Плазма представляет. Что такое плазма? Патологии крови, влияющие на характер плазмы

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Тихоокеанский государственный экономический университет

Кафедра физики

Тема: Плазма - четвертое состояние вещества

Выполнила:

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

Известно, что любое вещество может существовать только в одном из трех состояний: твердом, жидком или газообразном, классическим примером чему является вода, которая может быть в виде льда, жидкости и пара. Однако веществ, пре­бывающих в этих считающихся бесспорными и общераспространенными состояниях, если брать всю Вселенную в целом, очень мало. Они вряд ли пре­вышают то, что в химии считается ничтожно малыми следами. Все остальное вещество Вселенной пребывает в так называемом плазменном состоянии.

Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX

в. стали именовать бесцветную часть крови (без красных и белых телец) и

жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832-1919), изучавший электрический

разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных

трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

В зависимости от температуры любое вещество изменяет своё

состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности.

Под плазмой в физике понимают газ, состоящий из электрически

заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

1.1. Наиболее типичные формы плазмы

Наиболее типичные формы плазмы

Искусственно созданная плазма Плазменная панель (телевизор, монитор) Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп Плазменные ракетные двигатели Газоразрядная корона озонового генератора Исследования управляемого термоядерного синтеза Электрическая дуга в дуговой лампе и в дуговой сварке Плазменная лампа (см. рисунок) Дуговой разряд от трансформатора Теслы Воздействие на вещество лазерным излучением Светящаяся сфера ядерного взрыва

Земная природная плазма Молния Огни святого Эльма Ионосфера Языки пламени (низкотемпературная плазма)

Космическая и астрофизическая плазма Солнце и другие звезды (те, которые существуют за счет термоядерных реакций) Солнечный ветер Космическое пространство (пространство между планетами, звездами игалактиками) Межзвездные туманности

Свойства и параметры плазмы

Плазма обладает следующими свойствами:

Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:

, где - концентрация заряженных частиц.

Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:

2.1. Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.2. Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

2.3. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит оттемпературы. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешнимэлектромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni - концентрация ионов, а na - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne= ni, где - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Кровь человека представлена 2 составляющими: жидкой основой или плазмой и клеточными элементами. Что такое плазма и каков ее состав? Какое функциональное предназначение имеет плазма? Разберем все по порядку.

Все о плазме

Плазма – это жидкость, образованная водой и сухими веществами. Она составляет основную часть крови – около 60 %. Благодаря плазме кровь имеет состояние жидкости. Хотя по физическим показателям (по плотности) плазма тяжелее воды.

Макроскопически плазма представляет собой прозрачную (иногда мутную) однородную жидкость светло-желтого цвета. Она собирается в верхнем участке сосудов, когда форменные элементы оседают. Гистологический анализ показывает, что плазма – межклеточное вещество жидкой части крови.

Мутной плазма становится после употребления человеком жирных продуктов.

Из чего состоит плазма?

Состав плазмы представлен:

  • Водой;
  • Солями и органическими веществами.
  • Белки;
  • Аминокислоты;
  • Глюкозу;
  • Гормоны;
  • Ферментные вещества;
  • Минералы (ионы Na, Cl).

Какой процент от объема плазмы составляет белок?

Это самый многочисленный компонент плазмы, он занимает 8 % всей плазмы. Плазма содержит белок различных фракций.

Основные из них:

  • Альбумины (5 %);
  • Глобулины (3%);
  • Фибриноген (принадлежит глобулинам, 0,4%).

Состав и задачи небелковых соединений в плазме

В плазме содержится:

  • Органические соединения, основу которых составляет азот. Представители: мочевая кислота, билирубин, креатин. Повышение количества азота сигнализирует о развитии азотомии. Это состояние возникает из-за проблем с выведением мочой продуктов обмена либо из-за активного разрушения белка и поступления большого количества азотистых веществ в организм. Последний случай характерен для сахарного диабета, голодания, ожогов.
  • Органические соединения, не содержащие азот. Сюда входит холестерин, глюкоза, молочная кислота. Компанию им составляют еще липиды. Все эти компоненты должны отслеживаться, так как они необходимы для поддержания полноценной жизнедеятельности.
  • Неорганические вещества (Ca, Mg). Ионы Na и Cl отвечают за поддержания постоянного Ph крови. Они также следят за осмотическим давлением. Ионы Ca принимают участие в сокращении мышц и стимулируют чувствительность нервных клеток.

