Поверхность воды изгибается под действием лазера. Лазерный свет. Отражение и преломление света. Скорость больше скорости света

Всегда ли свет распространяется по прямой линии?

Если луч света не встречает препятствий, он остаётся прямым. Если же световой поток сталкивается с каким-либо объектом или веществом, траектория движения луча меняется. Он способен проникать сквозь прозрачные объекты (стекло, вода), переходить из одной прозрачной среды в другую, но при этом будет отклоняться. Данное явление называется преломлением света. Непрозрачный объект (например, дверь) мешает проникновению света, и тогда луч отражается от его поверхности.

Световые лучи от нижней части соломинки (ниже поверхности воды) преломляются, когда проходят через воду, стекло и воздух. От верхней части соломинки лучи проходят только через воду и стекло, итак, луч проходит разные пути, поэтому преломление тоже разное.

Как быстро движется свет?

Скорость света самая большая из известных во Вселенной – почти 300 000 км/c. Все электромагнитные волны перемещаются столь же быстро, правда лишь тогда, когда оказываются в абсолютно пустом пространстве, то есть в вакууме. Скорость света снижается, когда он проходит сквозь прозрачное вещество.

Одна из теорий о пространстве и времени утверждает. Что если объект движется со скоростью, приблизительно равной скорости света, то течение времени для него замедляется. По достижении им скорости света время останавливается. Возможно, если бы скорость объекта была больше скорости света, время повернуло бы вспять, стало бы течь в прошлое. Тогда «кратчайшие» пути в космосе, названные пространственно-временными тоннелями, сделали бы реальными переходы со скоростью большей, чем скорость света.

Скорость света сильно меняется в зависимости от того, через какое вещество или среду он проходит.

Получение лазерного света

Слово «лазер» происходит от английского слова «laser», буквы которого являются начальными буквами словосочетания, переводимого как «усиление светового луча с помощью квантового генератора». Лазерный пучок получают посредством пропускания импульсов энергии через вещество, называемого активной средой. Подводимая энергия может быть электрической, тепловой или даже обычной световой. Атомы активной среды накапливают энергию, которая достигает определённого предела (порога) и извергается в виде вспышки лазерного света.

В чём отличие?

Свет, создаваемый лазером, относится к тому же виду электромагнитной волновой энергии, что и обычный свет. Но у него есть три характерные черты.

Лазерный свет

1. Все световые волны имеют одинаковую длину. Это значит, что все они одного цвета. Лазер испускает свет только одного чистого цвета.

2. Все гребни и подошвы волны одинаковые, равные, как волна гофрированного листового металла.

3. Все волны параллельны: они остаются на одном и том же расстоянии друг от друга, независимо от пройденного ими расстояния.

Обычный свет

1. То, что кажется одним цветом света, представлено смесью волн с разной длиной волны, это всегда комбинация нескольких цветов.

2. Гребни и подошвы волны перемешаны, а не выровнены.

3. Волны обычного света расходятся, поэтому весь пучок становится шире.

11.05.2011 (16:43)
Просмотров: 6637
Рейтинг: 1.71
Голосов: 7
Теги:
вода , лазер , оптика , линза ,
>>



Ваша оценка
-2 -1 0 1 2
Согласно последним исследованиям ученых из Франции, мощности самого обычного «бытового» лазера из DVD-плеера достаточно для преодоления поверхностного натяжения воды и искривления этой поверхности с образованием небольшой неровности. При этом на эксперименте были получены не только впадины, но и возвышенности. Предложенное экспериментаторами теоретическое объяснение процесса еще не до конца принимается коллегами. Однако найденная методика может в будущем использоваться для формирования миниатюрных линз, которые будут легко настраиваться, в зависимости от требований эксперимента.

Исследователи научились искривлять поверхность воды при помощи источников оптического излучения еще в 1973 году, однако тогда для этого использовались мощные лазеры, действовавшие за счет большого фотонного давления. Это явление тогда было удивительно само по себе, т.к. вода имеет достаточно большое поверхностное натяжение (а свет оказывает сравнительно малое давление).

До сих пор считалось, что искривление может быть достигнуто при помощи лазеров мощностью не менее 10 Вт (это класс лазеров, используемых в микро-машиностроении или хирургии). Поэтому никто даже не пытался получить сходные результаты при помощи менее мощного оборудования. Но группа ученых из University of Rennes (Франция) решила провести эксперимент со слабым лазером в конфигурации, известной как полное внутреннее отражение, в рамках которой силы распределяются несколько иным образом, нежели в случае прямого облучения. Подробные результаты их работы опубликованы в журнале Physical Review Letters.

