Построение треугольника по двум отрезкам и углу. Видеоурок «Построение треугольника по трем элементам

D С Построение треугольника по двум сторонам и углу между ними. hk h 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному. 4. Отложим отрезок АС, равный P 2 Q 2. В А Δ АВС искомый. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2, Q1Q1 P1P1 P2P2 Q2Q2 а k Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2, A= hk. Построить. Построение.


При любых данных отрезках AB=P 1 Q 1, AC=P 2 Q 2 и данном неразвернутом hk искомый треугольник построить можно. Так как прямую а и точку А на ней можно выбрать произвольно, то существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу (по первому признаку равенства треугольников), поэтому принято говорить, что данная задача имеет единственное решение.


D С Построение треугольника по стороне и двум прилежащим к ней углам. h 1 k 1, h 2 k 2 h2h2 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному h 1 k Построим угол, равный h 2 k 2. В А Δ АВС искомый. Δ АВС искомый. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 h1h1 k1k1 N Док-во: По построению AB=P 1 Q 1, В= h 1 k 1, А= h 2 k 2. Построить Δ. Построение.


С 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим дугу с центром в т. А и радиусом Р 2 Q Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Δ АВС искомый. Дано:Отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Построение треугольника по трем сторонам. Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2 CA= P 3 Q 3, т. е. стороны Δ ABC равны данным отрезкам. Построить Δ. Построение.


Задача не всегда имеет решение. Во всяком треугольнике сумма любых двух сторон больше третьей стороны, поэтому если какой-нибудь из данных отрезков больше или равен сумме двух других, то нельзя построить треугольник, стороны которого равнялись бы данным отрезкам.

Решение приведено в учебнике.

Даны три отрезка M 1 N 1 , M 2 N 2 , M 3 N 3 (рис. 148, а). Требуется построить такой треугольник ABC, у которого две стороны, скажем АВ и АС, равны соответственно данным отрезкам M 1 N 1 и M 2 N 2 , а высота АН равна отрезку M 3 N 3 . Проведем решение задачи по описанной схеме.


Допустим, что искомый треугольник ABC построен (рис. 148, б). Мы видим, что сторона АВ и высота АН являются гипотенузой и катетом прямоугольного треугольника АВН. Поэтому построение треугольника ABC можно провести по такому плану: сначала построить прямоугольный треугольник АВН, а затем достроить его до всего треугольника ABC. Построение

Строим прямоугольный треугольник АВН, у которого гипотенуза АВ равна отрезку M 1 N 1 , а катет АН равен данному отрезку M 3 N 3 . Как это сделать, мы знаем (задача 314, в). На рисунке 149, а изображен построенный треугольник АВН. Затем проводим окружность радиуса M 2 N 2 с центром в точке А. Одну из точек пересечения этой окружности с прямой ВН обозначим буквой С. Проведя отрезки ВС и АС, получим искомый треугольник ABC (рис. 149, б).


Доказательство

Треугольник ABC действительно искомый, так как по построению сторона АВ равна M 1 N 1 , сторона АС равна M 2 N 2 , а высота АН равна M 3 N 3 , т. е. треугольник ABC удовлетворяет всем условиям задачи. Исследование

Нетрудно сообразить, что задача имеет решение не при любых данных отрезках M 1 N 1 , M 2 N 2 , М 3 N 3 . В самом деле, если хотя бы один из отрезков M 1 N 1 и M 2 N 2 меньше M 3 N 3 , то задача не имеет решения, так

как наклонные АВ и АС не могут быть меньше перпендикуляра АН. Задача не имеет решения и в том случае, когда M 1 N 1 =M 2 N 2 =M 3 N 3 (объясните почему). В остальных случаях задача имеет решение. Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 3 N 3 , то задача имеет единственное решение: в этом случае сторона АС совпадает с высотой АН и искомый треугольник является прямоугольным (рис. 149, в). Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 1 N 1 то задача также имеет единственное решение: в этом случае треугольник ABC равнобедренный (рис. 149, г). И наконец, если M 2 N 2 >M 3 N 3 и М 1 N 1 ≠М 2 N 2 , то задача имеет два решения - треугольники ABC и АВС 1 на рисунке 149, д.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №68 г. Челябинска

Адрес: 454078, 0а

E-mail: *****@***ru

Задачи на построение.

