Суть волновой теории света. Временные рамки распространения оптического явления. И спасибо за внимание

Интерференция волн. Когерентные волны. Разность хода двух волн. Условия интерференционных максимумов и минимумов

Условия интерференционного максимума и минимума

Тема 9. Волновая теория света. Интерференция света. Метод Юнга

Интерференцией волн называется явление усиления колебаний в одних точках пространства и ослабления колебаний в других точках в результате наложения двух или более волн, приходящих в эти точки. При наложении двух (или нескольких) световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других – мини­мумы интенсивности. Необходимым условием наблюдения устойчивой интерференционной картины является когерентность складываемых волн. Когерентными называются волны одинаковой частоты, колебания в которых отличаются постоянной во времени разностью фаз.

Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и в результате наблюдается интерференци­онная картина.

Произведение геомет­рической длины s пути световой волны в данной среде на показатель n преломления этой среды называетсяоптической длиной пути L , a величина D = L 2 – L 1 (разность оптических длин проходимых волнами путей) называетсяоптической разностью хода.

Если оптическая разность хода D равна целому числу длин волн l 0 , т.е.

( = 0, 1, 2,…) ,

М обеими волнами, будут проис­ходить в одинаковой фазе, и в точке М будет наблюдатьсяинтерференционный максимум (m – порядок интерференционного максимума).

Если же оптическая разность хода D равна полуцелому числу длин волн l 0 , т.е.

( = 0, 1, 2,…) ,

то колебания, возбуждаемые в точке М обеими волнами, будут проис­ходить в противофазе, и в точке М будет наблюдатьсяинтерференционный минимум (m – порядок интерференционного минимума).

В качестве примера интерференции световых волнрассмотрим метод Юнга.

Метод Юнга. Для наблюдения интерференции света когерентные световые пучки получают разделением и последующим сведением световых лучей, исходящих из одного и того же источника. Источником света служит ярко освещенная щель S (рис. 20), от которой световая волна падает на две узкие равноудаленные щели S 1 и S 2 , параллель­ные щели S. Таким образом, щели S 1 и S 2 играют роль когерентных источников, а

Интенсивность света в точкеА определяется оптической разностью хода лучей: D= s 2 – s 1 .

Согласно рисунку 20:

; , откуда или .

Из условия l >>d следует, что s 1 + s 2 » 2l, тогда

Согласно этому соотношению и условиям наблюдения интерференционных максимумов и минимумов положения максимумов (x max ) и минимумов (x min ) интенсивности на экране в методе Юнга определяются следующим образом:

( = 0, 1, 2,…) ,

( = 0, 1, 2,…) .

Расстояние между двумя соседними максимумами (или минимумами) Dx называется шириной интерференционной полосы и равно:

Из этого соотношения следует, что величина Dx зависит от длины волны l 0 . Поэтому, четкая интерференционная картина, представляющая собой чередова­ние на экране светлых и темных полос, возможна только при использовании монохроматического света, то есть света определенной длины волны l 0 .

Тема 10. Дифракция света. Дифракция Френеля

Дифракцией называется огибание волнами препятствий. Дифракцию света определяют как любое отклонение распространения света вблизи препятст­вий от законов геометрической оптики. Благодаря дифракции волны попадают в область геометрической тени, проникают через небольшие отверстия и т. д.

Явление дифракции объясняется с помощью принципа Гюйгенса , соглас­но которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта.

Рис. 3

Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн.

Согласнопринципу Гюйгенса – Френеля световая волна, возбуждаемая каким-ли­бо источником S , может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить, например, бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Если в качестве таковой выбрать одну из волновых поверх­ностей (волновой поверхность – это геометрическое место точек, колебания в которых происходят в одинаковой фазе), то все бесконечно малые элементы этой замкнутой поверхности, как фиктивные источники, действуют синфазно. Это свойство фиктивных источников коге­рентных вторичных волн использовано в методе зон Френеля при изучении дифракции сферических волн.

Метод зон Френеля. Найдем в произвольной точке М амплитуду световой волны, распространяющейся от точечного источника света S (рис. 21).

Рис. 21

Френель разбил волновую поверхность Ф , являющуюся сферической поверхностью с центром в точке S , на кольцевые зоны (зоны Френеля) такого размера, чтобы расстояния от краев соседних зон до точки М отличались на l /2 (рис. 21). Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на l /2, то в точку М они приходят в противофазе и при наложении взаимно ослабляют друг друга. Поэтому амплитудаА М :

где А 1 , А 2 , ..., А n – амплитуды колебаний, идущих от 1-ой, 2-ой, ... , n -ной зоны.

