Примеры построения сечений многогранников. §16. Построение сечений многогранников. Метод следов

А вы знаете, что называется сечением многогранников плоскостью? Если вы пока сомневаетесь в правильности своего ответа на этот вопрос, то можете довольно просто себя проверить. Предлагаем пройти небольшой тест, представленный ниже.

Вопрос. Назовите номер рисунка, на котором изображено сечение параллелепипеда плоскостью?

Итак, правильный ответ – на рисунке 3.

Если вы ответите правильно, это подтверждает то, что вы понимаете, с чем имеете дело. Но, к сожалению, даже правильный ответ на вопрос-тест не гарантирует вам наивысших отметок на уроках по теме «Сечения многогранников». Ведь самым сложным является не распознавание сечений на готовых чертежах, хотя это тоже очень важно, а их построении.

Для начала сформулируем определение сечения многогранника. Итак, сечением многогранника называют многоугольник, вершины которого лежат на ребрах многогранника, а стороны – на его гранях.

Теперь потренируемся быстро и безошибочно строить точки пересечения данной прямой с заданной плоскостью. Для этого решим следующую задачу.

Построить точки пересечения прямой MN с плоскостями нижнего и верхнего оснований треугольной призмы ABCA 1 B 1 C 1 , при условии, что точка M принадлежит боковому ребру CC 1 , а точка N – ребру BB 1 .

Начнем с того, что продлим на чертеже прямую MN в обе стороны (рис. 1). Затем, чтобы получить необходимые по уловию задачи точки пересечения, продлеваем и прямые, лежащие в верхнем и нижнем основаниях. И вот наступает самый сложный момент в решении задачи: какие именно прямые в обоих основаниях необходимо продлить, так как в каждом из них имеется по три прямые.

Чтобы правильно сделать заключительный шаг построения, необходимо определить, какие из прямых оснований находятся в той же плоскости, что и интересующая нас прямая MN. В нашем случае – это прямая CB в нижнем и C 1 B 1 в верхнем основаниях. И именно их и продлеваем до пересечения с прямой NM (рис. 2).

Полученные точки P и P 1 и есть точки пересечения прямой MN с плоскостями верхнего и нижнего оснований треугольной призмы ABCA 1 B 1 C 1 .

После разбора представленной задачи можно перейти непосредственно к построению сечений многогранников. Ключевым моментом здесь будут рассуждения, которые и помогут прийти к нужному результату. В итоге постараемся в итоге составить шаблон, который будет отражать последовательность действий при решении задач данного типа.

Итак, рассмотрим следующую задачу. Построить сечение треугольной призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки X, Y, Z, принадлежащие ребрам AA 1 , AC и BB 1 соответственно.

Решение: Выполним чертеж и определим, какие пары точек лежат в одной плоскости.

Пары точек X и Y, X и Z можно соединить, т.к. они лежат в одной плоскости.

Построим дополнительную точку, которая будет лежать в той же грани, что и точка Z. Для этого продлим прямые XY и СС 1 , т.к. они лежат в плоскости грани AA 1 C 1 C. Назовем полученную точку P.

Точки P и Z лежат в одной плоскости – в плоскости грани CC 1 B 1 B. Поэтому можем их соединить. Прямая PZ пересекает ребро CB в некоторой точке, назовем ее T. Точки Y и T лежат в нижней плоскости призмы, соединяем их. Таким образом, образовался четырехугольник YXZT, а это и есть искомое сечение.

Подведем итог. Чтобы построить сечение многогранника плоскостью, необходимо:

1) провести прямые через пары точек, лежащих в одной плоскости.

2) найти прямые, по которым пересекаются плоскости сечения и грани многогранника. Для этого нужно найти точки пересечения прямой, принадлежащей плоскости сечения, с прямой, лежащей в одной из граней.

Процесс построения сечений многогранников сложен тем, что в каждом конкретном случае он различен. И никакая теория не описывает его от начала и до конца. На самом деле есть только один верный способ научиться быстро и безошибочно строить сечения любых многогранников – это постоянная практика. Чем больше сечений вы построите, тем легче в дальнейшем вам будет это делать.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определение

Сечение - это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве” .

