Построение плоскости перпендикулярной заданной плоскости. Построение взаимно перпендикулярных прямой и плоскости

В рамках этой темы необходимо уметь:

  • 1. Задавать плоскость, перпендикулярную к прямой.
  • 2. Задавать прямую, перпендикулярную к плоскости.

При решении этих взаимосвязанных задач важно понимать, как должны быть направлены проекции перпендикуляра по отношению к проекциям плоскости. Для уяснения этого решим задачи А и Б.

Задача А

Условие. Через точку А, взятую на прямой гп, провести плоскость, перпендикулярную к этой прямой.

Решение. Известно, что плоскость перпендикулярна прямой, сели две прямые, расположенные в этой плоскости, перпендикулярны заданной прямой.

Поэтому в нашем случае через точку А достаточно провести две прямые, каждая из которых была бы перпендикулярна т. Тогда эти прямые в паре определят искомую плоскость.

Пусть одной из прямых, определяющих эту плоскость, станет горизонталь. Ее фронтальная проекция 1ъ пройдет горизонтально (рис. 4.7), а горизонтальная проекция h| - под прямым углом к m 1 (на основании теоремы о проекциях прямого угла).

Второй прямой, определяющей искомую плоскость, будет фронталь. Ес горизонтальная проекция f| пройдет горизонтально.

а фронтальная проекция f2 - иод прямым углом к mi (на основании той же теоремы).

Рис. 4.7

Таким образом, задача решена. Анализируя ее, мы можем заметить, что по отношению к построенной плоскости (f х h) заданная прямая m является перпендикуляром. Отсюда следует важный практический вывод:

горизонтальная проекция перпендикуляра к плоскости должна проходить под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция - под прямым углом к фронтальной проекции фронтали.

Задача Б

Условия. Опустить перпендикуляр из точки В на плоскость DEF (с определением его видимости но отношению к плоскости).

Рис. 4.8а - графические условия задачи

Рис. 4.86

Рис. 4.8в - определение основания и натуральной величины перпендикуляра

Решение. Вначале вычертим проекции DEF и В (рис. 4.8а).

Приступив к решению задачи, выделим в ней три

характерных этапа:

  • 1. Построение направлений для проекций перпендикуляра.
  • 2. Построение основания перпендикуляра (точки его пересечения с плоскостью).
  • 3. Определение натуральной величины перпендикуляра.

Выполним эти построения. Сначала наметим направление

проекций перпендикуляра. Для этого предварительно в плоскости DEF нужно провести горизонталь h и фронталь f, которые являются ориентирами для его проекций.

Теперь найдем основание перпендикуляра как точку пересечения полученной прямой с плоскостью DEF. Эта задача нам уже знакома (см. п. 3.3.4). В рассмотренном примере искомая точка К лежит за пределами треугольника, ограничивающего плоскость (рис. 4.8в). Она расположена на прямой 2-3, которая, по построению, принадлежит плоскости DEF. Значит, ей принадлежит и точка К. Если проекции перпендикуляра частично или полностью заслоняются проекциями треугольника DEF, то дополнительно необходимо определить видимость перпендикуляра но отношению к плоскости.

Натуральная величина перпендикуляра ВК может быть найдена любым из методов, рассмотренных ранее в и. 2.2. На рисунке 4.8в для этой цели использован метод прямоугольного треугольника.

Отметим, что данная задача зачастую формулируется как определение расстояния от точки В до плоскости треугольника DEF.

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

Признак перпендикулярности прямой и плоскости позволяет построить взаимно перпендикулярные прямую и плоскость, т. е. доказать существование таких прямых и плоскостей. Начнем с построения плоскости, перпендикулярной данной прямой и проходящей через данную точку. Решим две задачи на построение, соответствующие двум возможностям в расположении данной точки и данной прямой.

Задача 1. Через данную точку А на данной прямой a провести плоскость, перпендикулярную этой прямой.

Проведем через прямую а любые две плоскости и в каждой их этих плоскостей через точку А проведем по прямой, перпендикулярной прямой а, обозначим их b и с (рис. 2.17). Плоскость а, проходящая через прямые бис, содержит точку А и перпендикулярна прямой а (по признаку перпендикулярности прямой и плоскости). Поэтому плоскость а искомая. Задача решена.