В результате сложения амплитудаА результирующего светового колебания в точке М оказалась равной половине амплитуды А 1 центральной зоны Френеля:

То есть, амплитуда светового колебания, идущего только от одной центральной зоны Френеля вдвое больше, чем амплитуда результирующего светового колебания при полностью открытом волновом фронте. Этот эффект подтвержден экс­периментально с помощью зонных пластинок, на практике, стеклянных пластинок, построенных по методу зон Френеля. Зонные пластинки состоят из чередующихся прозрачных (для нечетных зон Френеля) и непрозрачных (для четных зон Френеля) концентрических колец. В этом случае результирующая амплитудаА (A=A 1 +A 3 +A 5 +... ) больше, чем при полностью открытом волновом фронте. Опыт подтвердил, что зонные пластинки увеличивают освещенность в точке М, действуя подобно собирающей линзе.

Дифракция Френеля на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути круглое отверстие (рис. 22). Дифрак­ционная картина на экране зависит от числа зон Френеля, открытых круглым отверстием. После разбиения открытой части волновой поверхности Ф на зоны Френеля для точкиВ , лежащей на экране (рис. 22), определяют число открытых зон. Если число открытых зон Френеля четное, то в точкеВ наблюдается темное пятно, так как колебания от каждой пары соседних зон Френеля взаимно гасят друг друга. Если же число открытых зон Френеля нечетное, то в точкеВ будет светлое пятно.

Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск (рис. 23). Пусть для точкиВ , лежащей на линии, соединяющей источник S с центром диска, после разбиения волновой поверхности Ф на зоны Френеля окажутся закрытыми диском m первых зон Френеля. Тогда амплитудаА результирующего колебания в точке В равна: , то есть в точке В будет светлое пятно, соответствующее действию поло­вины первой открытой зоны Френеля.

1. Световая волна. Интерференция света. Когерентность (временная и пространственная) и монохроматичность световых волн. Условия максимума и минимума интенсивности при интерференции.

Световая волна - электромагнитная волна видимого диапазона длин волн. Частота световой волны (или набор частот) определяет "цвет". Энергия, переносимая световой волной, пропорциональна квадрату ее амплитуды. Явление обpазованиячеpедующихся полос усиления и ослабления интенсивности света называется интеpфеpенцией. Интеpфеpенция света наблюдается пpи наложении дpуг на дpуга двух или большего числа пучков света. Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Когерентность выражается в постоянстве или закономерной связи между фазами, частотами, поляризациями и амплитудами этих волн. Временная когерентность - состояние, при котором световые волны на протяжении своего периода проходят данную область в пространстве за одно и то же время. Пространственная когерентность - состояние, при котором световые волны, проходящие через пространство, не обязательно совпадают по частоте, но совпадают по фазе. Монохроматические волны – неограниченные в пространстве волны одной определенной и строго постоянной частоты.

Если разность хода равна целому числу длин волн в вакууме

то , и колебания, возбуждаемые в точке Р обеими волнами, будут происходить в одинаковой фазе. Следовательно, (8.1.3) является условием интерференционного максимума.

Если оптическая разность хода

(8.1.4)

то , и колебания, возбуждаемые в точке Р обеими волнами, будут происходить в противофазе. Следовательно, (8.1.4) является условием интерференционного минимума.

2. Способы получения когерентных волн. Интерференция света в тонких пленках.

Тепловые источники некогерентны друг другу. Для получения когерентных световых волн, волну, излучаемую одним источником света, разделяют на две, и затем полученные волны сводят вместе в некоторой области пространства, называемой областью перекрытия.

Опыт Юнга

И сточником света является освещенная щельS, от которой световая волна падает на две узкие щели S 1 и S 2 , освещаемые различными участками одного и того же волнового фронта (Рис.1.5). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Р световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Бипризмы Френеля

Д ля разделения световой волны используют двойную призму (бипризму) с малым преломляющим углом . Источником света является ярко освещеннаящельS, параллельная преломляющему ребру бипризмы. В силу малости преломляющего угла бипризмы (несколько угловых минут) все лучи отклоняются на один и тот же угол независимо от угла падения, при этом отклонение происходит в сторону основания каждой из призм, составляющих бипризму. В результате образуются две когерентные волны, виртуально исходящих из мнимых источников и , лежащих в одной плоскости с реальным источником

Бизеркало Френеля

В установке бизеркала Френеля две когерентные волны получают при отражении от двух зеркал, плоскости которых образуют двугранный угол ,где - очень малый угол. Источник – узкая освещенная щель , параллельная грани двугранного угла. Отраженные от зеркал пучки падают на экран Э, и в области перекрытияPQ возникает интерференционная картина в виде полос, параллельных щели .

