер не заменим".

Космос накладывает существенные ограничения на свободу мысли роботехников, и с этими ограничениями не сталкиваются разработчики земных автоматов. Слабейшего давления на орбите достаточно, для того чтобы металлические детали сплавились друг с другом, а атомарный кислород вступает в реакцию практически с любым материалом и сводит на "нет" всю охладительную пользу от конвекции для электроники.

Радиация за пределами земной атмосферы тоже отличается от нам привычной: тяжелые частицы нарушают работу электронных приборов и даже выводят их строя. Термические условия в космосе экстремальны: температура среды скачет в диапазоне от -100 до +100 градусов по Цельсию.

EXOMARS станет полевым роботом-биологом на Марсе. Его разработку одновременно ведут две конкурирующие фирмы - EADS Astrium Ltd. и MD Robotics.

То, что роботам приходится выполнять свои миссии на значительном удалении от центра управления, также влечет определенные трудности для разработчиков автоматики. Радиосигналы контроля и мониторинга преодолевают немалые расстояния, что выражается в длительных задержках во время сеансов связи с аппаратами, и это условие исключает возможность телеуправления кибером в реальном времени. Потому космороботы и создаются такими самостоятельными, способными работать без связи с Землей и справляться, по возможности, с любыми возникающими при выполнении миссии проблемами.

ПрОП-М

Первые попытки отправить на Марс подвижные аппараты предпринял СССР. В 1971 году были запущены два марсохода, которые входили в состав автоматических межпланетных станций «Марс-2» и «Марс-3».

Марсоходы назывались «Приборами оценки проходимости - Марс» (ПрОП-М): в то время еще не было достоверных сведений о марсианском грунте, и аппараты решили оборудовать двумя лыжами по бокам, на которых они должны были буквально шагать по поверхности планеты, какой бы она ни оказалась. С помощью 15-метрового кабеля они были подключены к базовой станции, которая должна была делать снимки поверхности планеты и направлять аппарат на безопасные участки.

Несмотря на небольшой размер, у ПрОП-М уже была автоматическая система управления. Его примитивные контактные датчики могли регистрировать столкновение с препятствием - в этом случае аппарат отходил назад и менял свой курс. Оперативно управлять марсоходом невозможно - сигнал от Земли до Марса идет от 4 до 20 минут.

К сожалению, двум первым марсоходам так и не довелось ступить на поверхность планеты. Спускаемый аппарат «Марс-2» разбился, а «Марс-3» потерял связь с центром управления сразу после посадки.

«Соджорнер»

Следующую попытку изучить Марс с помощью подвижных спускаемых аппаратов предприняло NASA в рамках программы Mars Pathfinder. Основной целью первой миссии агентство ставило отработку мягкой посадки. Спускаемый модуль состоял из неподвижной станции и легкого марсохода «Соджорнер».

Станция использовалась для связи с Землей, так как антенна марсохода могла передавать данные только в радиусе 500 м. Помимо этого на станции было несколько камер и собственная метеостанция. Марсоход весил около 10 кг, каждое из его шести колес вращалось самостоятельно, и он мог преодолевать препятствия высотой до 20 см и склоны до 45°. Энергию ровер получал от солнечных батарей, хотя нес на борту и три радиоизотопных элемента - для поддержания температуры в блоке с электроникой.

После того как спускаемый модуль вошел в атмосферу, его скорость была снижена защитным экраном, а затем парашютом. За несколько секунд до посадки включились тормозные двигатели и надулись амортизационные баллоны. Аппараты коснулись поверхности планеты на скорости 90 км/ч, отскочили от нее несколько раз и наконец остановились.

Так произошла первая в истории успешная посадка полностью исправного марсохода. После того как ровер съехал со станции-ретранслятора, он приступил к исследованиям: анализу близлежащих камней с помощью спектрометра . Всего он передал на Землю 550 снимков планеты и изучил 15 образцов пород. Станция в этот момент снимала панораму:

Марсоход был рассчитан на работу в течение 7-30 сол (марсианские сутки - 24 часа 40 минут), однако смог проработать 83 сола, пока станция-ретранслятор не вышла из строя и он не потерял связь с Землей. За это время «Соджорнер» проехал всего 100 метров.