Cостав плазмы крови

Альбумин

Альбумин в плазменной крови – основной компонент (более 50%). Он отличается небольшой молекулярной массой. Местом образования данного белка является печень.

Предназначение альбумина:

  • Переносит жирные кислоты, билирубин, лекарственные средства, гормоны.
  • Берет участие в обмене веществ и образовании белка.
  • Резервирует аминокислоты.
  • Формирует онкотическое давление.

По количеству альбумина медики судят о состоянии печени. Если содержание альбумина в плазме снижено, то это указывает на развитие патологии. Низкое содержание этого белка плазмы у детей увеличивает риск заболеть желтухой.

Глобулины

Глобулины представлены крупными молекулярными соединениями. Они вырабатываются печенью, селезенкой, тимусом.

Выделяют несколько видов глобулинов:

  • α – глобулины. Они взаимодействуют с тироксином и билирубином, связывая их. Катализируют образование белков. Отвечают за транспортировку гормонов, витаминов, липидов.
  • β – глобулины. Эти белки связывают витамины, Fe, холестерол. Переносят катионы Fe, Zn, стероидные гормоны, стерины, фосфолипиды.
  • γ – глобулины. Антитела или иммуноглобулины связывают гистамин и принимают участие в защитных иммунных реакциях. Они производятся печенью, лимфатической тканью, костным мозгом и селезенкой.

Насчитывают 5 классов γ – глобулинов:

  • IgG (около 80% всех антител). Для него характерна высокая авидность (соотношение антитела к антигену). Может проникать через плацентарный барьер.
  • IgM – первый иммуноглобулин, который образуется у будущего малыша. Белок отличается высокой авидностью. Он первый обнаруживается в крови после вакцинации.
  • IgA.
  • IgD.
  • IgE.

Фибриноген – растворимый белок плазмы. Он синтезируется печенью. Под влиянием тромбина белок преобразуется в фибрин – нерастворимую форму фибриногена. Благодаря фибрину в местах, где целостность сосудов была нарушена, образуется сгусток крови.

Остальные белки и функции

Незначительные фракции белков плазмы после глобулинов и альбуминов:

  • Протромбин;
  • Трансферрин;
  • Иммунные белки;
  • С-реактивный белок;
  • Тироксинсвязывающий глобулин;
  • Гаптоглобин.

Задачи этих и других белков плазмы сводятся к:

  • Поддержанию гомеостаза и агрегатного состояния крови;
  • Контролю за иммунными реакциями;
  • Транспортировке питательных веществ;
  • Активации процесса свертывания крови.

Функции и задачи плазмы

Для чего нужна плазма человеческому организму?

Ее функции разнообразны, но в основном они сводятся к 3 главным:

  • Транспортирование кровяных телец, питательных веществ.
  • Осуществление связи между всеми жидкими средами организма, которые располагаются вне кровеносной системы. Эта функция возможна, за счет способности плазмы проникать сквозь сосудистые стенки.
  • Обеспечение гемостаза. Подразумевается контроль над жидкостью, которая останавливается во время кровотечений и удалять образовавшийся тромб.

Применение плазмы в донорстве

Сегодня кровь в цельном виде не переливают: для терапевтических целей отдельно выделяют плазму и форменные компоненты. В пунктах сдачи крови чаще всего сдают кровь именно на плазму.


Система плазмы крови

Как получить плазму?

Получение плазмы из крови происходит с помощью центрифугирования. Метод позволяет отделить плазму от клеточных элементов с помощью специального аппарата, не повреждая их . Кровяные тельца возвращаются донору.

Процедура по сдаче плазмы имеет ряд преимуществ перед простой сдачей крови:

  • Объем кровопотери меньше, а значит, вреда здоровью наносится тоже меньше.
  • Кровь на плазму можно сдать вновь уже через 2 недели.

Существуют ограничения по сдаче плазмы. Так, донор может сдать плазму не более 12 раз за год.

Сдача плазмы занимает не больше 40 минут.