Задача имеет лишь одно (т.е. единственное) решение. Действительно, допустим противное. Тогда, кроме плоскости а через точку А проходит еще какая-нибудь плоскость Р, перпендикулярная прямой а (рис. 2.18). Возьмем в плоскости Р любую прямую , проходящую через точку А и не лежащую в плоскости а. Проведем плоскость у через пересекающиеся прямые а и . Плоскость у пересечет плоскость а по прямой q. Прямая q не совпадает с прямой , так как q лежит в а не лежит в а. Обе эти прямые лежат в плоскости у, проходят через точку А и перпендикулярны прямой а так как и аналогично так как и . Но это противоречит известной теореме планиметрии, согласно которой в плоскости через каждую точку проходит лишь одна прямая, перпендикулярная данной прямой.

Итак, предположив, что через точку А проходят две плоскости, перпендикулярные прямой а, мы пришли к противоречию. Поэтому задача имеет единственное решение.

Задача 2. Через данную точку А, не лежащую на данной прямой а, провести плоскость, перпендикулярную этой прямой.

Через точку А проводим прямую b, перпендикулярную прямой а. Пусть В - точка пересечения а и b. Через точку В проводим еще прямую с, перпендикулярную прямой а (рис. 2.19). Плоскость, проходящая через обе проведенные прямые, будет перпендикулярна а по признаку перпендикулярности (теорема 2).

Как и в задаче 1, построенная плоскость единственная. Действительно, возьмем любую плоскость, проходящую через точку А перпендикулярно прямой а. Такая плоскость содержит прямую, перпендикулярную прямой а и проходящую через точку А. Но такая прямая только одна. Это прямая b, которая проходит через точку В. Значит, плоскость, проходящая через А и перпендикулярная прямой а, должна содержать точку В, а через точку В проходит лишь одна плоскость, перпендикулярная прямой а (задача 1). Итак, решив эти задачи на построение и доказав единственность их решений, мы доказали следующую важную теорему.

Теорема 3 (о плоскости, перпендикулярной прямой). Через каждую точку проходит плоскость, перпендикулярная данной прямой, и притом только одна.

Следствие (о плоскости перпендикуляров). Прямые, перпендикулярные данной прямой в данной ее точке, лежат в одной плоскости и покрывают ее.

Пусть а - данная прямая и А - какая-либо ее точка. Через нее проходит плоскость. По определению перпендикулярности прямой и плоскости она покрыта

крыта прямыми, перпендикулярными прямой а в точке А, т.е. через каждую точку плоскости а в ней проходит прямая, перпендикулярная прямой а.

Допустим, что через точку А проходит прямая , не лежащая в плоскости а. Проведем через нее и прямую а плоскость Р. Плоскость Р пересечет а по некоторой прямой с (рис. 2.20). И так как то Получается, что через точку А в плоскости Р проходят две прямые b и с, перпендикулярные прямой а. Это невозможно. Значит, прямых, перпендикулярных прямой а в точке А и не лежащих в плоскости а, нет. Все они лежат в этой плоскости.

Пример к следствию теоремы 3 дают спицы в колесе, перпендикулярные его оси: при вращении они зачерчивают плоскость (точнее, круг), принимая все положения, перпендикулярные оси вращения.

Теоремы 2 и 3 помогают дать простое решение следующей задачи.

Задача 3. Через точку данной плоскости провести прямую, перпендикулярную этой плоскости.

Пусть даны плоскость а и точка А в плоскости а. Проведем в плоскости а через точку А какую-либо прямую а. Через точку А проведем плоскость , перпендикулярную прямой а (задача 1). Плоскость пересечет плоскость а по некоторой прямой b (рис. 2.21). Проведем в плоскости Р через точку А прямую с, перпендикулярную прямой b. Так как (поскольку с лежит в плоскости

И ), то по теореме 2 . Единственность ее решения установлена в п. 2.1.

Замечание. О построениях в пространстве. Напомним, что в главе 1 мы изучаем "строительную геометрию". А в этом пункте мы решили три задачи на построение в пространстве. Что же понимают в стереометрии под терминами "построить”, "провести", "вписать" и т.п.? Сначала вспомним о построениях на плоскости. Указав, например, как строить окружность, описанную около треугольника, мы тем самым доказываем ее существование. Вообще, решая задачу на построение, мы доказываем теорему существования фигуры с заданными свойствами. Это решение сводится к составлению некоторого алгоритма построения искомой фигуры, т.е. к указанию последовательности выполнения простейших операций, приводящих к необходимому результату. Простейшие операции - это проведение отрезков, окружностей и нахождение точек их пересечения. Затем с помощью чертежных инструментов выполняется непосредственное построение фигуры на бумаге или на доске.

