Расчет прогнозного значения по уравнению регрессии. Простая линейная регрессия. Применение линейной регрессии в прогнозировании

Прогнозирование по уравнению регрессии представляет собой подстановку в уравнение регрессии соответственного значения х . Такой прогноз называетсяточечным. Он не является точным, поэтому дополняется расчетом стандартной ошибки ; получаетсяинтервальная оценка прогнозного значения :

Преобразуем уравнение регрессии:

ошибка зависит от ошибки и ошибки коэффициента регрессии b , т.е. .

Из теории выборки известно, что .

Используем в качестве оценки s 2 остаточную дисперсию на одну степень свободы S 2 , получаем: .

Ошибка коэффициента регрессии из формулы (15):

Таким образом, при х=х k получаем:

(31)

Как видно из формулы, величина достигает минимума при и возрастает по мере удаления от в любом направлении.

Для нашего примера эта величина составит:

При , При х k = 4

Для прогнозируемого значения 95% - ные доверительные интервалы при заданном х k определены выражением:

т.е. при х k =4 ±2,57-3,34 или ±8,58. При х к =4 прогнозное значение составит

у p =-5,79+36,84·4=141,57 - это точечный прогноз.

Прогноз линии регрессии лежит в интервале: 132,99 150,15.

Мы рассмотрели доверительные интервалы длясреднего значения у при заданном х. Однако фактические значения у варьируются около среднего значения , они могут отклоняться на величину случайной ошибки e , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка прогноза отдельного значения у должна включать не только стандартную ошибку но и случайную ошибку S . Таким образом, средняя ошибка прогноза индивидуального значения y составит:

(33)

Для примера:

Доверительный интервал прогноза индивидуальных значений у при х к =4 с верностью 0,95 составит:. 141,57 ±2,57·8,01, или 120,98 ≤ у р ≤ 162,16.

Пусть в примере с функцией издержек выдвигается предположение, что в предстоящем году в связи со стабилизацией экономики затраты на производство 8 тыс. ед. продукции не превысят 250 млн. руб. Означает ли это изменение найденной закономерности или затраты соответствуют регрессионной модели?

Точечный прогноз: = -5,79 + 36,84 8 = 288,93. Предполагаемое значение - 250. Средняя ошибка прогнозного индивидуального значения:

Сравним ее с предполагаемым снижением издержек производства, т.е. 250-288,93= -38,93:

Поскольку оценивается только значимость уменьшения затрат, то используется односторонний t~ критерий Стьюдента. При ошибке в 5 % с n-2=5 t табл =2,015, поэтому предполагаемое уменьшение затрат значимо отличается от прогнозируемого значения при 95 % - ном уровне доверия. Однако, если увеличить вероятность до 99%, при ошибке 1 % фактическое значение t -критерия оказывается ниже табличного 3,365, и различие в затратах статистически не значимо, т.е. затраты соответствуют предложенной регрессионной модели.

Нелинейная регрессия

До сих пор мы рассматривали лишьлинейную модель регрессионной зависимости у от х (3). В то же время многие важные связи в экономике являютсянелинейными. Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства - трудом, капиталом и т.п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары - с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

(35)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т.е. трем:

(36)

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

Если b>0, с<0, имеет место максимум, т.е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При b<0, с>0 парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, не являющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

(37)

Примером такой зависимости является кривая Филлипса, констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля. Другим примером зависимости (37) являются кривые Энгеля, формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае b <0 , а результативный признак в (37) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (37) сводится к замене фактора z=1/х , и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z :

К такому же линейному уравнению сводится полулогарифмическая кривая:

(39)

которая может быть использована для описания кривых Энгеля. Здесь 1п(х) заменяется на z , и получается уравнение (38).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

или в виде

Возможна такая зависимость:

В регрессиях типа (40) - (42) применяется один и тот же способ линеаризации - логарифмирование. Уравнение (40) приводится к виду:

(43)

Замена переменной Y = ln у сводит его к линейному виду:

(44)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (40) оцениваются по МНК из уравнения (44). Уравнение (41) приводится к виду:

который отличается от (43) только видом свободного члена, и линейное уравнение выглядит так:

Y=A+bx+E (46)

где A= lna . Параметры А и b получаются обычным МНК, затем параметр а в зависимости (41) получается как антилогарифм А. При логарифмировании (42) получаем линейную зависимость:

Y=A+Bx+E (47)

где B =lnb , а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (42) получается как антилогарифм коэффициента В.