Плазма является источником такого важного материала, как сыворотка крови. Сыворотка – это та же плазма, но без фибриногена, однако с тем же набором антител. Именно они борются с возбудителями различных заболеваний. Иммуноглобулины способствуют скорейшему развитию пассивного иммунитета.

Чтобы получить сыворотку крови, стерильную кровь помещают в термостат на 1 час. Далее полученный сгусток крови отслаивают от стенок пробирки и определяют в холодильник на 24 часа. Полученную жидкость при помощи пастеровской пипетки добавляют в стерильный сосуд.

Патологии крови, влияющие на характер плазмы

В медицине выделяют несколько заболеваний, которые способны влиять на состав плазмы. Все они представляют угрозу для здоровья и жизни человека.

Основными из них являются:

  • Гемофилия. Это наследственная патология, когда наблюдается недостаток белка, который отвечает за свертываемость.
  • Заражение крови или сепсис. Явление, возникающее из-за попадания инфекции непосредственно в кровеносное русло.
  • ДВС-синдром. Патологическое состояние, причиной которого является шок, сепсис, тяжелые повреждения. Характеризуется нарушениями свертывания крови, которые приводят одновременно к кровотечению и образованию тромбов в мелких сосудах.
  • Глубокий венозный тромбоз. При заболевании наблюдается формирование тромбов в глубоких венах (преимущественно на нижних конечностях).
  • Гиперкоагуляция. У пациентов диагностируется чрезмерно высокая свертываемость крови. Вязкость последней увеличивается.

Плазмотест или реакция Вассермана – это исследование, выявляющее наличие антител в плазме к бледной трепонеме. По этой реакции вычисляется сифилис, а также эффективность его лечения.

Плазма – жидкость, имеющая сложный состав, играет важную роль в жизни человека. Она отвечает за иммунитет, свертываемость крови, гомеостаз.

Видео — cправочник здоровья (Плазма крови)

Плазма - это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.

Определяется отношением числа ионизированных атомов к их общему числу

В зависимости от степени ионизации плазма подразделяется на слабо ионизированную ( - доли процента), частично ионизированную ( - несколько процентов) и полностью ионизированную ( = 100%). Слабо ионизированной плазмой является ионосфера - верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 10 6 - 10 7 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма - самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму. Частицы плазмы интенсивно взаимодействуют с внешними электрическими и магнитными полями: из-за большой подвижности заряженные частицы плазмы легко перемещаются под действием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы, вызванное скоплением частиц с зарядом одного знака, быстро исчезает. Возникающие электрические поля перемещают заряженные частицы до тех пор, пока электрическая нейтральность не восстанавливается и электрическое поле не становится равным нулю.

Между заряженными частицами плазмы действуют кулоновские силы, сравнительно медленно убывающие с расстоянием. Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Благодаря этому наряду с хаотическим тепловым движением частицы плазмы могут участвовать в разнообразных упорядоченных движениях. В плазме легко возбуждаются разного рода колебания и волны. Проводимость плазмы увеличивается по мере роста степени ионизации. Электропроводность и теплопроводность полностью ионизированной плазмы зависят от температуры по законам

соответственно. При высокой температуре полностью ионизированная плазма по своей проводимости приближается к сверхпроводникам.

Ионизация атомов межзвездной среды производится излучением звезд и космическими лучами - потоками быстрых частиц, пронизывающими пространство Вселенной по всем направлениям. В отличие от горячей плазмы звезд температура межзвездной плазмы очень мала.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую - плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Помимо трех основных состояний вещества: жидкого, твердого и газообразного, существует еще и четвертое состояние вещества. Это состояние называется плазма. Плазма - частично или полностью ионизированный газ. Плазму можно получить путем дальнейшего нагревания газа. При достаточно больших температурах начинается ионизация газа. И он переходит в состояние плазмы.

Степень ионизации плазмы может быть различной, в зависимости от того сколько атомов и молекул ионизировано. Помимо нагревания газа, плазму можно получить и другими путями. Например, с помощью излучений или бомбардировкой газа быстрыми заряженными частицами. В таких случаях говорят о низкотемпературной плазме.

Свойства плазмы

Плазму выделили в отдельное четвертое состояние вещества, так как она обладает специфическими свойствами. Плазма в целом является электрически нейтральной системой. Любое нарушение нейтральности устраняется путем скопления частиц одного знака.