Итак, в планиметрии решение задачи на построение имеет как бы две стороны: теоретическую - алгоритм построения - и практическую - реализацию этого алгоритма, например, циркулем и линейкой.

У стереометрической задачи на построение остается лишь одна сторона - теоретическая, так как нет инструментов для построения в пространстве, аналогичных циркулю и линейке.

За основные построения в пространстве принимают те, которые обеспечиваются аксиомами и теоремами о существовании прямых и плоскостей. Это - проведение прямой через две точки, проведение плоскости (предложения п. 1.1 и аксиома 1 п. 1.4), а также построение прямой пересечения любых двух построенных плоскостей (аксиома 2 п. 1.4). Кроме того, мы, естественно, будем считать, что можно выполнять планиметрические построения в уже построенных плоскостях.

Решить задачу на построение в пространстве - это значит указать последовательность основных построений, в результате которых получается нужная фигура. Обычно явно указываются не все основные построения, а делаются ссылки на уже решенные задачи на построение, т.е. на уже доказанные предложения и теоремы о возможности таких построений.

Кроме построений - теорем существования в стереометрии, возможны еще два вида задач, связанных с построениями.

Во-первых, задачи на рисунке или на чертеже. Таковы задачи на сечения многогранников или других тел. Мы не строим на самом деле само сечение, а только изображаем его на

рисунке или чертеже, который у нас уже есть. Такие построения осуществляются как планиметрические с учетом аксиом и теорем стереометрии и правил изображений. Задачи такого типа постоянно решают в черчении и в конструкторской практике.

Во-вторых, задачи на построение на поверхностях тел. Задача: "Построить точки на поверхности куба, удаленные от данной его вершины на данное расстояние" - решается с помощью циркуля (как?). Задача: "Построить точки на поверхности шара, удаленные от данной точки на данное расстояние" - также решается с помощью циркуля (как?). Задачи такого типа решают не на уроках геометрии - их постоянно решает разметчик, разумеется, с точностью, которой позволяют добиться его инструменты. Но, решая такие задачи, он опирается на геометрию.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π 1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А" проводим горизонтальную проекцию l" ⊥ h". Отмечаем точку М" = l" ∩ h". Находим М" (М" ∈ h"). Точки А" и М" определяют l" (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а, заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π 3 . Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π 1 → π 3 || [ВС].

В результате такой замены в новой системе x 1 π 2 /π 3 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М" 1 , ее перевели на исходные плоскости проекции в положение М" и М", эти точки совместно с А" и А" определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A"B"C" и горйзонтапьная проекция стороны [А"В"] (рис. 251).

1. Переводим сторону угла [ВА] в положение || π 3 путем перехода от системы плоскостей проекции хπ 2 /π 1 к новой x 1 π 3 /π 2



2. Определяем новую фронтальную проекцию .

Из В" 1 восставляем перпендикуляр к [В" 1 A" 1 ]. На этом перпендикуляре определяем точку С" 1 (С" 1 удалена от оси x 1 на расстояние |С x 1 С" 1 | = |С x С"|).

4. Горизонтальная проекция С" определяется как точка пересечения прямых (С" 1 С x 1) ∩ (С"С x) = С".

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. . Но сторона AM ∠ ВАМ || π 1 , поэтому ∠ВАМ проецируется на плоскость π 1 , без искажения, т. е.. Сторона АК ∠ ВАК || π 2 и, следовательно, на плоскость π 2 этот угол проецируется также без искажения, т. е. и . Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.


Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А" восставляем перпендикуляр к h", а из А" - к f".

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l" и l", как и в предыдущем примере, проводим через точку А (А",А") горизонталь h(h", h"), принадлежащую плоскости α. Зная направление h", строим горизонтальную проекцию перпендикуляра l" (l" ⊥ h"). Для определения направления фронтальной проекции перпендикуляра через точку А (А", А") проводим фронталь f (f", f") плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π 2 без искажения, поэтому проводим l" ⊥ f".

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-


тали, так как их функции выполняют следы плоскости h 0α и f 0α . Как видно из чертежа, решение сводится к проведению через точки А" и А" проекций l" ⊥ h 0α и l" ⊥ f 0α .