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.

2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) - прямая \(m\) - параллельна прямой \(p\) .


3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]


5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.


6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA"\) и \(BB"\) (точки \(A", B"\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A"B"\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A"B"\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .

Причем заметим, что все точки \(A, B, A", B", M\) лежат в одной плоскости.

Пример 1.

Дан куб \(ABCDA"B"C"D"\) . \(A"P=\dfrac 14AA", \ KC=\dfrac15 CC"\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .

Решение

1) Т.к. ребра куба \(AA", CC"\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) - проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .


2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам (\(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .


Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac{\sqrt3}2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1{2\sqrt3}a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac{MQ}{DO}=\dfrac{AQ}{AO}=\dfrac{MA}{DA}=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1{\sqrt3}a\]

Значит, \(QK=\dfrac{\sqrt3}2a-\dfrac 45\cdot \dfrac 1{\sqrt3}a=\dfrac7{10\sqrt3}a\) .

б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .

Решение

1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .


Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .

Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .


Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac{SP}{PD}=\dfrac{SO}{OH}=\dfrac21\) .

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная (\(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) - \(BH\) , \(H\in DAC\) .

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .


Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .

2) Определим точное положение точки \(N\) на ребре \(DC\) .

Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .

Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .


Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ

МАЛАЯ АКАДЕМИЯ НАУК «ИСКАТЕЛЬ»

Отделение: математика

Секция: математика

МЕТОДЫ ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ

Работу выполнил:

_______________

ученик класса

Научный руководитель:

Тезисы

Методы построения сечений многогранников

Отделение: математика

Секция: математика

Научный руководитель:

Целью исследования является изучение различных методов построения сечений многогранников. Для этого и зучен теоретический материал по данной теме , систематизированы методы решения задач на построение сечений, приведены примеры задач на применение каждого метода, рассмотрены примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

ВВЕДЕНИЕ……………………………………………………………………….3

РАЗДЕЛ 1. ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ………………………………………4

РАЗДЕЛ 2. МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ…………………………………………………………10

РАЗДЕЛ 3. МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………14

РАЗДЕЛ 4. КОМБИНИРОВАННЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ

МНОГОГРАННИКОВ…………………………………………………………17

РАЗДЕЛ 5. КООРДИНАТНЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………………………………………….19

ЗАКЛЮЧЕНИЕ…………………………………………………………………25

СПИСОК ЛИТЕРАТУРЫ………………………………………………………26

ВВЕДЕНИЕ

Выпускникам предстоит сдавать экзамен по математике , а знание и умение решать стереометрические задачи необходимо для того , чтобы написать данный экзамен на максимальное количество баллов . Актуальность данной работы состоит в необходимости самостоятельно готовиться к экзамену, а рассматриваемая тема является одной из важнейших.

А нализ демонстрационных , диагностических и тренировочных вариантов ЕГЭ с 2009-2014 гг. показал , что 70% геометрических задач составляют задачи на построение сечений и вычисление их элементов – углов, площадей.

В учебном плане задачам на построение сечений многогранников отводится 2 академических часа , что недостаточно для изучения данной темы . В школе плоские сечения многогранников строят лишь на основании аксиом и теорем стереометрии. Вместе с тем существуют и другие методы построения плоских сечений многогранников. Наиболее эффективными являются метод следов, метод внутреннего проектирования и комбинированный метод. Очень интересен и перспективен в плане применения к решению различных задач координатный метод. Если многогранник поместить в систему координат, а секущую плоскость задать уравнением, то построение сечения сведется к отысканию координат точек пересечения плоскости с ребрами многогранника.

Объект исследования: методы построения сечений многогранников.

Цель исследования: изучить различные методы построения сечений многогранников.

Задачи исследования:

1) Изучить теоретический материал по данной теме .

2) Систематизировать методы решения задач на построение сечений.