«Спирит» и «Оппортьюнити»

Марсоходы второго поколения были доставлены на Марс в 2004 году в рамках программы Mars Exploration Rover. Аппараты «Спирит» и «Оппортьюнити» значительно переросли своего предшественника: они достигали 2 метров в длину и весили 185 кг. Для их посадки пришлось существенно доработать парашют и подушки безопасности, однако сам ее принцип не изменился. Новые марсоходы получились более автономными: анализируя стереоизображения со своих камер, роверы создавали трехмерную карту местности и сами выбирали наиболее безопасный маршрут. Кроме камер они несли бур и пару спектрометров, установленных на манипуляторе.

Роверы совершили успешную посадку в разных частях планеты и приступили к геологическим исследованиям. В результате анализа поверхности планеты подтвердилась гипотеза о том, что когда-то на Марсе существовали благоприятные для жизни условия. В частности, выяснилось , что миллиарды лет назад некоторые камни находились в потоке пресной воды - ранее считалось, что жидкость на Марсе если и была, то больше напоминала серную кислоту. Также был уточнен состав атмосферы планеты и проведены астрономические наблюдения.

В ходе эксплуатации марсоходов оказалось, что марсианский ветер довольно эффективно очищает солнечные батареи от пыли, благодаря чему марсоходы проработали значительно дольше запланированных 90 сол. «Спирит» путешествовал по Марсу шесть лет, но потом увяз в песчаной дюне, а «Оппортьюнити» функционирует до сих пор.

«Кьюриосити»

Марсоход третьего поколения «Кьюриосити», совершивший посадку в августе 2012 года, значительно превосходит по массе все предыдущие и представляет собой автономную химическую лабораторию. Для мягкой посадки аппарата весом почти в тонну придумали технологию «Небесный кран»: после финального торможения реактивными двигателями в 20 м от поверхности планеты «Кьюриосити» опустился со специальной конструкции на нейлоновых тросах. Благодаря этому удалось посадить марсоход на собственные колеса, после чего «Небесный кран», увеличив мощность двигателей, отлетел на безопасное расстояние.

В отличие от других марсоходов «Кьюриосити» получает энергию от радиоизотопного генератора, поэтому его мощность не зависит от времени суток и за 14 лет эксплуатации снизится лишь на 20%. Ровер несет на борту огромное количество научного оборудования, в том числе камеры с различными фильтрами, спектрометр и прибор ChemCam, который испаряет горные породы вспышками лазера и анализирует спектр излучаемого света. Помимо этого аппарат способен собирать образцы породы при помощи бура с ковшом и исследовать их в своей химической лаборатории.

«Кьюриосити» стал четвертым успешным марсоходом. В ходе своей миссии ему удалось измерить суточные колебания температур на планете, понаблюдать за солнечным затмением, найти следы древнего ручья, проанализировать сотни образцов породы и сделать бессчетное количество селфи . В настоящий момент ровер приближается к своей конечной цели - горе Шарпа , где он проведет последние исследования. После этого ему останется только делать красивые фото Марса и писать в

"Леди и джентльмены, Марс!" — и на экранах панорамные снимки Красной планеты. Что ни говори, но заявление американцев прозвучало очень эффектно, особенно — на фоне пропажи европейской «гончей» Beagle 2. Можно не разделять чересчур шумной радости США, но суперсовременный робот-шпион на поверхности чужой планеты – это несомненное достижение.

Несколько минут спуска в атмосфере и серия высоких прыжков внутри большого надувного шара, своеобразной подушки безопасности — так 4 января 2004 года закончился космический полёт в один конец корабля NASA.

Теперь вездеходу предстоит прогулка по песку и камням.

Первые чёрно-белые снимки, переданные ровером Spirit («Дух») из кратера Гусева, показывают типичный для Марса безжизненный пейзаж.

Однако данные орбитальных аппаратов говорят, что в далёком прошлом этот кратер, размером, к слову, со штат Коннектикут, был озером.

Один из первых снимков из кратера Гусева (фото с сайта marsrovers.jpl.nasa.gov).

С одной из сторон в него «вливается» длинная глубокая долина, вероятно прорезанная потоками воды.

Потому именно в этом кратере целесообразны поиски следов жизни. Follow the Water («Следовать за водой») – так обозначена научная стратегия робота.

Но пройдёт ещё девять или десять дней, прежде чем шесть колёс марсианского исследователя коснутся грунта.

Нужно детально проработать план путешествия, накопить энергию от солнечных батарей, развернуть на посадочной платформе трап для вездехода, проверить электронику и прочее.