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х . Преобразуя (48) путем логарифмирования, получаем линейную регрессию:

Y=A+bX+E (49)

где Y= lny , A= lna, X= lnx, E= lnε .

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

(50)

Проводя замену и =1/у , получим:

(51)

Наконец, следует отметить зависимость логистического типа:

(52)

Графиком функции (52) является так называемая «кривая насыщения», которая имеет две горизонтальные асимптоты у=0 и у=1/а и точку перегиба x= ln(b/a), у=1/(2а) , а также точку пересечения с осью ординат у=1/(а+b) :

Уравнение (52) приводится к линейному виду заменами переменных и=1/у, z=e - x .

Любое уравнение нелинейной регрессии, как и линейной зависимости, дополняется показателем корреляции, который в данном случае называется индексом корреляции:

(53)

Здесь - общая дисперсия результативного признака у , остаточная дисперсия, определяемая по уравнению нелинейной регрессии . Следует обратить внимание на то, что разности в соответствующих суммах и берутся не в преобразованных, а в исходных значениях результативного признака. Иначе говоря, при вычислении этих сумм следует использовать не преобразованные (линеаризованные) зависимости, а именно исходные нелинейные уравнения регрессии. По-другому (53) можно записать так:

(54)

Величина R находится в границах 0 ≤ R ≤ 1, и чем ближе она к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. При этом индекс корреляции совпадает с линейным коэффициентом корреляции в случае, когда преобразование переменных с целью линеаризации уравнения регрессии не проводится с величинами результативного признака. Так обстоит дело с полулогарифмической и полиномиальной регрессией, а также с равносторонней гиперболой (37). Определив линейный коэффициент корреляции для линеаризованных уравнений, например, н пакете Excel с помощью функции ЛИНЕЙН, можно использовать его и для нелинейной зависимости.

Иначе обстоит дело в случае, когда преобразование проводится также с величиной у , например, взятие обратной величины или логарифмирование. Тогда значение R, вычисленное той же функцией ЛИНЕЙН, будет относиться к линеаризованному уравнению регрессии, а не к исходному нелинейному уравнению, и величины разностей под суммами в (54) будут относиться к преобразованным величинам, а не к исходным, что не одно и то же. При этом, как было сказано выше, для расчета R следует воспользоваться выражением (54), вычисленным по исходному нелинейному уравнению.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей СКО, то R 2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R 2 для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится так же, как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F- критерию Фишера:

(55)

где n -число наблюдений, m -число параметров при переменных х . Во всех рассмотренных нами случаях, кроме полиномиальной регрессии, m =1, для полиномов (34) m=k , т.е. степени полинома. Величина т характеризует число степеней свободы для факторной СКО, а (п-т-1) - число степеней свободы для остаточной СКО.

Индекс детерминации R 2 можно сравнивать с коэффициентом детерминации r 2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем больше разница между R 2 и r 2 . Близость этих показателей означает, что усложнять форму уравнения регрессии не следует и можно использовать линейную функцию. Практически, если величина (R 2 -r 2) не превышает 0,1, то линейная зависимость считается оправданной. В противном случае проводится оценка существенности различия показателей детерминации, вычисленных по одним и тем же данным, через t -критерий Стьюдента:

Здесь в знаменателе находится ошибка разности (R 2 -r 2), определяемая по формуле:

Если t >t табл (α;n-m-1), то различия между показателями корреляции существенны и замена нелинейной регрессии линейной нецелесообразна.

В заключение приведем формулы расчета коэффициентов эластичности для наиболее распространенных уравнений регрессии.

Интервалы прогноза по линейному уравнению регрессии.