3) Привести примеры задач на применение каждого метода.

4) Рассмотреть примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

РАЗДЕЛ 1

ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ

НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ

Определение. Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер - отрезков и граней - плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки.

Секущая плоскость α может быть задана: тремя точками, не лежащими на одной прямой; прямой и не принадлежащей ей точкой; другими условиями, определяющими ее положение относительно данного многогранника. Например, на рис.1 построено сечение четырехугольной пирамиды РАВСD плоскостью α, заданной точками М, К и Н, принадлежащими ребрам соответственно РС, РD и РВ;

Рис.1

Задача. В параллелепипеде АВС DA 1 B 1 C 1 D 1 постройте сечение плоскостью , проходящей через вершины C и D 1 и точку K отрезка B 1 C 1 (рис.2, а).

Решение. 1. Т . к . С DD 1 C 1 , D 1 DD 1 C 1 , то по аксиоме (через две точки , принадлежащие плоскости , проходит прямая , притом только одна ) построим след CD 1 в плоскости DD 1 C 1 (рис.2, б).

2. Аналогично в плоскости А 1 В 1 С 1 построим след DK, в плоскости BB 1 C 1 построим след CK.

3. D 1 KC – искомое сечение (рис .2, в)

а) б) в)

Рис.2

Задача. Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н - внутренние точки соответственно ребер РС, РВ и АВ (рис. 3, а).

Решение. 1-й шаг. Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис.3, б).

2-й шаг. Аналогично, отрезок КН - другая сторона искомого сечения (рис.3, в).

3-й шаг. Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 3, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 3, д).

4-й шаг. Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис.3,е).

Рис.3

Рассмотрим более сложную задачу.

Задача . Постройте сечение пятиугольной пирамиды PABCDE плоскостью

α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 4, а).

Решение . Прямые QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T 1 , (рис. 4,б), при этом T 1 є α, так как QК є α .

Прямая РR пересекает DE в некоторой точке F (рис.4, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т 2 (рис. 4, г), при этом Т 2 є α , как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т 1 Т 2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 4, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее, прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис.4, е).

Далее, построим точку Т 3 - Т 1 Т 2 ∩ АВ (рис. 4, ж), которая, как точка прямой Т 1 Т 2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т 3 и К секущей плоскости α, значит, прямая Т 3 К - прямая пересечения этих плоскостей. Прямая Т 3 К пересекает ребро РВ в точке L (рис. 4, з), которая служит очередной вершиной искомого сечения.

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1. Т 1 = QK ∩ АС ; 2. F = PR ∩ DE;

3. Т 2 = KR ∩ AF; 4. М = Т 1 Т 2 ∩ DE;

5. N = Т 1 Т 2 АЕ ; 6. Н = MR ∩ PD;

7. T 3 = Т 1 Т 2 АВ ; 8. L = T 3 K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Рис.4

Сечение многогранника, имеющего параллельные грани (призма, куб параллелепипед), можно строить, используя свойства параллельных плоскостей.

Задача . Точки M, P и R расположены на ребрах параллелепипеда. Пользуясь свойствами параллельных прямых и плоскостей, построить сечение данного параллелепипеда плоскостью MPR.

Решение. Пусть точки M, P и R расположены на ребрах соответственно DD 1 , ВВ 1 и СС 1 параллелепипеда АВСВА 1 В 1 С 1 В 1 (рис. 5, а).

Обозначим: (MPR) = α - секущая плоскость. Проводим отрезки MR и PR (рис. 5, б), по которым плоскость α пересекает соответственно грани СС 1 D 1 D и ВВ 1 С 1 С данного параллелепипеда. Отрезки MR и PR - стороны искомого сечения. Далее используем теоремы о пересечении двух параллельных плоскостей третьей.