Когда вы освещаете светом воду под некоторым случайным углом, суммарная сила давления света будет складываться из воздействия трех лучей: первоначального, прошедшего через поверхность и отраженного от поверхности. В результате сила давления окажется вертикальной (горизонтальная компонента суммарной силы окажется равной нулю). Но когда свет падает на поверхность воды из ее толщи под углом более 49 градусов, он практически полностью отражается обратно. В этом случае горизонтальная составляющая силы сохраняется (согласно эффекту Гаусса Хенхена) и воздействует на воду в направлении центра луча. Образуется искривление поверхности, на подобие того, что возникает, если края листа бумаги сдвигать друг к другу.

На эксперименте команда использовала зеленый 20-милливатный аргоновый лазер, направленный под углом к поверхности из мелкого контейнера с водой, снабженного зеркалом вдоль дна. Лазерный луч несколько раз отражался от зеркала и поверхности, в конечном итоге попадал на сенсор. Удлиненное изображение луча демонстрировало искривление водной поверхности (также как кривое зеркало, в зависимости от своей формы, искажает пропорции отражающегося в нем человека). Ученые были озадачены тем, что при этом на поверхности образовывались не ожидаемые ими выпуклости, а, наоборот, впадины. Однако их объяснение показывает, что все это полностью соответствует влиянию эффекта Гаусса Хенхена. Свое мнение относительно того, почему возможен такой сюрприз, команда базирует на присутствии небольшого электрического поля, распространяющегося примерно на один микрон над поверхностью воды. Они полагают, что градиент этого поля настолько велик, что он значительно изменяет давление воздуха в непосредственной близости от поверхности (вдавливая ее вниз).

Коллеги ученых, однако, не до конца принимают данное объяснение, хотя и не берут под сомнения результаты эксперимента. По их мнению, модель слишком проста. Но, вне зависимости от деталей этой модели, обнаруженный эффект вполне может использоваться для создания небольших настраиваемых оптических линз.

Оптические системы формирования лазерного излучения в технологических установках

Назначение оптических систем в лазерных установках состоит в следующем:

– изготовление оптических резонаторов и получение лазерных излучения,

– передача энергии излучения лазера к месту обработки,

– регулирование параметров излучения,

– формирование светового пучка с высокой плотностью мощности (фокусировка),

– наводка излучения на обрабатываемую точку,

– контроль за процессом обработки и оценка ее результатов.

Оптические системы содержат следующие основные элементы:

– фокусирующие – линзы, объективы,

– отражающие элементы – зеркала, сканаторы,

– преломляющие – призмы полного отражения, оптические дефлекторы (устройства позволяющие расщеплять один луч на несколько лучей),

– регулирующие излучения – оптические затворы и др.,

– передающие световоды.

Фокусирующие элементы служат для изменения диаметра пучка лазерного излучателя с целью изменения плотности мощности излучения. В технологических установках, как правило, требуется уменьшать диаметр пучка и повышать плотность энергии мощности излучения, т.е. фокусировать излучение.

Наиболее простой и широко применяемый способ фокусировки излучения – применение одиночной линзы (рис.), где f – фокусное расстояние, F – фокальная плоскость оптической системы.

Из-за того, что лазерное излучение обладает определенной расходимостью (хотя и очень малой), оно может быть сфокусировано (уменьшено) до вполне определенного размера. Диаметр светового пятна излучения имеет наименьшее значение в фокальной плоскости F и определяется по формуле:

Подставляя выражение для θ получаем

(2.38)

На практике наблюдается искажение фокусировки(аберрации)

С учетом сферических аберраций

, (2.39)

где P* – расчетный параметр (определяется размерами и формой линзы).

Зная энергию или мощность лазерного излучения W и, P и, можно рассчитать плотность энергии или мощность в сфокусированном пятне:

; . (2.40)

Ранее (см. свойства лазерного излучения) проводили оценку этих величин исходя из диаметра лазерного излучения. При фокусировке эти параметры возрастают на несколько порядков. На практике обычно стремятся к уменьшению диаметра пятна излучения.