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h" ⊥ l" и f" ⊥ l". Фронтальная проекция h" и горизонтальная проекция f" проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h" ⊥ A"B" и f" ⊥ A"B".

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С" произвольную прямую 1"2", принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1"2" и на ней отмечаем точку С" (С" определяется пересечением линии связи - перпендикуляра, опущенного из С", с горизонтальной проекцией прямой 1"2"). С" совместно с В" определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости .

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h") и фронтальную проекцию фронтали (f") ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l" ⊥ h" и l" ⊥ f". Плоскость β ⊥ α, так как β ⊃ l ⊥ α.


ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π 1 , т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости - h 0α Поэтому через горизок тальную проекцию точки А" проводим горизонтальный след h 0γ ⊥ h 0α фронтальный след f 0γ ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π 2 .

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна - фронтально проецирующая, является перпендикулярность их фронтальных следов f 0γ ⊥ f 0α , горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.


Построение плоскости р, перпендикулярной к плоскости а, может быть произведено двумя путями: I) плоскость р проводится через прямую, перпендикулярную к плоскости а; 2) плоскость р проводится перпендикулярно к прямой, лежащей в плоскости а или параллельной этой плоскости. Для получения единственного решения требуются дополнительные условия. На рисунке 148 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником CDE. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую АВ. Следовательно, искомая плоскость определяется прямой АВ и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра к плоскости CDE в ней взяты фронтам CN и горизонталь СМ: если В"F" ± C"N" и В"Г 1 СМ\ то BFX плоскости CDF. Образованная пересекающимися прямыми АВ и BF плоскость перпендикулярна к плоскости CDE, гак как проходит через перпендикуляр к этой плоскости. Может ли перпендикулярность одноименных следов плоскостей служить признаком перпендикулярности самих плоскостей? К очевидным случаям, когда это так, относится также взаимная перпендикулярность двух горизонтально-проецирующих плоскостей, у которых горизонтальные следы взаимно перпендикулярны. Также это имеет место при взаимной перпендикулярности фронтальных следов фронтально-проецирующих плоскостей; эти плоскости взаимно перпендикулярны. Рассмотрим (рисунок 149) горизонтально-проецирующую плоскость р, перпендикулярную к плоскости общего положения а. Если плоскость р перпендикулярна к плоскости я, и к плоскости а, то р 1как к линии пересечения плоскости а и плоскости я,. Отсюда h"0a 1р и, следовательно, h"0u 1 р", как к одной из прямых в плоскости р. Итак, перпендикулярность горизонтальных следов плоскости общего положения и горизонтально-проецирующей соответствует взаимной перпендикулярности этих плоскостей. Очевидно, перпендикулярность фронтальных следов фронтально-проецирующей плоскости и плоскости общего положения также соответствует взаимной перпендикулярности этих плоскостей. Но если одноименные следы двух гыоскостей общего положения взаимно перпендикулярны, то сами плоскости не перпендикулярны между собой, так как здссь не соблюдается ни одно из условий, изложенных в начале этою параграфа. Вопросы для самопроверки 1. Как задается плоскость ма чертеже? 2. Что такое след плоскости на плоскости проекций? 3. Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости? Л. Как определяется на чертеже, принадлежит ли прямая данной плоскости? 5. Как построить на чертеже точку, принадлежащую данной плоскости? 6. Как располагается в системе nt, я? и 713 плоскость общего положения? 7. Что такое фронтально-проецирующая, горизонтально-проецирующая и про-фильно-проецирующая плоскости? 8. Как изображается на чертеже фрошально-проецирующая плоскость, проведенная через прямую общего положения? 9. Какое взаимное положение могут занимать две плоскости? 10. Каков признак параллельности двух плоскостей? 11. Как взаимно располагаются одноименные следы двух параллельных между собой плоскостей? 12. Как установить взаимное положение прямой и плоскости? 13. В чем заключается общий способ построения линии пересечения двух плоскостей? 14. В чем заключается в общем случае способ построения точки пересечения прямой с плоскостью? 15. Как определить «видимость» при пересечении прямой с плоскостью? 16. Чем определяется взаимная параллельность двук плоскостей? 17. Как провести через точку плоскость, параллельную заданной плоскости? 18. Как располагается проекция перпендикуляра к плоскости? 19. Как построить взаимно перпендикулярные плоскости?