Так как грань АА 1 В 1 В параллельна грани СС 1 D 1 D, то прямая пересечения плоскости α с плоскостью грани АА 1 В 1 В должна быть параллельна прямой MR. Поэтому проводим отрезок PQ || MR, Q є АВ (рис. 5, в); отрезок РQ - следующая сторона искомого сечения. Аналогично, так как грань АА 1 D 1 D параллельна грани СС 1 В 1 В, то прямая пересечения плоскости α с плоскостью грани АА 1 D 1 D должна быть параллельна прямой PR. Поэтому проводим отрезок МН || PR, H є AD (рис. 5, в); отрезок МН - еще одна сторона искомого сечения. На ребрах АВ и AD грани АВСD построили точки Q є АВ и H є AD, которые являются вершинами искомого сечения. Проводим отрезок QH и получаем пятиугольник MRPQH - искомое сечение параллелепипеда.


а) б) в)

Рис. 5

РАЗДЕЛ 2

МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Определение. Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. При этом в секущей плоскости удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача. Построить сечение призмы АВСВЕА 1 В 1 С 1 D 1 Е 1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD 1 (рис.7,а).

Решение. Анализ. Предположим, что пятиугольник MNPQR - искомое сечение (рис. 6). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС 1 , ВB 1 , АА 1 , ЕЕ 1 данной призмы.

Рис. 6

Для построения точки N = α ∩ СС 1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD 1 C 1 . Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD 1 C 1 лишь в точке, которая принадлежит прямой CD = (CDD 1 ) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD 1 ) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС 1 достаточно построить точку X = l ∩ СD. Аналогично, для построения точек Р = α ∩ ВВ 1 , Q = α ∩ АА 1 и R = α ∩ ЕЕ 1 достаточно построить соответственно точки: У = l ∩ ВС, Z = l ∩ АВ и Т = l ∩ АЕ. Отсюда

Построение.

    X = l ∩ СD (рис. 7, б);

    N = МХ ∩ СС 1 (рис. 7, б);

    У = l ∩ ВС (рис. 7, в);

    Р = NY ∩ ВВ 1 (рис. 7, в);

    Z = l ∩ АВ (рис. 7, в);

    Q= РZ ∩ АА 1 (рис. 7, г);

    T= l ∩ АЕ (рис. 6);

    R= QT ∩ ЕЕ 1 (рис. 6).

Пятиугольник MNPQR - искомое сечение (рис. 6).

Доказательство . Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = l ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем:

М є α , X є α => МХ є α, тогда МХ ∩ СС 1 = N є α , значит, N = α ∩ СС 1 ;

N є α, Y є α => NY є α, тогда NY ∩ ВВ 1 = Р є α, значит, Р = α ∩ ВВ 1 ;

Р є α, Z є α => РZ є α, тогда PZ ∩ AА 1 = Q є α, значит, Q = α ∩ АA 1 ;

Q є α, T є α => QТ є α, тогда QТ ∩ EЕ 1 =R є α, значит, R = α ∩ ЕЕ 1 .

Следовательно, MNPQR - искомое сечение.



а) б)

в) г)

Рис. 7

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD 1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l , то определяемая ими плоскость α единственна. Это означает, что задача имеет единственное решение.

Задача. Построить сечение пятиугольной пирамиды PABCDE плоскостью, которая задана следом l и внутренней точкой К ребра РЕ.

Решение. Схематически построение искомого сечения можно изобразить так (рис.8): T 1 → Q → Т 2 → R → Т 3 → М → Т 4 → N.

Пятиугольник MNKQR - искомое сечение.

«Цепочка» последовательности построения вершин сечения такова:

1. Т 1 = l ∩ АЕ; 2. Q = Т 1 К ∩ РА;

3. Т 2 = l ∩ АВ; 4. R = Т 2 Q ∩ РВ;

5. Т 3 = l ∩ ВС; 6. М = T 3 R ∩ РС;

7. Т 4 = l ∩ СD; 8. N = Т 4 М ∩ РD.

Рис. 8

Секущая плоскость часто задается тремя точками, принадлежащими многограннику. В таком случае для построения искомого сечения методом следов сначала строят след секущей плоскости в плоскости основания данного многогранника.