Построение треугольника по трем элементам.

Ф. И.О.:

Должность: учитель математики

Предмет: геометрия

Челябинск, 2015

Предмет: Геометрия

Тема: Задачи на построение. Построение треугольника по трем элементам.

Технология: Компьютерная (новая информационная) технология обучения

Конспект учебного занятия:

Тема: Задачи на построение. Построение треугольника по трем элементам. Класс: 7

Дата:

Оборудование: циркуль, транспортир, линейка, компьютер, проектор, презентация, рабочая карточка для каждого ученика (Приложение 1 ), карточка с домашним заданием для каждого ученика (Приложение 2 ).

Учебник: Геометрия: учеб. Для 7-9 кл. общеобразовательных учреждений/ , и др.- М.: Просвещение, 2010 – 384с.

Форма урока: Изучение нового материала. Практическая работа

Цели урока:

1. Образовательная

1) Обобщить знания по теме: «Задачи на построение с помощью циркуля и линейки»;

2) Отработать навыки построения треугольника по трем его элементам.

2. Развивающая

1) Способствовать развитию умения анализировать, сравнивать, делать выводы;

2) Способствовать развитию памяти учащихся.

3. Воспитательная

1) Способствовать воспитанию интереса к предмету;

2) Способствовать воспитанию личностных качеств: активности, самостоятельности, аккуратности в работе.

План урока (45 мин):

1. Организационный момент (3 мин)

2. Повторение (8 мин)

3. Изучение нового материала (20 мин)

4. Физкультминутка (2 мин)

5. Первичное закрепление (5 мин)

6. Итог урока (3 мин)

7. Ответы на вопросы учащихся (2 мин)

8. Домашнее задание (2 мин)

Ход урока:

1. Организационный момент

Проверка готовности учащихся к уроку. Приветствие учащихся.

2. Повторение

На дом учащимся было задано задание повторить задачи на построение с помощью циркуля и линейки: построить отрезок, равный данному; построить угол, равный данному.

1) Сегодняшний урок мы начнем с проверки домашнего задания, а поможет нам в этом компьютер. Итак, все внимание на экран.

(проверка домашнего задания, презентация)

2) Какие теоремы мы использовали при доказательстве в этих задачах на построение? (первый, второй и третий признак равенства треугольников)

Учащиеся формулируют эти признаки:

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

3) Таким образом, для успешного изучения задач на построение нам необходимо знать:

1. Во-первых, как строить отрезок равный данному и угол равный данному.

2. Во-вторых, признаки равенства треугольников.

3. Изучение нового материала

Тема сегодняшнего урока: «Построение треугольника по трем его элементам».

Давайте с вами подумаем и ответим на такой вопрос: «Какие элементы есть в треугольнике?» (3 угла и 3 стороны ). Таким образом, получается всего 6 элементов. А нам для построения треугольника необходимо всего 3. Давайте с вами подумаем над таким вопросом: «Какие 3 элемента необходимы для построения треугольника?» (2 стороны и 1 угол, 2 угла и 1 сторона, 3 стороны, а 3 угла – не подходят, т. к. треугольники мы получим не равные, а подобные. Что это означает, мы с вами будем изучать в 8 классе ).

Цель нашего урока: рассмотреть и доказать алгоритмы задач на построение треугольника по трем его элементам с помощью циркуля и линейки. А именно:

1) Построить треугольник по 2 сторонам и углу между ними;

2) Построить треугольник по стороне и двум прилежащим к нему углам;

3) Построить треугольник по трем сторонам.