Диаметр колёс 25 сантиметров. Подвеска позволит машине преодолевать камни высотой с колесо (иллюстрация с сайта marsrovers.jpl.nasa.gov).

Как оказалось, солнечные элементы аппарата обеспечивают только 83% от запланированной мощности.

Хотя таковая недостача и заставит специалистов, управляющих вездеходом, принимать меры для экономии энергии, электричества для проведения миссии всё же будет достаточно.

Ещё техников немного беспокоит тёмный объект в одном из углов аппарата. Вероятнее всего — это загрязнённая и скомканная часть надувной подушки, смягчившей удар при падении машины на поверхность. Но и тут, в общем-то, проблем не ожидается.

Spirit оборудован, как заправский полевой геолог: цветные стереокамеры и инфракрасная аппаратура, богатый набор инструментов на выдвижной механической руке.

В частности, микроскоп, гамма-спектрометр и даже небольшой бур-дробилка, позволяющий роботу посмотреть – что у выбранного учёными валуна внутри.

Благодаря выдвижной штанге с камерой, Spirit сфотографировал сам себя (фото с сайта marsrovers.jpl.nasa.gov)

Из любопытных особенностей вездехода стоит отметить теплоизолированные и покрытые золотом стенки отсека для электроники, которые удерживают температуру внутри в диапазоне от – 40 до +40 градусов Цельсия.

Как на солнце, так и ночью, когда наружная температура падает до 96 градусов мороза.

Хотя максимальная скорость вездехода составляет 5 сантиметров в секунду – средняя будет в пять раз меньше.

Робот запрограммирован на непрерывное движение в течение 10 секунд, затем – остановка и анализ ситуации.

Пусть общее управление (выбор объектов для детального исследования) будет осуществляться с Земли, тактику передвижения машина вычислит сама.


Круговая панорама с места посадки Spirit (фото с сайта marsrovers.jpl.nasa.gov)

Открытия миссии обещают оказаться тем более ценными, что ландшафт в точке, где находится Spirit, заметно отличается от любого из участков поверхности Марса, которые были исследованы предыдущими визитами американских посадочных модулей на Марс: двумя Viking в 1976 году и Mars Pathfinder в 1987-м.


Кратер Гусева. Справа внизу ущелье — бывшая река. Этот снимок сделан ещё АМС Viking . Жёлтый овал — расчётное место посадки Spirit (фото с сайта marsrovers.jpl.nasa.gov)

А 25 января 2004 года на противоположенной стороне Марса должен сеть близнец Spirit – Opportunity. Его точка приземления также выбрана по геологическим соображениям: здесь, по предварительным данным, полученным с орбиты, содержатся полезные ископаемые, которые учёные традиционно связывают с водой.

April 17th, 2015

1970 - Впервые робот в космосе

Первый луноход — советский "Луноход-1″, предназначенный для проведения комплекса научных исследований на поверхности Луны, был доставлен на Луну космическим аппаратом "Луна-17″ и проработал на ее поверхности почти год (с 17.11.1970 по 04.10.1971).

"Если говорить точнее, то наш лунный робот, управляемый радиокомандами с Земли, "крутил колесами" по лунной пыли в Море Дождей 301 сутки 6 часов 37 минут, прекратив исследования ближайшего к нам небесного тела в силу выработки ресурсов изотопного источника теплоты, — рассказывал ведущий конструктор "Лунохода-1" Ю. Дэльвин. — Представьте себе: на Луне аппарат был окружен космическим вакуумом, его "жалили" жесткие космические излучения, то есть радиация была такая же, как внутри атомного реактора, если не хуже. Да еще перепад температур, на освещенном Солнцем борту "трактора" плюс 150 по Цельсию, а на противоположном — минус 130! И при всем этом внутри герметичного корпуса для нормального функционирования научного оборудования за счет циркулирующего газа, подогреваемого все тем же изотопным источником, поддерживались "комнатная" температура, влажность и давление".

1976 - Рука робота впервые была применена в космических зондах Viking 1 и 2

25 лет назад "рука" робота-манипулятора зонда Viking взяла с поверхности образцы грунта и поместила их в чашки Петри с капельками питательной жидкости, помеченной изотопом радиоактивного углерода. Идея эксперимента состояла в том, что если в образце есть какие-то живые организмы, то они вступят в реакцию с питательным раствором и радиоактивный углерод выделится в виде газа. И газ выделялся. Однако специалисты интерпретировали тогда эту реакцию иначе: выделение газообразного углерода они объяснили химической реакцией с такими активными компонентами марсианского грунта как пероксиды. Они не обратили внимания на периодические изменения в количестве выделяемого газа, и период их был равен 24,66 часам - длине марсианского дня. Миллер считает, что, если бы в реакции участвовали пероксиды, то они бы быстро разложились, и никаких флуктуаций в выделении газа не было бы. А на самом деле они продолжались в течение 9 недель.