РАЗДЕЛ 3

МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Метод внутреннего проектирования называют еще методом соответствий, или методом диагональных сечений.

При применении этого метода каждая заданная точка проектируется на плоскость основания. Существует два возможных вида проектирования: центральное и параллельное. Центральное проектирование, как правило, используется при построении сечений пирамид, вершина пирамиды при этом является центром проекции. Параллельное проектирование используется при построении сечений призм.

Задача . Построить сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответственно РА, РС и РЕ (рис. 9, а).

Решение . Плоскость основания пирамиды обозначим β. Для построения искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответственно АD и СЕ, которые пересекаются в некоторой точке К (рис. 9, в). Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К 1 : К 1 = РК ∩ FR (рис. 9, г), при этом К 1 є α. Тогда: М є α, К 1 є α => прямая МK є а. Поэтому точка Q = МК 1 ∩ РD (рис. 9, д) есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н (рис. 9, е). Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н 1 (рис. 9, ж). Тогда прямая RН 1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения (рис. 9, з).

1. К = АD ∩ ЕС; 2. К 1 = РК ∩ RF;

3. Q = МК 1 Р D; 4. H = BE ∩ А D;

5. Н 1 = РН ∩ МQ; 6. N = RН 1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение (рис. 9, и).

а) б) в)

г) д) е)

ж) з) и)

Рис. 9

Задача . Постройте сечение призмы АВСDEА 1 В 1 С 1 D 1 Е 1 , плоскостью α, заданной точками М є ВВ 1 , Р є DD 1 , Q є ЕЕ 1 (рис.10).

Решение. Обозначим: β - плоскость нижнего основания призмы. Для построения искомого сечения построим точки пересечения плоскости α = (МРQ) с ребрами призмы.

Построим точку пересечения плоскости α с ребром АА 1 .

Плоскости А 1 АD и ВЕЕ 1 пересекают плоскость β по прямым соответственно АD и ВЕ, которые пересекаются в некоторой точке К. Так как плоскости А 1 АD и ВЕЕ 1 проходят через параллельные ребра АА 1 и ВВ 1 призмы и имеют общую точку К, то прямая КК 1 их пересечения проходит через точку К и параллельна ребру ВВ 1 . Точку пересечения этой прямой с прямой QМ обозначим: К 1 = КК 1 ∩ QМ, КК 1 ║ ВВ 1 . Так как QM є α, то К 1 є α.

Рис. 10

Получили: Р є α , К 1 є α => прямая РК 1 є α, при этом РК 1 ∩ АА 1 = R. Точка R служит точкой пересечения плоскости α и ребра АА 1 (R = α ∩ АА 1 ), поэтому является вершиной искомого сечения. Аналогично строим точку N = α ∩ СС 1 .

Таким образом, последовательность «шагов» построения искомого сечения такова:

    К = АD ∩ ВЕ; 2. К 1 = КК 1 ∩ MQ, КК 1 || ВВ 1 ;

    R = РК 1 ∩ АА 1 ; 4. Н = ЕС ∩АD;

    H 1 – HH 1 ∩ РR, НН 1 || СС 1 ; 6.N = QН 1 ∩ СС 1 .

Пятиугольник MNPQR- искомое сечение.

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника - любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника - это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой - точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L - нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N - середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN - искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP - искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

Разрез, служащий для выяснения устройства предмета лишь в от-

дельном, ограниченном месте, называется местным (рис. 24, 25).

Часть вида и часть соответствующего

разреза допускается соединять, разделяя их

сплошной волнистой линией или сплошной

тонкой линией с изломом (рис. 24).Если при

этом соединяются половина вида и полови-

на разреза, каждый из которых является

симметричной фигурой, то разделяющей

линией служит ось симметрии. При этом

ниже оси симметрии (рис. 2, рис. 25).