Таким образом, чтобы построить треугольник по трем элементам, нужно сначала уметь строить отрезок, равный данному и угол равный данному. Конечно, это можно сделать с помощью линейки с делениями и транспортиром, но в математике требуется еще и уметь выполнять построения с помощью циркуля и линейки без деления.

Любая задача на построение состоит из 4 основных этапов:

2. Построение

3. Доказательство

4. Исследование

Анализ. На этом этапе происходит отыскание способа решения задачи путем установления связей между искомыми элементами и данными задачи. Анализ дает возможность составить план решения задачи на построение.

Построение – происходит построение по намеченному плану.

Доказательство. Когда искомая фигура построена, необходимо доказать, что она удовлетворяет всем требованиям задачи.

Исследование задачи, т. е. выяснение вопроса о том, при любых ли данных задача имеет решение, и если имеет, то сколько именно.

Обращаю ваше внимание на то, что в 7 классе этап анализа решения задачи не проводится, т. е. мы ограничиваемся только тремя этапами: построение, доказательство, исследование.

Итак, приступим к построению треугольника по 3 его элементам.

Начнем с задачи №1: Построить треугольник по 2 сторонам и углу между ними.

Дано:

Построение:

1. Построить угол М, равный заданному углу А.

2. На одной стороне угла отметить точку К так, чтобы отрезок МК был равен заданному отрезку АВ.

https://pandia.ru/text/80/029/images/image006_3.png" width="16" height="10"> M = A

5) ∆MKN - искомый треугольник

Доказательство: треугольники равны по первому признаку

Исследование: задача всегда имеет 4 решения.

Давайте с вами подумаем и ответим на вопрос: Чему равна сумма всех углов треугольника? (1800 ) А может она быть больше 1800? (Нет ) А может она быть меньше 1800? (Нет )

Задача №2: Построить треугольник по стороне и двум прилежащим к ней углам.

Дано:

Построение:

2. Построить угол M, равный заданному углу А.

3. Построить угол N, равный заданному углу B.

4. Точка пересечения двух сторон углов M и N – вершина треугольника K.

5. Построен треугольник MKN по стороне и двум заданным углам.

Запись на доске:

1) https://pandia.ru/text/80/029/images/image006_3.png" width="16" height="10 src="> M = A

3) https://pandia.ru/text/80/029/images/image006_3.png" width="16" height="10"> N = B

4) https://pandia.ru/text/80/029/images/image006_3.png" width="16" height="10"> M ∩ N =K

5) ∆MKN - искомый треугольник

Доказательство: треугольники равны по второму признаку

Исследование: задача всегда имеет 2 решения, если сумма двух углов треугольника меньше 1800.

Прежде, чем приступить к решению третей задачи, давайте с вами вспомним, а какое условие должно выполняться, чтобы треугольник существовал?

(Должны выполняться неравенства треугольника, т. е. каждая сторона треугольника должна быть меньше суммы двух других сторон.)

https://pandia.ru/text/80/029/images/image012_2.png" width="299" height="286 src=">Дано:

Построение:

1. Построить отрезок MN, равный заданному отрезку AB.

2. Из точки M провести часть окружности, радиус которой равен заданному отрезку АС.

3. Из точки N провести часть окружности, радиус которой равен заданному отрезку CB.

4. Эти окружности пересекаются в точке К.

5. Соединяем точку М с точкой К и точку N с точкой К.

6. Построен треугольник MKN по трем сторонам.

Запись на доске:

2) Окр1 (M, AC)

3) Окр2 (N, CB)

4) Окр1∩Окр2=К

6) ∆MKN - искомый треугольник

Доказательство: треугольники равны по третьему признаку

Исследование: задача имеет 2 решения, если выполняются неравенства треугольника, т. е. каждая сторона треугольника должна быть меньше суммы двух других сторон. Иначе, решений нет.

4. Физкультминутка

(Проводит один из учеников, по желанию)

Одолела вас дремота, (Зеваем )

Шевельнуться неохота?