Это происходит потому, что заряженные частицы плазмы обладают очень высокой подвижностью и легко поддаются воздействию электрических и магнитных полей. Под действием электрических полей заряженные частицы перемещаются к области, где нарушена нейтральность, до тех пор, пока электрическое поле не станет равным нулю, то есть восстановится нейтральность.

Между молекулами плазмы действуют силы кулоновского притяжения. При этом каждая частица взаимодействует сразу с многими другими окружающими её частицами. Вследствие чего, частицы плазмы помимо хаотичного теплового движения, могут участвовать в различных упорядоченных движениях. Поэтому в плазме легко возбудить различные колебания и волны.
По мере увеличения степени ионизации плазмы, её проводимость увеличивается. При достаточно высоких температурах, плазму можно считать сверхпроводником.

Плазма в природе

Огромная часть вещества Вселенной находится именно в состоянии плазмы. Например, Солнце и другие звезды вследствие высокой температуры состоят, в основном, из полностью ионизированной плазмы. Межзвездная среда тоже состоит из плазмы. Здесь ионизация атомов вызывается излучением самих звезд.

Межзвездная плазма является примером низкотемпературной плазмы. Наша планета тоже окружена плазмой. Например, ионосфера. В ионосфере ионизация газа вызывается излучением солнца. Выше ионосферы, расположены радиационные пояса Земли, которые тоже состоят из плазмы.

В данном случае плазма также является низкотемпературной. Большей частью свойств плазмы обладают также свободные электроны в металлах. Но их ограничением является тот факт, что они не могут свободно перемещаться по всему объему тела.

Времена, когда плазма ассоциировалась у нас с чем-то нереальным, непонятным, фантастическим, уже давно прошли. В наши дни это понятие активно используется. Плазму применяют в промышленности. Наиболее масштабно ее используют в светотехнике. Пример - газоразрядные лампы, освещающие улицы. Но и в лампах дневного света она присутствует. Она есть и в электрической сварке. Ведь дуга сварки - это плазма, сгенерированная плазмотроном. Можно привести и множество других примеров.

Физика плазмы - важный раздел науки. Поэтому стоит разобраться с основными понятиями, относящимися к ней. Этому и посвящена наша статья.

Определение и виды плазмы

Что же в физике дается вполне четкое. Плазменным называют такое состояние вещества, когда в последнем имеется значительное (соизмеримое с полным числом частиц) число заряженных частиц (носителей), способных более или менее свободно перемещаться внутри вещества. Можно выделить следующие основные виды плазмы в физике. Если носители принадлежат к частицам одного сорта (а частицы противоположного знака заряда, нейтрализующие систему, не имеют свободы перемещения), ее называют однокомпонентной. В противоположном случае она является - двух- или многокомпонентной.

Особенности плазмы

Итак, мы вкратце охарактеризовали понятие о плазме. Физика - наука точная, поэтому без определений здесь не обойтись. Расскажем теперь об основных особенностях этого состояния вещества.

В физике следующие. Прежде всего, в этом состоянии под действием уже малых электромагнитных сил возникает движение носителей - ток, который протекает таким образом и до тех пор, пока эти силы не исчезнут благодаря экранировке их источников. Поэтому плазма в конце концов переходит в состояние, когда она квазинейтральна. Другими словами, ее объемы, большие некоторой микроскопической величины, имеют нулевой заряд. Вторая особенность плазмы связана с дальнодействующим характером кулоновских и амперовских сил. Она состоит в том, что движения в этом состоянии, как правило, имеют коллективный характер, вовлекая большое число заряженных частиц. Таковы основные свойства плазмы в физике. Их полезно было бы запомнить.

Обе эти особенности ведут к тому, что физика плазмы необычайно богата и разнообразна. Наиболее ярким ее проявлением служит легкость возникновения различного рода неустойчивостей. Они являются серьезным препятствием, затрудняющим практическое применение плазмы. Физика - эта наука, которая постоянно развивается. Поэтому можно надеяться, что со временем эти препятствия будут устранены.