Из формулы (2.39) видно, что для уменьшения диаметра сфокусированного пятна излучения необходимо уменьшать фокусное расстояние. Однако, это можно делать лишь до определенных пределов, т.к. при слишком малом расстоянии между линзой и поверхностью фокусировки возникает опасность повреждения линзы (например, парами и жидкими частицами обрабатываемого материала).

Поэтому для получения пятна диаметром в несколько микрон применяют другой способ – увеличение диаметра пучка с помощью телескопической системы – см.(2.39).

Диаметр светового пятна в этом случае определяется с учетом (2.39) по следующей формуле:

,

где Г>1 – увеличение телескопической системы.

Оптимальное фокусное расстояние линзы (при котором достигается наименьший диаметр сфокусированного пятна) может быть определено по формуле:

(2.41)

При прохождении лазерного излучения происходит нагревание линз оптической системы вследствие частичного поглощения излучения. Это может привести к термическим деформациям и повреждениям оптической системы. Поэтому плотность мощности излучения не должна превышать определенных значений, допускающих длительную нормальную работу деталей оптической системы.

Допустимая плотность мощности зависит от материала, из которого изготавливаются спицы и длины волны излучения.

– для фокусировки излучения с длиной волны 0.4 – 2 мкм (видимый и ближний инфракрасный спектры) применяют линзы, изготовленные из различных сортов оптического стекла. Допустимая плотность мощности составляет ~ 10 3 Вт/см 2 .

– для излучения с длиной волны 10.6 мкм

(CO 2 – лазеры) обычные оптические материалы непрозрачны. Материалами для изготовления линз служат:

– монокристаллы солей галогеноводородных кислот – NaCl, KBr, KCl и др.

Допустимая плотность мощности ~ 10 3 Вт/см 2 . Обладают высокой гигроскопичостью и малым сроком службы.

– полупроводниковые кристаллы – германий, арсенид галлия и др. Допустимая плотность мощности 100 Вт/см 2 .

При мощности излучения, превышающей допустимую, применяют либо принудительное воздушное или жидкостное охлаждение линз, либо Фокусирующие системы из зеркал с металлическими покрытиями на металлической основе(с целью лучшего охлаждения). Основа – стекло, медь, кремний. Покрытие – золото, серебро, медь, никель, молибден, алюминий и др.

Отражающие и преломляющие элементы оптических систем служат для изменения направления лазерного излучения. Применяются в оптических резонаторах и системах транспортировки лазерного излучения.

При длине волны лазерного излучения 0.4 – 2 мкм для этой цели применяют призмы полного внутреннего отражения и зеркала с многослойным диэлектрическим покрытием (для увеличения коэффициента отражения и уменьшения расстояния).

При длине волны излучения 10.6 мкм. применяют зеркала плоские, выпуклые, вогнутые с металлическим покрытием (из золота и алюминия), которые имеют высокий коэффициент отражения (~1). Изменяя плотность покрытий можно изменять коэффициент отражения, т.е. изготавливать полупрозрачные зеркала.

На практике часто возникает задача по перемещению лазерного луча по произвольному контуру. Для этого применяют систему подвижных плоских зеркал (см. рис.).

1 – излучатель лазера

2,3 – подвижные зеркала

4 – линза

5 – материал

По оси Х перемещаются зеркала 2 и 3 и линза 4 совместно, а по оси У могут двигаться только зеркало 3 и линза 4.

Одновременное перемещение по осям Х и У позволяет получать любую траекторию луча.

С применением зеркал изготавливаются системы сканирования лазерного луча, т.е. периодического перемещения его по одной и той же траектории.

Регулирующие элементы оптических систем предназначены для изменения энергии, мощности лазерного излучения, его пространственных и временных характеристик. К ним относятся

– оптические квантовые усилители – устройства, позволяющие увеличивать энергию лазерного импульсного излучения. Фактически это лазеры, в которых генерируются не самопроизвольно, а под действием излучения другого лазера. В результате к энергии импульса инициирующего излучения добавляется энергия излучения оптического усилителя.

– устройства для регулировки мощности излучения от нуля до номинального значения – диаграммы с переменным диаметром отверстия, сменные светофильтры с различными коэффициентами поглощения, оптические затворы, модуляторы, заслонки.



В качестве затворов модуляторов применяют следующие типы затворов

– электрооптический (эффект Понкельса), основан на явлении плоскости поляризации некоторыми веществами под действием высокого постоянного напряжения до 5кВ.

– механические затворы – вращающиеся зеркала до 30000 об/мин.