В прогнозных расчётах по уравнению регрессии определяется то, что уравнение не является реальным , для есть ещё стандартная ошибка . Поэтому интервальная оценка прогнозного значения

Выразим из уравнения

То есть стандартная ошибка зависит и ошибки коэффициента регрессии b,

Из теории выборки известно, что . Используя в качестве оценки остаточную дисперсию на одну степень свободы , получим формулу расчёта ошибки среднего значения переменной y: .

Ошибка коэффициента регрессии: .

В прогнозных расчетах по уравнению регрессии определяется уравнение как точечный прогноз при , то есть путём подстановки в уравнение регрессии . Однако точечный прогноз явно нереален.

- формула стандартной ошибки предсказываемого значения y при заданных , характеризует ошибку положения линии регрессии. Величина стандартной ошибки , достигает min при , и возрастает по мере того, как «удаляется» от в любом направлении. То есть чем больше разность между и x, тем больше ошибка , с которой предсказывается среднее значение y для заданного значения .

Можно ожидать наилучшие результаты прогноза, если признак - фактор x находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от .

Если же значение оказывается за пределами наблюдаемых значений х, используемых при построении ЛР, то результаты прогноза ухудшаются в зависимости то того, насколько отклоняется от области наблюдаемых значений фактора х. Доверит. интервалы при .

На графике доверительной границы представляет собой гиперболы, расположенные по обе стороны от линии регрессии.

Две гиперболы по обе стороны от ЛР определяют 95%-ные доверительные интервалы для среднего значения y при заданном значении x.

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку.

Средняя ошибка прогнозируемого индивидуального значения y составит:

.

При прогнозировании на основе УР следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y, но и от точности прогноза значений фактора x.

Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y() может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (КЛММР). Определение параметров уравнения множественной регрессии методом наименьших квадратов.

Парная регрессия используется при моделировании, если влияние других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественно-научных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

при условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя 2 круга вопросов:

1. отбор факторов

2. выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.



Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 >= R 2 p и S 2 p +1 <= S 2 p

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r х i х j >=0.7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. Rх i x j = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z v
y
x 0,8
z 0,7 0,8
v 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК

S y = S факт +S e

общая сумма = факторная + остаточная

Кв.отклонения

В свою очередь, при независимости факторов друг от друга выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарности считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободны остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регресс оказываются статистически незначимыми, а F-критерий меньше табличного значения.

Применение линейной регрессии в прогнозировании

Прогнозирование - это самостоятельная отрасль науки, которая находит широкое применение во всех сферах человеческой деятельности. Существует большое разнообразие видов и способов прогнозирования, разработанных с учетом характера рассматриваемых задач, целей исследования, состояния информации. Этим вопросам посвящено много книг и журнальных статей. Покажем на примере линейной регрессии применение эконометрических моделей в прогнозировании значений экономических показателей.

В обыденном понимании прогнозирование - это предсказание будущего состояния интересующего нас объекта или явления на основе ретроспективных данных о прошлом и настоящем состояниях при условии наличия причинно-следственной связи между прошлым и будущим. Можно сказать, что прогноз - это догадка, подкрепленная знанием. Поскольку прогностические оценки по сути своей являются приближенными, может возникнуть сомнение относительно его целесообразности вообще. Поэтому основное требование, предъявляемое к любому прогнозу, заключается в том, чтобы в пределах возможного минимизировать погрешности в соответствующих оценках. По сравнению со случайными и интуитивными прогнозами, научно обоснованные и планомерно разрабатываемые прогнозы без сомнения являются более точными и эффективными. Как раз такими являются прогнозы, основанные на использовании методов статистического анализа. Можно утверждать, что из всех способов прогнозирования именно они внушают наибольшее доверие, во-первых, потому что статистические данные служат надежной основой для принятия решений относительно будущего, во-вторых, такие прогнозы вырабатываются и подвергаются тщательной проверке с помощью фундаментальных методов математической статистики.

Оценка параметров линейной регрессии представляет собой прогноз истинных значений этих параметров, выполненный на основе статистических данных. Полученные прогнозы, оказываются достаточно эффективными, так как они являются несмещенными оценками истинных параметров.