Тем не менее, на 100% в существовании жизни на Марсе Миллер все-таки не уверен, но считает, что эта вероятность превышает 90%.


2003 - Робот отправился на Марс

С космодрома на мысе Канаверал 10 июня 2003 года в 13:58 по местному времени стартовала ракета, которая доставила на Марс аппарат Spirit - первый из двух шестиколесных американских роботов-марсоходов, MER-1 (Mars Exploration Rover) стоимостью более $300 млн. Ранее старт ракеты неоднократно откладывался из-за плохой погоды. Первоначально планировалось запустить первый марсоход еще 22 мая, потом запуск был перенесён на 8 июня.

4 января 2004 года марсоход Spirit спустился на поверхность Марса. Через три недели - 25 января - Красной планеты коснулся его "близнец" под названием Opportunity.

Имена Дух и Возможность они получили от Софии Коллис - русской девочки из сибирского детского дома, удочерённой американской семьёй из города Скоттсдэйл в штате Аризона. София победила в конкурсе на лучшее название для этих роботов.

В 2004 году Spirit обнаружил на Марсе следы воды, а позднее - признаки среды, где могла бы зародиться микробиологическая жизнь. Opportunity, в свою очередь, нашёл доказательства того, что довольно большие районы Красной планеты были когда-то покрыты водой.

В мае 2009 робот Spirit попал в песчаную бурю, застрял в песках. С начала 2010 года из шести колес у него вращались только четыре - и то сильно пробуксовывали, а в марте 2010 году связь с ним была окончательно потеряна. Однако Opportunity продолжает путешествие по Марсу. Интересно, что последние года он едет задом наперёд - так инженеры хотят добиться равномерного износа его ходовой части.

В конце 2015 года Opportunity превысит запланированный срок работы в 44 раза.

Сейчас марсоход продолжает путь к Марафонской долине Марса, где Mars Reconnaissance Orbiter заметил наличие большого количества глинистых минералов.

В марте 2015 марсоход Opportunity прошёл олимпийскую марафонскую дистанцию - 42 километра 195 метров.Таким образом, марсоход Opportunity побил рекорд по пройденному расстоянию среди внеземных роверов.

Да и не предполагалось, что Opportunity будет отъезжать от места посадки (это случилось в 2004 году) более чем на один километр. Робот оказался очень любопытным.

Предыдущий рекорд принадлежал советскому "Луноходу-2", совершившему посадку на Луне в далёком 1973 году. Пройденное им расстояние оценивается в 39 километров. Причём для прохождения этой дистанции аппарату потребовалось менее пяти месяцев.

2011 - Первый робот-гуманоид в космосе

В ходе серии тестов находящийся на борту МКС американский человекоподобный робот Robonaut пожал руку американскому астронавту, командиру экипажа станции Дэниелу Бербэнку. Кроме того, андроид на языке жестов просигналил фразу Hello, world.

http://www.youtube.com/watch?v=grieVTdxsNI

http://www.youtube.com/watch?t=69&v=glLX_sKTU2I

2012 - Российские исследователи разработали и построили телеуправляемого человекоподобного робота, называемого SAR-400

К сожалению, как и его американский прототип, SAR-400 тоже не имеет ножек. Однако он может быть установлен на манипуляторе МКС и избавить астронавтов и космонавтов станции от выходов в открытый космос. Оператор SAR-400надевает шлем-дисплей, куртку и перчатки, которые точно передают движения оператора непосредственно к голове, рукам и ногам робота. Тем не менее, российские разработчики SAR-400 считают, что самое главное в этом роботе - перчатки. Перчатки должны будут передавать осязательные ощущения от от робота оператору. Правильно, чтобы техническая система стала более управляемой, необходимо ввести в неё обратную связь. Это означает, что космонавт сможет работать инструментами более аккуратно, так как он сможет "чувствовать" объект в своих руках. В случае чрезвычайной ситуации, когда рука робота оказывается сильно зажатой, это давление передается на кисть человека-оператора. И тут главное, чтобы кисть руки оператора осталась в целости и сохранности.