– затворы на насыщающихся затворах, основаны на явлении: при некотором значении интенсивности излучения некоторые органические красители становятся прозрачными.

– акустооптические затворы, кварцевое стекло и германий(для ИК диапазона) при воздействии ультразвуковых волн сопровождаются большими потерями(рассеяниями) для лазерного излучения и его генерация прекращается.

Затворы устанавливаются в резонаторе. Кроме этого применяются механические заслонки на выходе лазерного излучения из резонатора.

Передающие элементы оптических систем предназначены для передачи лазерного излучения на расстояния вплоть до нескольких десятков км. – для этого применяют волоконные световоды .

В настоящее время известно большое количество световодов. Наиболее широкое применение получили световоды следующей конструкции

Волоконный световод состоит из сердечника 1 с показателем преломления n 1 , оболочки 2 с показателем преломления n 2 >n 1 и защитной оболочки 3. Материалы применяемые для изготовления: сердечник например, из кварца с добавкой титана, чтобы повысить показатель преломления, оболочка из чистого кварца. Вообще для изготовления этих элементов световодов применяют, в настоящее время, большое количество различных сортов стекол и полимеров; для защитной оболочки применяют различные лаки, полимеры, металлы, она обеспечивает защиту световода от воздействия внешней среды(влаги), повышает механическую прочность, улучшает оптические характеристики. Диаметр световода колеблется в пределах от нескольких десятков до нескольких сотен мкм. Сердечник имеет диаметр в пределе от нескольких мкм. до 1000 мкм. (1мм.).

В световодах используется явление внутреннего полного отражения (рис.). На границе раздела 2-х сред происходт явление преломления и отражения света. При переходе светового потока из среды с большим коэффициентом преломления n 1 в среду с n 2

. (2.42)

Таким образом, если при входе светового потока в сердечник световода он падает на границу раздела с оболочкой под углом ≥ θ кр, то этот поток распространяется только в пределах сердечника.

Важной характеристикой световода является – затухание эффективности свеового потока при распространении по световоду. В настоящее время созданы созданы световоды с затуханием ~ 1дБ/км.

К решению важных измерительных задач в разных областях науки.

Бесконтактные лазерные триангуляционные методы измерения геометрических параметров поверхностей используется давно. Высокая точность и хорошие результаты достигнуты триангуляционными измерителями в основном для ровных гладких поверхностей. Измерение шероховатых поверхностей сложной формы, имеющих различный коэффициент отражения по поверхности, вызывает при использовании триангуляционного метода значительные ошибки. Это обусловлено деформацией индикатрисы рассеяния и влиянием «зеркальной» составляющей в отраженном сигнале. Отражение направленного лазерного пучка света от шероховатой поверхности не может описываться с позиций геометрической оптики как Френелевское отражение, так как всегда присутствует рассеянное излучение. Количество и направленность рассеянного света зависит от свойств поверхности. Зеркально гладкая поверхность не создает диффузно рассеянного излучения и, следовательно, измерение такой поверхности возможно в точке, где угол падения равен углу наблюдения. Рэлей показал, что изображение точки, лежащей на шероховатой поверхности, будет резким, если максимальная разность хода лучей, несущей изображение этой точки, не превышает φ/4, или при косом падении света 2h cosφ/4, где h – высота шероховатости; φ – угол падения лучей; λ – длина волны падающего излучения. В случае триангуляционного измерителя источником света будет пятно лазерного излучения на объекте. Соответственно резкость изображения пятна на фотоприемнике, а также его центр зависят от шероховатости поверхности. Шероховатость является причиной возникновения интерференционной картины на фотоприемнике и появления спеклов. Влияние последних на точность хорошо рассмотрено в . Однако в работах G.Häusler (, “Laser triangulation: fun-damental uncertainty in distance measurement”, APPLIED OPTICS/Vol 33, №7/ 1 March 1994) полностью отсутствует взаимосвязь шероховатости поверхности и возможности и возможности использования триангуляционного измерите-ля на шероховатых поверхностях сложной формы. В работе установлено, что для шероховатой поверхности существует такой угол падения, начиная с которого происходит только зеркальное отражение света. Диффузное отражение света возможно только при меньших углах падения. Угол, определяющий границу между диффузно и зеркально отраженным светом, назван критическим.