Плазма в жидкостях

Переходя к конкретным примерам структур, начнем с рассмотрения плазменных подсистем в конденсированном веществе. Среди жидкостей следует прежде всего назвать - пример, которому отвечает плазменная подсистема - однокомпонентная плазма носителей-электронов. Строго говоря, к интересующему нас разряду следовало бы отнести и жидкости-электролиты, в которых имеются носители - ионы обоих знаков. Однако по разным причинам электролиты не относят к данному разряду. Одна из них состоит в том, что в электролите нет легких, подвижных носителей, таких как электроны. Поэтому указанные выше свойства плазмы выражены существенно слабее.

Плазма в кристаллах

Плазма в кристаллах носит специальное название - плазма твердого тела. В ионных кристаллах хотя и имеются заряды, но они неподвижны. Поэтому плазмы там нет. В металлах же - проводимости, составляющие однокомпонентную плазму. Ее заряд компенсируется зарядом неподвижных (точнее говоря, неспособных смещаться на большие расстояния) ионов.

Плазма в полупроводниках

Рассматривая основы физики плазмы, необходимо отметить, что в полупроводниках ситуация более разнообразная. Вкратце охарактеризуем ее. Однокомпонентная плазма в этих веществах может возникнуть, если ввести в них соответствующие примеси. Если примеси легко отдают электроны (доноры), то возникают носители n-типа - электроны. Если же примеси, напротив, легко отбирают электроны (акцепторы), то возникают носители р-типа - дырки (пустые места в распределении электронов), которые ведут себя как частицы с положительным зарядом. Двухкомпонентная же плазма, образованная электронами и дырками, возникает в полупроводниках еще более простым образом. Например, она появляется под действием световой накачки, забрасывающей электроны из валентной зоны в зону проводимости. Отметим, что при определенных условиях электроны и дырки, притягивающиеся друг к другу, могут образовать связанное состояние, подобное атому водорода, - экситон, а если накачка интенсивна, и плотность экситонов велика, то они сливаются вместе и образуют каплю электронно-дырочной жидкости. Иногда такое состояние считают новым состоянием вещества.

Ионизация газа

Приведенные примеры относились к особым случаям плазменного состояния, а плазмой в чистом виде называется К его ионизации могут приводить многие факторы: электрическое поле (газовый разряд, гроза), световой поток (фотоионизация), быстрые частицы (излучение радиоактивных источников, космические лучи, которые и были открыты по возрастанию степени ионизации с высотой). Однако главным фактором является нагрев газа (термическая ионизация). В этом случае к отрыву электрона от соударение с последним другой частицы газа, имеющей достаточную кинетическую энергию за счет высокой температуры.

Высокотемпературная и низкотемпературная плазма

Физика низкотемпературной плазмы - то, с чем мы соприкасаемся практически каждый день. Примерами такого состояния могут служить пламя, вещество в газовом разряде и молнии, различные виды холодной космической плазмы (ионо- и магнитосферы планет и звезд), рабочее вещество в различных технических устройствах (МГД-генераторах, горелках и т. п.). Примеры высокотемпературной плазмы - вещество звезд на всех этапах их эволюции, кроме раннего детства и старости, рабочее вещество в установках по управляемому термоядерному синтезу (токамаки, лазерные устройства, пучковые устройства и др.).

Четвертое состояние вещества

Полтора века назад многие физики и химики полагали, что материя состоит только из молекул и атомов. Они объединяются в комбинации либо совсем неупорядоченные, либо более-менее упорядоченные. Считалось, что существует три фазы - газообразная, жидкая и твердая. Вещества принимают их под влиянием внешних условий.

Однако в настоящее время можно говорить о том, что имеется 4 состояния вещества. Именно плазму можно считать новым, четвертым. Ее отличие от конденсированного (твердого и жидкого) состояний заключается в том, что она, как и газ, не имеет не только сдвиговой упругости, но и фиксированного собственного объема. С другой стороны, плазму роднит с конденсированным состоянием наличие ближнего порядка, т. е. корреляция положений и состава частиц, соседних с данным зарядом плазмы. В этом случае такая корреляция порождается не межмолекулярными, а кулоновскими силами: данный заряд отталкивает от себя одноименные с ним самим заряды и притягивает разноименные.

Физика плазмы была нами вкратце рассмотрена. Эта тема достаточно объемна, поэтому можно говорить лишь о том, что мы раскрыли ее основы. Физика плазмы, безусловно, заслуживает дальнейшего рассмотрения.