Ну-ка, делайте со мною

Упражнение такое:

Вверх, вниз потянись, (Руки вверх, потянулись )

Окончательно проснись.

Руки вытянуть пошире. (Руки в стороны )

Раз, два, три, четыре.

Наклониться - пять, шесть (Наклоны туловища)

И на месте поскакать. (Прыжки на месте )

На носок, потом на пятку.

Все мы делаем зарядку.

5. Первичное закрепление

После отдыха учащиеся самостоятельно решают задачи, а учитель ходит и контролирует правильность выполнения заданий. Если кто-то не справляется, учитель объясняет план решения задачи. Те учащиеся, которые самостоятельно справились с решением задач, получают оценки. (Приложение 1 )

6. Итог урока

1) Что нового узнали на уроке? (С помощью циркуля и линейки можно строить не только отрезок равный данному и угол равный данному, а еще и треугольники по трем его элементам )

2) Всегда ли можно построить треугольник по трем его сторонам? (Нет, это возможно, только если выполняются неравенства треугольника, т. е. каждая сторона треугольника должна быть меньше суммы двух других сторон )

3) Выставление оценок за урок.

7. Ответы на вопросы учащихся

8. Домашнее задание (Приложение 2 )

3) Построить треугольник МНО, если МН = 1 см, НО = 4 см, ОМ = 3 см.

Подсказка.

Приложение 1

Вариант 1.

Построить треугольник ВСН, если ВС = 3 см, СН = 4 см, С = 350.

Дано:

Построение:

Доказательство:

Исследование:

Вариант 3

Построить треугольник ОДЕ, если ОД = 4 см, ДЕ = 2 см, ЕО = 3 см.

Дано:

Построение:

Доказательство:

Исследование:

Приложение 2

Домашнее задание по геометрии

1) Построить треугольник СДЕ, у которого ДС = 4 см, ДЕ = 5 см, Д = 1100.

2) Построить треугольник ВСР, если С = 150, Д = 500, СД = 3 см.

3) Построить треугольник МНО, если МН = 5 см, НО = 4 см, ОМ = 3 см.

Подсказка. Перед построением треугольника необходимо построить все заданные элементы в натуральную величину.

Три доказанные в п. 188 теоремы о равенстве треугольников показывают, что треугольник вполне определен, если даны три его стороны, две стороны и угол, заключенный между ними, сторона и два прилегающих к ней угла (или вообще два каких-нибудь угла).

Существование треугольника, определенного заданием тех или иных конкретных величин сторон или углов, обнаруживается при решении задачи на построение треугольника по данным элементам: однозначность решения задачи на построение еще раз доказывает признаки равенства из п. 188. Сообразно трем признакам равенства возникают и три основные задачи на построение треугольников.

Задача 1. Даны три отрезка а, b, с. Построить треугольник, имеющий эти отрезки своими сторонами.

Решение. Пусть с - наибольший из трех отрезков: для того чтобы задача могла иметь решение, необходимо, чтобы выполнялось условие Будем считать, что это условие выполнено. На произвольной прямой (рис. 226) отложим в произвольном месте отрезок . Концы его примем за две вершины искомого треугольника. Третья вершина должна лежать на расстоянии b от точки А (или от точки В) и на расстоянии а от В (или А). Для построения недостающей вершины проводим окружность радиуса b с центром А и окружность радиуса а с центром В.

Эти две окружности пересекутся, так как по условию расстояние между их центрами меньше суммы радиусов и больше их разности, поскольку с - наибольший отрезок среди данных. Получаются две точки пересечения С и С, т. е. два возможных положения вершины С; соответственные два треугольника, однако, равны, как симметрично расположенные относительно АВ. На рис. 226 также показано, как получить еще два положения третьей вершины, если поменять местами радиусы окружностей.

Задача 2. Построить треугольник по двум сторонам и углу, заключенному между ними.