Величина критического угла сильно зависит от длины волны падающего излучения и шероховатости поверхности, на которую падает лазерный пучок. Зона, где эта зависимость проявляется наиболее сильно, лежит в диапазоне Rz = 0,15 – 0,38 мкм. При работе триангуляционного измерителя с такими поверхностями угол падения, при котором существует диффузное рассеяние, значительно уменьшается. Это приводит к резкой деформации индикатрисы рассеяния, что вносит значительную ошибку в измерение. Вследствие этого рельеф, имеющий участки, на которых угол падения больше критического, не может быть измерен достаточно точно. Для каждой длины волны имеется своя критическая величина шероховатости. Так для триангуляционного измерителя с λ=0,65 мкм измерения по-верхности с Rz ≤0,21мкм возможны только в одной точке из-за того, что критический угол равен нулю и, следовательно, отсутствует диффузное рассеяние на поверхностях, имеющих Rz ≤0,21мкм. Тогда если принять К = 3,3; λ = 0,65; φкр = 10°; постоянная К может меняться в зависимости от способов обработки для стали в пределах от 3 до 3,5, для экспериментальной проверки воспользуемся триангуляционным измерителем, блок и пластинами, имею-щими образцовую меру шероховатости 0,2 мкм.

Было проведенно исследование при помощи фотоприемника снималась индикатриса рассеяния, для чего образцовая поверхность помещалась на поворотный столик и измерялся угол падения. Для регистрации интенсивности света использовалось фото-приемное устройство, состоящее из объектива, в фокусе которого размещался фотодиод, усилителя и амперметра (самописца). Данные измерений ин-тенсивности отраженного света (индикатриса рассеяния).

Полученная зависимость имеет 2 максимума: при угле падения Θ = 10° и Θ = 16°. Это соответствует: первый – критическом углу; второй – положе-нию, когда угол падения равен углу наблюдения, то есть, при зеркальном отражении. Зависимость показывает, что деформация индикатрисы рассеяния наступает тогда, когда она совпадает с критическим углом. Для каждой кон-кретной поверхности деформация индикатрисы рассеяния определяется шероховатостью Rz и наклоном поверхности. Зависимость подтверждает пра-вильность формулы (2) и возможность ее использования для определения границы применяемости триангуляционных измерителей, работающих на шероховатых поверхностях.

Полученные экспериментальные результаты показывает справедливость соотношения (2). Угол триангуляции φБ определяется из соотношения:

φБ = arc tq (d/b) (3) Где d/b – отношение расстояния от измеряемого объекта к базе триангуляци-онного измерителя. Это отношение – основной параметр, характеризующий возможности триангуляционного измерителя. Для работы измерителя такого типа по диффузному отражению необходимо, чтобы при нормальном падении зондирующего пучка на измеряемую поверхность угол триангуляции должен быть меньше или равен критическому углу φкр (φкр). В этом случае область работы триангуляционного измерителя, работающего по диффузному отражению, будет ограничиваться условием

arc tq(d/b)£ arc cos(λ/3R) (4)

Область, лежащая выше полученных зависимостей, является рабочей областью триангуляционного измерителя, работающего по диффузному отражению и графическим отображением условия (4). Полученная зависимость показывает, что для поверхностей с малым (0,25–0,3 мкм) Rz существенно сни-жается диапазон углов падения и наблюдения, при которых возможно измерение расстояния и линейных размеров изделия. Таким образом определены требования к лазерному триангуляционному методу, работающему по диффузному отражению.

Литература:

1. В.Н. Демкин, В.А. Степанов, Пятшев А.А. Возможности триангуляционного лазерного метода измерения поверхности сложного рельефа 2.V. N. Demkin, D. S. Dokov, A.Z. Venediktov, V. N. Tireshkin. Measurement of wheel pairs parameters of a rolling stock during movement // Proceedings of SPIE.- Vol.5066, pp. 48–53. 3. Демкин В.Н., Доков Д.С., Привалов В.Е. Особенности применения лазерных диодов в линейных измерениях // Письма в ЖТФ, 2004, том 30, вып. 13.-С. 40-44. 4. Häusler. Laser triangulation: fundamental uncertainty in distance measurement, APPLIED OPTICS/Vol 33, №7/ 1 March 1994 5. G.Häusler. Three-Dimensional Sensors – Potentials and Limitations. Hand-book of Computer Vision and Applications. Volume1. pp 485– 506. measurement”, APPLIED OPTICS/Vol 33, №7/ 1 March 1994 6. Торопцев А.С. Оптика шероховатой поверхности. – Л.: Машинострое-ние, 1988.– 191с. 7. Jentzch F. Der Greuzowiker der reguleren Reflexion //Z. fur technishe phu-sik. 1926. Bd. 7 N 6. S. 310–312. 8. Hasumima H. Nara J. On the sheen Gloss //Journal of the Phusical Society of Japan. 1956. Vol.11. P. 69–75. 9. Городинский Г.М. К вопросу о статистической интерференции при от-ражении света от матовых стеклянных поверхностей // Оптика и спек-троскопия. 1963. Т. 15. Вып. 1. С. 113 –118.