Если с осью симметрии изображения

совпадает какая – либо линия, например,

проекция ребра (рис. 26), то вид от разреза

отделяют сплошной волнистой линией, проводимой правее, если ребро изо-

бражается на виде (рис. 26, а), или левее, если ребро изображается на разрезе

(рис. 26, б).

Построение сечений

Сечение - изображение фигуры, получающейся при мысленном рассечении предмета плоскостью. На сечении показывается только то, что находится непосредственно в секущей плоскости.

Сечения, не входящие в состав разреза, разделяют на: вынесенные (рис. 27) иналоженные (рис. 28).

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида (рис. 29).

Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями, а контур наложенного сечения – сплошными тонкими линиями, причем контур изображения в месте расположения наложенного сечения не прерывают (рис. 28).

Ось симметрии вынесенного или наложенного сечения (рис. 28) указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками

и линию сечения не проводят.

В случаях, подобных указанному на рис. 29, при симметричной фигуре сечения, линию сечения не проводят.

Во всех остальных случаях для линии сечения применяют разомкнутую линию с указанием стрелками направления взгляда и обозначают ее одинаковыми прописными буквами русского алфавита. Сечение сопровождают надписью по типу «А – А » (рис. 27).

Для несимметричных сечений, расположенных в разрыве или наложенных (рис. 30), линию сечения проводят со стрелками, но буквами не обозначают. Если секущая плоскость проходит через ось поверхности вращения, ограничивающей отверстие или углубление, то контур отверстия или углубления в сечении показывают полностью (рис. 31).

Выносные элементы

Выносной элемент - дополнительное отдельное изображение (обычно увеличенное) какой-либо части предмета, требующей графического и других пояснений в отношении формы, размеров и иных данных.

Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и может отличаться от него по содержанию (например, изображение может быть видом, а выносной элемент – разрезом).

При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией – окружностью, овалом и т.п. с обозначением выносного элемента прописной буквой русского алфавита на полке линии-выноски. Над изображением выносного элемента указывают обозначение и масштаб, в котором он выполнен

Выносной элемент располагают на чертеже возможно ближе к соответствующему месту на изображении предмета.

Построение аксонометрической проекции

В аксонометрии обычно выполняют вырез¼ части детали, при этом вырез не всегда повторяет разрез, выполненный на ортогональном изображении. Угол, образованный секущими плоскостями, должен быть раскрыт.

На рис. 34 – 37 показано поэтапное выполнение изометрии детали с

вырезом ¼ части. Для удобства построений будем считать, что нижняя плоскость детали совпадает с горизонтальной плоскостью проекций, а осьz – с осью конической и цилиндрической поверхностей.

Рис. 34 Рис. 35

Рис. 36 Рис. 37

Выполнение задания начинаем с построения аксонометрических осей и очертания плоских фигур, полученных при сечении детали вертикальными плоскостями, проведенными по осям симметрии детали (рис. 34).

Отмечаем центры окружностей усеченного конуса и цилиндров – точки О1 , О2 , О3 , О4 и строим изометрические проекции тех частей окружностей, которые остались после выполнения выреза (рис. 35). Заканчиваем построение прямоугольных очертаний детали (рис. 36). Выполнив штриховку плоских фигур, образовавшихся при сечении детали вертикальными плоскостями (проводя линии штриховки параллельно направлениям, показанным на рисунке), обводим контур детали (рис. 37).

Построение наклонного сечения

Наклонное сечение получается от пересечения предмета плоскостью, составляющей с горизонтальной плоскостью проекций угол, отличный от прямого.

На чертеже наклонные сечения выполняют по типу вынесенных сечений и в соответствии с направлением, указанным стрелками на линии сечения. При построении сечения не является обязательным строгое соблюдение проекционной связи между изображением, где задан след секущей плоскости, и фигурой сечения. Фигуру сечения можно расположить в любом удобном месте поля чертежа, рис. 38, б, в. При этом, если ориентация сечения на чертеже не соответствует направлению взгляда, указанному стрелками на штрихах линии сечения, то обозначение сечения должно сопровождаться знаком повернуто, рис. 38, в.