Российское космическое агентство тестирует робота в макете космической станции Мир. Удалённое управление роботом уже настолько точное, что робот может играть в шахматы, т.е., аккуратно передвигать фигуры на шахматной доске. Однако, нужно ещё многие и многие тесты, чтобы добиться полной управляемости роботом. Оператор должен чувствовать, что он находится в "теле" робота, (т.е., в шлеме-дисплее, куртке и перчатках) как в своём собственном теле.

Есть ещё физический предел скорости распространения информации в виде электромагнитных сигналов - это 300 000 км/c.Поэтому, телеуправляемый робот будет прекрасно работать на небольших расстояниях. А на расстояниях, например от Земли до Марса, задержка управляющих сигналов и сигналов обратной связи будет достигать 1,5 секунды. Тут уж робот должен обладать достаточным уровнем искусственного интеллекта, и что-то сделать заранее, чтобы рука оператора осталась в целости и сохранности.

http://www.youtube.com/watch?v=Um1YZj1gzU4

2012 - Космический робот ALIA ISS обучается для работы на борту космической станции.

Благодаря финансированию в 3.8 миллионам евро немецким Космическим Центром, человекоподобный робот ALIA ISS, созданный в университете г. Бремена, Германия, готовится для работы в космосе.

В течение 4-х лет в рамках проекта с названием BesMan (расшифровывается как "сценарии поведения для мобильной манипуляции") исследователи будут разрабатывать программное обеспечение, необходимое для управления дистанционными роботами в космосе. Скорее всего, робот будет подражать человеческим движениям туловища, рук и ног. Робот уже получил новую пару пятипалых рук, которые оказались значительно лучшими, чем безпалые руки, (которые могли только поднимать предметы, не требующие захвата пальцами).

Задача AILA ISS в том, чтобы использовать в космосе инструменты, а так же управлять пультом управления. Хотя робот будет удалённо управляться оператором с Земли по каналу телевизионной связи, он должен чувствовать изменения в окружающей среде, и действовать автономно, если возникнет такая необходимость. Но исследователи уже думают о новом программном обеспечении, которое будет управлять роботами разнообразных форм - от человекоподобных роботов, до роботов-многоножек. Последних планируется использовать для сборки электростанции на солнечных батареях перед тем, как отправить на Луну астронавтов.

Чтобы робот воспроизводил человеческие движения, исследователь в лаборатории выполняет действие, которое затем моделируется на компьютере. Программное обеспечение разбивает движение на части, которые (при помощи телесигнала) посылаются в космос.

2013 - "Надежда" в космосе: первые слова робота

Компания Dentsu Inc. создала двух гуманоидных роботов, которые разрабатываются в рамках проекта KIBO: робот Kirobo и Mirata. Kirobo основной астронавт, а другой робот-дублёр на Земле под названием Mirata следила за любыми проблемами или неисправностями, с которыми Kirobo мог столкнуться во время своей миссии в космосе.

Робот Kirobo был отправлен на борту грузового космического корабля Kounotori HTV4 4 августа 2013 года с космодрома японского Космического центра Танэгасима (Tanegashima Space Center), 10 августа прибыл на Международную космическую станцию (МКС). И провел в общей сложности восемнадцать месяцев в качестве первого в мире эксперимента беседы в космическом пространстве между роботом и человеком - астронавтом Коичи Ваката из JAXA, а также провёл исследования для будущего, в котором люди и роботы будут сосуществовать.

10 февраля Надежда благополучно вернулся на Землю на борту грузового корабля CRS-5 Dragon SpaceX, который приводнился в Тихом океане у берегов Калифорнии, а затем вернулся в Японию12 марта. Первые слова Kirobo после возвращения домой были: "С высоты Земля казалась большим синим светодиодом".