Закон отражения света.
Отраженный и падающий лучи лежат в плоскости, содержащей перпендикуляр к отражающей поверхности в точке падения, и угол падения равен углу отражения.
Представьте, что вы направили тонкий луч света на отражающую поверхность, - например, посветили лазерной указкой на зеркало или полированную металлическую поверхность. Луч отразится от такой поверхности и будет распространяться дальше в определенном направлении. Угол между перпендикуляром к поверхности (нормалью) и исходным лучом называется углом падения, а угол между нормалью и отраженным лучом - углом отражения. Закон отражения гласит, что угол падения равен углу отражения. Это полностью соответствует тому, что нам подсказывает интуиция. Луч, падающий почти параллельно поверхности, лишь слегка коснется ее и, отразившись под тупым углом, продолжит свой путь по низкой траектории, расположенной близко к поверхности. Луч, падающий почти отвесно, с другой стороны, отразится под острым углом, и направление...

0 0

Человек, знающий элементарные законы оптики, от души посмеется над сюжетом, в котором супергерой отражает лазерную атаку злодея с помощью блестящей поверхности. Зеркало не способно отразить луч лазера, не рассеяв его пучок. Чтобы отразить или перенаправить луч лазера, нужно потрудиться и иметь для этого достаточно сложное оборудование.
Да и рука супергероя находится в большой опасности. Ведь при попадании мощного луча, зеркало с недостаточным качеством поверхности, или разрушится, или расплавится.

Это немалая проблема для современных специалистов в области лазерной оптики. Они сталкиваются с необходимостью отражать пучок лазера постоянно. Каких только ухищрений не предпринимали ученые до недавнего времени, их зеркала не удовлетворяли поставленным задачам. Какой бы идеальной ни была поверхность зеркала, она греется в точке соприкосновения с лучом, нагревается и деформируется. Лазерный луч не отражается полностью, большая часть его энергии...

0 0

Я так понимаю потеряет и при правильном подборе материала потеряет очень много, фактически станет бесполезным. Т.е. при относительно небольших затратах всю эту очень эффектную технологию можно свести на нет. Думаете только у нас деньги "на оборонке" отмывают? :)

И конечно опасен, но обратно в самолет он не отразится, будет "метаться".

Если ставить уголковое зеркало из трёх зеркал под прямым углом друг к другу (как на автомобильных/велосипедных отражателях), то луч пойдёт строго обратно.

Проблема в том, что зеркало отражает не всё, и поглощённая часть луча может расплавить зеркало.

А ведь это идея!

Это обсуждали сразу как появилось пресловутое видео. Собственно делались даже расчеты, получилось что весь этот лазер можно свести на нет специализированной отражающей краской, с подобранной под его частоту максимальной...

0 0

Эта страничка посвящена самодельному изготовлению зеркала для лазера. Зеркало - составная часть лазерного резонатора, и от коэффициента отражения зеркала зависит возможность возникновения лазерной генерации в активной среде.

В книге Т. Раппа "Эксперименты с самодельными лазерами" изложены способы изготовления лазерных зеркал в условиях домашней мастерской. Однако для самостоятельного изготовления потребуется хороший двухступенчатый форвакуумный насос. Ниже приводится, возможно, не самый лучший, зато простой способ изготовления лазерной оптики.

Сразу надо сказать, что в настоящей статье изложены способы изготовления зеркала с металлической отражающей поверхностью. Коэффициент отражения такого зеркала в диапазоне волн 500-800 нм равен ~ 95 %. При таком значении коэффициента отражения можно добиться лазерной генерации только в активных средах с высоким коэффициентом усиления. В частности металлическое зеркало можно применять в самодельных азотных лазерах, лазерах на...