Применим модель линейной регрессии (8.2.4) с найденными параметрами (8.2.8) и (8.2.9) для определения объясняемой переменной на некоторое множество ненаблюдаемых значений объясняющей переменной . Точнее говоря, поставим задачу прогнозирования среднего значения , соответствующего некоторому значению объясняющей переменной , которое не совпадает ни с одним значением . При этом может лежать как между выборочными наблюдениями так и вне интервала . Прогноз значения может быть точечным или интервальным. Ограничимся рассмотрением точечного прогноза, т.е. искомое значение определим в виде

где - наблюдаемые значения случайной величины , а - коэффициенты (веса), которые должны быть выбраны так, чтобы был наилучшим линейным несмещенным прогнозом, т.е. чтобы

Из (8.5.1) для наблюдаемых значений

Так как по свойству математического ожидания ((2.5.4) - (2.5.5))

,

Но так как в правой части под оператором математического ожидания стоят только постоянные числа, то

Учитывая соотношение можем сказать теперь, что будет несмещенным линейным прогнозом для тогда и только тогда, когда

Следовательно, всякий вектор удовлетворяющий условиям (8.5.2), делает выражение (8.5.1) несмещенным линейным прогнозом величины . Поэтому надо найти конкретное выражение весов через известные нам величины. Для этого решим задачу минимизации дисперсии величины :

Так как под оператором дисперсии в первом слагаемом правой части уравнения стоят постоянные числа, то

С учетом предположений b) и c) и пользуясь свойствами дисперсии (2.5.4) и (2.5.6), имеем:

где - среднеквадратическое отклонение случайной величины .

Составим оптимизационную задачу минимизации дисперсии с ограничениями (8.5.2):

при ограничениях

Так как множитель не зависит от и не влияет на минимальное значение целевой функции, то функцию Лагранжа (см. (2.3.8)) сконструируем следующим образом:

где и - множители Лагранжа. Необходимые условия оптимальности точки имеют вид (см. (2.3.9)):

(8.5.3)

Просуммировав первое уравнение по , с учетом второго уравнения получим:

Отсюда находим множитель Лагранжа

где - среднее значение случайной величины . Полученное значение вновь подставим в первое уравнение системы (8.5.3) и найдем

В прогнозных расчетах по уравнению регрессии определяется предсказываемое (y p ) значение как точечный прогноз при x p = x k , т.е. путем подстановки в уравнение регрессии соответствующего значения x . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. и соответственно, интервальной оценкой прогнозного значения:

Чтобы понять, как строится формула для определения величин стандартной ошибки , обратимся к уравнению линейной регрессии: . Подставим в это уравнение выражение параметра a :

тогда уравнение регрессии примет вид:

Отсюда вытекает, что стандартная ошибка зависит от ошибки y и ошибки коэффициента регрессии b , т.е.

Из теории выборки известно, что . Используя в качестве оценки s 2 остаточную дисперсию на одну степень свободы S 2 , получим формулу расчета ошибки среднего значения переменной y :

Ошибка коэффициента регрессии, как уже было показано, определяется формулой:

.

Считая, что прогнозное значение фактора x p = x k , получим следующую формулу расчета стандартной ошибки предсказываемого по линии регрессии значения, т.е. :

Соответственно имеет выражение:

. (1.26)

Рассмотренная формула стандартной ошибки предсказываемого среднего значения y при заданном значении x k характеризует ошибку положения линии регрессии. Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере того, как "удаляется" от в любом направлении. Иными словами, чем больше разность между x k и x , тем больше ошибка , с которой предсказывается среднее значение y для заданного значения x k . Можно ожидать наилучшие результаты прогноза, если признак-фактор x находится в центре области наблюдений x и нельзя ожидать хороших результатов прогноза при удалении x k от . Если же значение x k оказывается за пределами наблюдаемых значений x , используемых при построении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколько x k отклоняется от области наблюдаемых значений фактора x .

На графике доверительные границы для представляют собой гиперболы, расположенные по обе стороны от линии регрессии (рис. 1.5).



Рис. 1.5 показывает, как изменяются пределы в зависимости от изменения x k : две гиперболы по обе стороны от линии регрессии определяют 95% -ые доверительные интервалы для среднего значения y при заданном значении x .