Задача 3. Построить треугольник по стороне и прилежащим к ней углам, сумма которых меньше .

При анализе признаков равенства треугольников обращают на себя внимание два обстоятельства:

1) Нет признаков, в которых равенство треугольников обеспечивалось бы только равенством трех углов. Это объясняется тем, что два треугольника, имеющие равные углы, еще не обязательно равны (подобные треугольники, см. подробнее гл. XVI).

2) Признак равенства треугольников по двум сторонам требует равенства не произвольных углов, но непременно заключенных между равными сторонами. Чтобы выяснить причину этого, поставим следующую задачу.

Задача 4. Построить треугольник по двум сторонам и углу, лежащему против одной из них.

Решение. Пусть, например, даны стороны а и b и угол а, лежащий против а (рис. 227). Для построения треугольника отложим отрезок b на произвольной прямой АС и из одной его вершины, например А, проведем луч AM под углом а к отрезку АС. Неизвестная третья сторона треугольника должна лежать на этом луче; ее конец и есть недостающая вершина треугольника. Известно, однако, что эта третья вершина лежит на расстоянии а от С и, значит, помещается на окружности с центром С радиуса а. Проведем такую окружность. Точки ее пересечения с лучом AM дадут возможные положения третьей вершины. Так как окружность и луч могут не иметь общих точек, иметь одну или две общие точки, то задача может не иметь решений, иметь одно или два решения.

На рис. 227 представлен случай, когда угол а острый, и четыре варианта для стороны для которых задача, соответственно, не имеет решений, имеет одно решение, два решения и снова одно решение. Показаны оба решения для Полный анализ этой задачи дается в п. 223 в связи с задачами на решение треугольников.

Можно ставить и другие разнообразные задачи на построение треугольников по тем или иным данным. Во всех случаях для возможности построения треугольника должны быть заданы либо три какие-нибудь его линейных элемента (т. е. три отрезка: стороны, медианы, высоты и т. п.), либо два отрезка и один угол, либо один отрезок и два угла.

Задача 5. Даны две стороны а, с треугольника и медиана . Построить треугольник.

Решение. Начнем решение задачи с анализа. Так называется этап решения, когда мы условно допускаем, что задача уже решена, и выясняем такие ее особенности, которые и в самом деле помогут нам ее решить. Итак, допустим, что треугольник ABC (рис. 228, а) - искомый. Тогда в нем

Заметим, что отрезок ВМ по определению медианы составляет половину с, т. е. может считаться известным. Но теперь в треугольнике ВМС известны все три стороны! Здесь ключ к решению задачи, остальное уже просто. Мы строим (рис. 228, б) треугольник ВМС по трем сторонам и продолжаем затем сторону ВМ на расстояние, равное , получая тем самым третью вершину А треугольника. Правильность выполненного построения ясна.

Условие разрешимости задачи состоит в возможности построить «частичный» треугольник по стороне а, медиане и половине другой стороны.

Представляем вашему вниманию видеоурок по теме «Построение треугольника по трем элементам». Вы сможете решить несколько примеров из класса задач на построение. Учитель подробно разберет задачу на построение треугольника по трем элементам, а также напомнит теорему о равенстве треугольников.

Данная тема имеет широкое практическое применение, поэтому рассмотрим некоторые типы решения задач. Напомним, что любые построения выполняются исключительно с помощью циркуля и линейки.

Пример 1:

Построить треугольник по двум сторонам и углу между ними.