0 0

Лазер без зеркал

В длинном волоконном световоде может возникнуть лазерная генерация света – необходимая для этого положительная обратная связь создается из-за рэлеевского рассеяния генерируемого излучения на неоднородностях волокна. Такой лазер может быть отнесен к классу «случайных» лазеров, активно изучаемых в последнее время. По эффективности и качеству создаваемого пучка света лазер с распределенной случайной обратной связью не уступает лазеру с обычным резонатором, но при этом его излучение обладает рядом уникальных свойств

Устройство лазера сейчас знает даже школьник. С лазерами мы сталкиваемся практически на каждом шагу – в магазинах при сканировании штрих-кодов, при воспроизведении и чтении компакт-дисков, при печати на лазерных принтерах. Широко используются лазеры и в промышленности – для резки, сварки и пайки деталей из различных материалов.

Известно, что для лазерной...

0 0

Важный и серьёзный пост. Я должен знать что будет, если в идеальный, изнутри зеркальный шар (скажем определённого размера - 1 метр в диаметре) запустить лазерный луч от указки.
Подскажите, инженеры и учёные, битте. Я никак не доработаю свой эксперимент.
Второй вариант - шар не полый, а кварцевый например.
Есть ли возможность сделать "световой" луп?
Скажем у нас есть зеркало на которое мы направили лазерный луч, который отразившись идёт на другое зеркало, от которого отразившись идёт опять на первоначальное, замыкая луп?

Ну можно как вариант акустического резонатора.
Определённый сигнал определённой частоты посылаем на отражающую поверхность, он отражается и идёт на другую, от которой возвращается на первую, складывается с первоначальным резонирует, амплитуда растёт и т.д...Идёт раскачка...
Как завязка - микрофон-динамик.
Мне интересна лазерная завязка.

Проясните мне некоторые моменты. Это важно...Нет времени лезть в учебники или гугль,...

0 0

Зеркала отражают поляризованный свет вполне нормально. (У некоторых типов зеркал есть маленькая зависимость коэффициента отражения от поляризации, но она заметна только на очень точных приборах).

У любого зеркала есть основные характеристики - коэффициент отражения и коэффициент пропускания (если зеркало полупрозрачное). То есть, считается, что зеркало сколько-то отражает, сколько-то пропускает насквозь, остальное теряется. Пример: настенное зеркало отражает 75% и поглощает 25% света. Хорошее зеркало для лазера отражает 99.95% света, остальное в основном пропускает. Выходное зеркало в гелий-неоновом лазере отражает 99% и пропускает 1% - этот 1% и есть тот самый "луч лазера".

У диэлектрических зеркал соотношение отражения и пропускания зависит от длины волны света и от угла падения на зеркало. В...

0 0

Https://www.slideshare.net/neulukinnuwikabe516233/vaccum-pump-for-pennis-enlargement
п»їPE Bible, true, or just another scam?
Re: PE Bible, true, or just another scam?
In my opinion, if it is not a popular exercise, method or device on MOS it is more than likely not too effective. This of course is only true for methods that have been around for a while, new methods will need to be reviewed. If there was a Bible created for Penis Enlargement I am pretty sure MOS would be the promised land
Matters of Size SRT Suppressed -Restricted-Tra nsposition The World"s Best Penis Enlargement Routine based on 11 Years of Research ! Four Easy Steps to Starting SRT and Making the Fastest Penis Size Gains Possible
6. Follow the SRT Routine: Maximizing Gains and Healing Fastest! Watch your Penis gain inches in girth and length in the FASTEST time Possible! Over 15 Years of...

0 0

Вопрос 37. Устройство лазера.Принцип действия лазера.

Лазер обязательно состоит из трех основных компонент: 1) активной среды, в которой создаются состояния с инверсией населенностей; 2) системынакачки(устройства для создания инверсии в активной среде); 3) оптического резонатора(устройства, формирующего направление пучка фотонов).Кроме этого оптический резонатор предназначен для многократного усиления лазерногоизлучения.

В настоящее время в качествеактивной(рабочей)среды лазера используются различные агрегатные состояния вещества: твёрдое, жидкое, газообразное, плазма.

Источник накачки подаёт энергию в систему. В его качестве могут выступать: электрический разрядник; импульсная лампа; дуговая лампа; другой лазер; химическая реакция; взрывчатое вещество

Тип используемого устройства накачки напрямую зависит от используемого рабочего тела, а также определяет способ подвода энергии к системе. Например, гелий-неоновые лазеры используют электрические разряды в...

0 0