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки e , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку S .



Средняя ошибка прогнозируемого индивидуального значения y составит:

. (1.27)

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y , но и от точности прогноза значения фактора x . Его величина может задаваться на основе анализа других моделей, исходя из конкретной ситуации, а также анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y () может быть использована также для оценки существенности различия предсказываемого значения, исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Оценка статистической значимости параметров регрессии проводится с помощью t-статистики Стьюдента и путем расчета доверительного интервала для каждого из показателей. Выдвигается гипотеза Н 0 о статистически значимом отличие показателей от 0 a = b = r = 0. Рассчитываются стандартные ошибки параметров a,b, r и фактическое значение t-критерия Стьюдента.

Определяется статистическая значимость параметров.

t a > T табл - параметр a статистически значим.

t b > T табл - параметр b статистически значим.

Находятся границы доверительных интервалов.

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что параметры a и b находясь в указанных границах не принимают нулевых значений, т.е. не является статистически незначимыми и существенно отличается от 0. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. - М.: Дело, 2001. - С. 45.

Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы, параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

  • - регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;
  • - регрессии, нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

полиномы разных степеней;

равносторонняя гипербола.

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

степенная;

показательная;

экспоненциальная.

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени y=a 0 +a 1 x+a 2 x 2 +е заменяя переменные x=x 1 ,x 2 =x 2 , получим двухфакторное уравнение линейной регрессии: у=а 0 +а 1 х 1 +а 2 х 2 + е.

Парабола второй степени целесообразна к применению, если для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую. В этом случае определяется значение фактора, при котором достигается максимальное (или минимальное), значение результативного признака: приравниваем к нулю первую производную параболы второй степени: , т.е. b+2cx=0 и x=-b/2c.

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений:

Решение ее возможно методом определителей:

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия min, то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т.е. ln y, 1/y. Так, в степенной функции МНК применяется к преобразованному уравнению lny = lnб + в ln x ln е. Это значит, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах. Соответственно если в линейных моделях то в моделях, нелинейных по оцениваемым параметрам, . Вследствие этого оценка параметров оказываются несколько смещенной.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции (R):

Величина данного показателя находится в границах: 0 ? R ? 1, чем ближе к 1, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии.

Индекс детерминации используется для проверки существенности в целом урпвнения нелинейной регрессии по F- критерию Фишера:

Данный способ расчета наиболее обоснован теоретически и дает самые точные результаты в практическом применении. Но дело осложняется рядом обстоятельств. Во-первых, качество большинства видов продукции, а, следовательно, и его уровень формируются чаще не одним, а несколькими свойствами, причем значимость их в формировании полезности различна. Встает сложная проблема определения их значимости. Во-вторых, полезность продукта находится чаще в нелинейной зависимости от значения свойств (частных качественных характеристик), а это означает непостоянство их значимости. Указанные сложности преодолимы, но не всегда.

Теснота связи между переменными величинами может иметь различные значения, если рассматривать ее с позиции характера зависимости (линейная, нелинейная). Если установлена слабая связь между переменными в линейной зависимости, то это совсем не означает, что такая связь должна быть в нелинейной зависимости. Показателем, характеризующим значимость факторов при различной форме связи, является корреляционное отношение. Оценка факторов по корреляционному отношению уже на этом этапе анализа позволяет предварительно уст0новить вид многофакторной связи, что служит хорошей предпосылкой при выборе конкретной модели исследуемого показателя.

В случае нелинейной зависимости линейный коэффициент корреляции теряет смысл, и для измерения тесноты связи применяют так называемое корреляционное отношение, известное также под названием «индекс корреляции»:

Для нахождения лучшей подстановки можно использовать визуальный метод, когда «на глаз» определяется вид нелинейной зависимости, связывающей результирующий параметр и независимый фактор, а можно выбор наилучшей замены осуществлять, используя коэффициент корреляции. Та подстановка, у которой коэффициент корреляции является максимальным, и является наилучшей. Ланге О. Введение в эконометрику. - М.: Прогресс, 1964. - С. 76.