В подведении итогов сессии сотрудничества научно-исследовательского центра передовых наук и технологий Университета Токио, ROBO GARAGE Co., Ltd., Toyota Motor Corporation, и Японского агентства аэрокосмических исследований (JAXA) 2015 года , состоявшейся в Национальном музее развивающейся науки и инноваций в Токио, участники проекта дали краткий отчёт и показали видео деятельности робота на борту МКС.

http://www.youtube.com/watch?v=xqShesZ3v-g

Эрика Огава (Erika Ogawa), вице-президент Guinness World Records Ltd, представила две записи Kirobo для Книги рекордов Гиннесса:

- "Kirobo(Япония) - первый робот в космосе, который прибыл на Международную космическую станцию 10 августа 2013"
- "Наибольшая высота, на которой робот смог пребывать и вести разговор, была 414,2 км над уровнем моря на Международной космической станции 7 декабря 2013 года"

Первая фраза, которую сказал Kirobo, была на японском и при переводе звучала примерно так: "В этот день в 2013 году робот прошёл маленький шаг в яркое будущее, которое ждёт всех нас”.

http://www.youtube.com/watch?t=109&v=AGuurLH_JCU

2013- Робот Джастин ремонтирует станци

Робот Джастин (Justin) очень ловкий и умелый человекоподобный робот, который может справиться со сложной для человекоподобных роботов задачей: приготовить кофе. А теперь его учат ремонтировать спутники.

Джастин был разработан в Институте Робототехники и Механотроники, части немецкого Космического Центра в Германии. Робот выпускается в нескольких конфигурациях, включая одну с колесами. У космической версии есть голова, туловище и руки, но нет ни колёс, ни ног, потому что он будет стационарно смонтирован на космическом корабле или спутнике.

Задача состоит в том, чтобы использовать Джастина для ремонта или дозаправки спутников. Его создатели говорят, что было бы идеально, если бы робот работал автономно. Чтобы заменить модуль или дозаправиться, например, астронавт просто нажал бы кнопку, и робот сделал бы всё остальное самостоятельно.

Но это - в долгосрочной перспективе. Пока что исследователи полагаются на другой подход: удалённо управляемый робот. Оператор управляет роботом с Земли, используя установленный на голове перед глазами дисплей и своего рода "экзоскелет" кисти руки. Таким способом оператор видит то, что видит робот, и чувствует те же усилия, которые испытывает робот, манипулируя инструментами.

На голове Джастина установлены две видеокамеры, используемые для создания стереоскопического изображения. Благодаря этому оператор может получить ощущение глубины, управляя своими руками. Руки и пальцы робота оборудованы датчиками усилия и вращающего момента, чтобы обеспечить оператору обратную связь. В результате оператор чувствует, трудно ли роботу, например, открутить винт, с которым он сейчас возится.

Вступив в 21 век, мы видим поразительные успехи космической техники - вокруг Земли обращаются десятки тысяч спутников, космические аппараты совершили посадку на Луну, привезя оттуда образцы грунта. Впоследствии на Марс и Венеру опускались автоматические зонды, несколько космических аппаратов покинули пределы Солнечной Системы и несут на себе послания Внеземным Цивилизациям. И это только начало.

Розетта

Розетта - космический аппарат, предназначенный для исследования кометы. Разработан и изготовлен Европейским космическим агентством в сотрудничестве с NASA. Космический аппарат запущен 2 марта 2004 года к комете 67P/Чурюмова - Герасименко. Состоит из двух частей: собственно зонда «Розетта» и спускаемого аппарата «Филы».

Название зонда происходит от знаменитого Розеттского камня - каменной плиты с выбитыми на ней тремя идентичными по смыслу текстами, два из которых написаны на древнеегипетском языке (один - иероглифами, другой - демотическим письмом), а третий написан на древнегреческом языке. Сравнивая тексты Розеттского камня, учёные смогли расшифровать древнеегипетские иероглифы; с помощью космического аппарата «Розетта» ученые надеются узнать, как выглядела Солнечная система до того, как сформировались планеты.

Кассини-Гюйгенс

Кассини-Гюйгенс - автоматический космический аппарат, созданный совместно НАСА, Европейским космическим агентством и Итальянским космическим агентством. Кассини-Гюйгенс предназначен для исследования планеты Сатурн, колец и спутников. Аппарат состоит из орбитальной станции - искусственного спутника Сатурна Кассини и спускаемого аппарата с автоматической станцией Гюйгенс, предназначенной для посадки на Титан.

Кассини-Гюйгенс был запущен 15 октября 1997 года. 1 июля 2004 года после торможения вышел на орбиту спутника Сатурна. Общие затраты на миссию превышают 3.26 млрд долларов США.

Мангальян

Мангальян - индийская автоматическая межпланетная станция, предназначенная для исследования Марса с орбиты искусственного спутника. Для Индии это первый запуск космического аппарата к Марсу и первый запуск космического аппарата к другой планете. Основная цель первой индийской миссии к Марсу - разработка технологий, необходимых для успешного осуществления следующих этапов полёта космического аппарата к Марсу. Научные цели - исследование поверхности (детали поверхности - кратеры, горы, долины и т. д., морфология, минералогия) и атмосферы Марса индийскими научными приборами.