Дано: Предположим, анализируемый треугольник выглядит так

Рис. 1.1. Анализируемый треугольник к примеру 1

Пусть заданные отрезки будут с и а, а заданный угол будет

Рис. 1.2. Заданные элементы к примеру 1

Построение:

Сначала следует отложить угол 1

Рис. 1.3. Отложенный угол 1 к примеру 1

Затем на сторонах данного угла откладываем циркулем две данные стороны: замеряем циркулем длину стороны а и помещаем остриё циркуля в вершину угла 1, а другой частью делаем насечку на стороне угла 1. Аналогичную процедуру проделываем со стороной с

Рис. 1.4. Отложенные стороны а и с к примеру 1

Затем соединяем полученные насечки, и мы получим искомый треугольник АВС

Рис. 1.5. Построенный треугольник АВС к примеру 1

Будет ли данный треугольник равный предполагаемому? Будет, ведь элементы полученного треугольника (две стороны и угол между ними) соответственно равны двум сторонам и углу между ними, данным в условии. Поэтому по первому свойству равенства треугольников - - искомый.

Построение выполнено.

Примечание:

Напомним, как отложить угол, равный данному.

Пример 2

Отложить от данного луча угол, равный данному. Заданы угол А и луч ОМ. Построить .

Построение:

Рис. 2.1. Условие к примеру 2

1. Построить окружность Окр(А, r = AB). Точки В и С - являются точками пересечения со сторонами угла А

Рис. 2.2. Решение к примеру 2

1. Построить окружность Окр(D, r = CB). Точки E и M - являются точками пересечения со сторонами угла А

Рис. 2.3. Решение к примеру 2

1. Угол МОЕ - искомый, так как .

Построение выполнено.

Пример 3

Построить треугольник АВС по известной стороне и двум прилежащим к ней углам.

Пусть анализируемый треугольник выглядит так:

Рис. 3.1. Условие к примеру 3

Тогда заданные отрезки выглядят таким образом

Рис. 3.2. Условие к примеру 3

Построение:

Отложим угол на плоскости

Рис. 3.3. Решение к примеру 3

Отложим на стороне данного угла длину стороны а

Рис. 3.4. Решение к примеру 3

Затем отложим от вершины С угол . Необщие стороны углов γ и α пересекаются в точке А

Рис. 3.5. Решение к примеру 3

Является построенный треугольник искомым? Является, так как сторона и два прилежащих к ней угла построенного треугольника соответственно равны стороне и углу между ними, данных в условии

Искомый по второму признаку равенства треугольников

Построение выполнено

Пример 4

Построить треугольник по 2 катетам

Пусть анализируемый треугольник выглядит так

Рис. 4.1. Условие к примеру 4

Известные элементы - катеты

Рис. 4.2. Условие к примеру 4

Данная задача отличается от предыдущих тем, что угол между сторонами можно определить по умолчанию - 90 0

Построение:

Отложим угол, равный 90 0 . Делать это будем точно так же, как показано в примере 2

Рис. 4.3. Решение к примеру 4

Затем на сторонах данного угла откладываем длины сторон а и b , данных в условии

Рис. 4.4. Решение к примеру 4

В результате полученный треугольник - искомый, ведь его две стороны и угол между ними соответственно равны двум сторонам и углу между ними, данными в условии

Заметим, что отложить угол 90 0 можно, построив две перпендикулярные прямые. Как выполнить эту задачу, рассмотрим в дополнительном примере

Дополнительный пример

Восстановить перпендикуляр к прямой р, проходящий через точку А,

Прямая р, и точка А, лежащая на данной прямой

Рис. 5.1. Условие к дополнительному примеру

Построение:

Сначала выполним построение окружности произвольного радиуса с центром в точке А

Рис. 5.2. Решение к дополнительному примеру

Данная окружность пересекает прямую р в точках К и Е. Затем построим две окружности Окр(К, R = КЕ), Окр(E, R = КЕ). Данные окружности пересекаются в точках С и В. Отрезок СВ - искомый,

Рис. 5.3. Ответ к дополнительному примеру

  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Репетитор по математике ().
  1. № 285, 288. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. под редакцией Тихонова А. Н. Геометрия 7-9 классы. М.: Просвещение. 2010 г.
  2. Постройте равнобедренный треугольник по боковой стороне и углу, противолежащему основанию.
  3. Постройте прямоугольный треугольник по гипотенузе и острому углу
  4. Постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины данного угла.