Космический телескоп «Хаббл»

Это автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла. Телескоп «Хаббл» - совместный проект НАСА и Европейского космического агентства. Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь - в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7-10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

Первое упоминание концепции орбитального телескопа встречается в книге Германа Оберта «Ракета в межпланетном пространстве», изданной в 1923 году. В 1946 году американский астрофизик Лайман Спитцер опубликовал статью «Астрономические преимущества внеземной обсерватории».

За 15 лет работы на околоземной орбите получил 1 млн изображений 22 тыс. небесных объектов - звёзд, туманностей, галактик, планет. Поток данных, которые он ежемесячно генерирует в процессе наблюдений, составляет около 480 ГБ. Общий их объём, накопленный за всё время работы телескопа, составляет примерно 50 терабайт. Более 3900 астрономов получили возможность использовать его для наблюдений, опубликовано около 4000 статей в научных журналах.

Хаябуса-2

«Хаябуса-2» - автоматическая межпланетная станция Японского агентства аэрокосмических исследований (JAXA), предназначенная для доставки образцов грунта с астероида класса C.

Марсоход Curiosity

Марсоход третьего поколения представляет собой автономную химическую лабораторию в несколько раз больше. Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. Предполагаемый срок службы на Марсе - один марсианский год (686 земных суток).

Название «Кьюриосити» было выбрано в 2009 году среди вариантов, предложенных школьниками, путём голосования в сети Интернет. Среди других вариантов были Adventure («Приключение»),Amelia, Journey («Путешествие»), Perception («Восприятие»), Pursuit («Стремление»), Sunrise («Восход»), Vision («Видение»), Wonder («Чудо»).

400 человек обеспечивает работу Кьюриосити с Земли - 250 учёных и примерно 160 инженеров. «Кьюриосити» запрограммирован каждый год петь себе песню Happy Birthday.

Марс-экспресс

«Марс-экспресс» - автоматическая межпланетная станция Европейского космического агентства, предназначенная для изучения Марса. Космический аппарат состоял из орбитальной станции - искусственного спутника Марса и спускаемого аппарата с автоматической марсианской станцией «Бигль-2».

2 июня 2003 «Марс-экспресс» стартовал на космодроме «Байконур» с помощью ракеты-носителя «Союз-ФГ» с разгонным блоком «Фрегат». Благодаря снимкам косморобота учёные смогли сконструировать и представить трёхмерные модели марсианских ландшафтов.

Робонавт-2

Робонавт-2 - робот, живущий на МКС. Он представляет собой безногую (до 2014 года) человекоподобную фигуру, голова которой выкрашена золотой краской, а торс - белой. На руках у робонавта по пять пальцев с суставами наподобие человеческих. Машина умеет писать, захватывать и складывать предметы, держать тяжёлые вещи, например, гантель весом 9 кг. Робот пока не имеет нижней половины тела.

В шлем R2 вмонтированы четыре видеокамеры, благодаря им робот не только ориентируется в пространстве, но и транслирует с них сигналы на мониторы диспетчеров. Также в шлеме находится и инфракрасная камера. Общее число датчиков и сенсоров - более 350. Дальнейшее развитие проекта «Робонавт» предусматривает высадку робота на поверхность Луны. С помощью него учёные будут удалённо «ходить» по поверхности, изучать лунный грунт, настраивать оборудования.

После того, как к роботу-гумоноиду подсоединили ноги в 2014 году, его общий рост составил 2.7 метров. Каждая нога робота имеет семь соединений.

Автоматическая межпланетная станция Dawn (рус. Рассвет) была запущена НАСА 27 сентября 2007 года для исследования астероида Весты и карликовой планеты Цереры. К Церере аппарат «Dawn» приблизился 6 марта 2015 года. «Он должен проработать на орбите Цереры до июля 2015 года.

Робот Декстр

Это второй робот на МКС. Декстр (также известный как «гибкий манипулятор специального назначения») - двурукий манипулятор, являющийся частью мобильной обслуживающей системы Канадарм2 на МКС. Его целью является расширение функциональности этой системы, позволяющей выполнять действия за бортом станции без необходимости выхода в открытый в космос.

Декстр является вкладом Канады в проект МКС. Название «Декстр» происходит не от имени главного героя одноименного сериала, а от английского слова dexterity - гибкость, ловкость, проворство. Также его часто называют «Canada hand» («Канадская рука»).

Марсоход «Оппортьюнити»

Это второй марсоход космического агентства НАСА (Curiosity - третий). Был выведен с помощью ракеты-носителя Дельта-2 7 июля 2003 года. На поверхность Марса опустился 25 января 2004 года тремя неделями позже первого марсохода Спирит. Основной задачей миссии было изучение осадочных пород, которые, как предполагалось, должны были образоваться в кратерах (Гусева, Эребус), где когда-то могло находиться озеро, море или целый океан.

В конце апреля 2010 года продолжительность миссии достигла 2246 сол, что сделало её самой длительной среди аппаратов, работавших на поверхности «красной планеты». На сегодняшний день Оппортьюнити продолжает эффективно функционировать, уже более чем в 40 раз превысив запланированный срок в 90 сол. За неоценимый вклад Оппортьюнити в изучение Марса, в его честь был назван астероид 39382.

Марс Одиссей

Это действующий орбитальный аппарат НАСА, исследующий Марс. Главная задача, стоящая перед аппаратом, заключается в изучении геологического строения планеты и поиске минералов. Аппарат был запущен 7 апреля 2001 года.

Станция «Юнона»

Автоматическая межпланетная станция НАСА Юнона была запущенна 5 августа 2011 года для исследования Юпитера. Целью миссии является выход аппарата на полярную орбиту искусственного спутника газового гиганта в 2016 году, изучение магнитного поля планеты, а также проверка гипотезы о наличии у Юпитера твёрдого ядра. Кроме того, аппарат должен заняться исследованием атмосферы планеты - определением содержания в ней воды и аммиака, а также построением карты ветров.

Находясь на орбите Юпитера, «Юнона» будет получать всего 4 % от того солнечного света, который аппарат мог бы получать на Земле, однако улучшения в технологии изготовления и эффективности панелей в течение последних десятилетий смогли позволить использовать солнечные панели приемлемых размеров на расстоянии в 5 а.е. от Солнца.

Вояджер-1

«Вояджер-1» - самый дальний от Земли и самый быстрый движущийся объект, созданный человеком. На 25 марта 2015 года «Вояджер-1» находился на расстоянии в 130,888 а. е. (19 580 млрд км, или 0.002056 св. года) от Солнца - расстояние, преодолеваемое лучом света за 18 часов и 8 минут.

«Вояджер-1» - автоматический зонд, исследующий Солнечную систему и её окрестности с 5 сентября 1977 года. В настоящее время находится в рабочем состоянии и выполняет дополнительную миссию по определению местонахождения границ Солнечной системы, включая пояс Койпера. Первоначальная миссия заключалась в исследовании Юпитера и Сатурна. «Вояджер-1» был первым зондом, который сделал детальные снимки спутников этих планет. На борту аппарата закреплена золотая пластина, где для предполагаемых инопланетян указано местонахождение Земли, а также записаны ряд изображений и звуков. В первой половине 2012 года аппарат вышел на границу межзвёздного пространства.

Новые горизонты

New Horizons - автоматическая межпланетная станция НАСА, предназначенная для изучения Плутона и его естественного спутника Харона. Запуск осуществлён 19 января 2006 года, с пролётом Юпитера в 2007 году (и ускорения в поле его тяготения) и Плутона в 2015 году. После пролёта мимо Плутона аппарат, возможно, изучит один из объектов пояса Койпера. Полная миссия «Новых горизонтов» рассчитана на 15-17 лет.

«Новые горизонты» покинул окрестности Земли с самой большой из всех космических аппаратов скоростью. В момент выключения двигателей она составила 16.26 км/с (относительно Земли). Полет от Земли до Луны занял у зонда 8 часов 35 минут и проходил со скоростью 58 тыс. км/ч, что является рекордной скоростью для аппарата, запущенного по направлению к Луне. Однако, следует учитывать, что скорость аппарата (в отличие от миссий, ориентированных на спутник Земли) не снижалась для выхода на окололунную орбиту.

Advanced Composition Explorer

Робот для самых жарких точек. Это аппарат, запущенный NASA в рамках программы исследования Солнца и космического пространства «Эксплорер» для изучения таких видов материи, как энергетические частицы солнечного ветра, межпланетная и межзвёздная среда, а также галактическая материя.