Интерференция света в тонких пленках:

При освещении тонкой плёнки можно наблюдать интерференцию световых волн, отражённых от верхней и нижней поверхности плёнок. Для белого света, представляющего собой смешение электромагнитных волн из всего оптического спектра, интерференционные полосы приобретают окраску.

Одна волна (та, котоpая заходит в пленку) отстает от дpугой. Между волнами обpазуетсяpазность хода. Если эта pазность хода пеpеменная в пpостpанстве, то создаются условия для наблюдения полос интеpфеpенции. Интеpфеpенцию в тонких пленках можно наблюдать двумя способами. Один способ основан на том, что пленка имеет pазличную толщину в pазных местах, дpугой - на том, что свет может падать на пленку под pазными углами. Пеpвый способ дает так называемые полосы pавной толщины, втоpой - полосы pавного наклона.

3. Применение интерференции: интерферометры, просветление оптики.

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Интерферометр - измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков

Интерферометры применяются как при точных измерениях длин, в частности в станкостроении и машиностроении, так и для оценки качества оптических поверхностей и проверки оптических систем в целом.

Просветление оптики - это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз. Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст

оптического изображения.

4. Понятие о дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

П ринцип Гюйгенса-Френеля позволяет объяснить механизм распространения волн. Принцип состоит из двух частей:

Первая часть носит название принцип Гюйгенса (1678). Его суть состоит в том, что каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Точка же, огибающая вторичные волны становится волновой поверхностью в следующий момент времени.

Вторая часть принципа носит название принцип (дополнение) Френеля (1815). Он звучит следующим образом: каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Математически принцип Гюйгенса–Френеля имеет обоснование в виде интегральной теоремы Кирхгофа.

Метод зон Френеля: Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля.

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Р азобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображений следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

При сложении этих колебаний, они должны взаимно ослаблять друг друга:

Закон прямолинейного распространения света – в прозрачной однородной среде свет распространяется по прямым линиям.

5. Дифракция Фраунгофера на дифракционной решетке.

Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера.

Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Рис. 9.6 Рис. 9.7

Пусть луч 1 падает на линзу под углом φ (угол дифракции). Световая волна, идущая под этим углом от щели, создает в точке максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:

Условие максимума для дифракционной решетки будет иметь вид: ,

где m = ± 1, ± 2, ± 3, … .

Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии , волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы.

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными:

Интерференция световых волн

Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции . Эти явления характерны для волн любой природы и сравнительно просто наблюдаются на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию и дифракцию световых волн можно лишь при определенных условиях. Свет, испускаемый обычными (нелазерными) источниками, не бывает строго монохроматическим. Поэтому для наблюдения интерференции свет от одного источника нужно разделить на два пучка и затем наложить их друг на друга.

Интерференционный микроскоп.

Существующие экспериментальные методы получения когерентных пучков из одного светового пучка можно разделить на два класса .

В методе деления волнового фронта пучок пропускается, например, через два близко расположенных отверстия в непрозрачном экране (опыт Юнга). Такой метод пригоден лишь при достаточно малых размерах источника.

В другом методе пучок делится на одной или нескольких частично отражающих, частично пропускающих поверхностях. Этот метод деления амплитуды может применяться и при протяженных источниках. Он обеспечивает большую интенсивность и лежит в основе действия разнообразных интерферометров. В зависимости от числа интерферирующих пучков различают двулучевые и многолучевые интерферометры. Они имеют важные практические применения в технике, метрологии и спектроскопии.

Пусть две волны одинаковой частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления:

где под x понимаем напряженность электрического E и магнитного H полей волны, которые подчиняются принципу суперпозиции (см. п. 6).

Амплитуду результирующего колебания при сложении колебаний, направленных вдоль одной прямой, найдем по формуле (2.2.2):

Если разность фаз колебаний , возбужденных волнами в некоторой точке пространства , остается постоянной во времени, то такие волны называются когерентными.

В случае некогерентных волн разность фаз непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение равно нулю (изменяется от –1 до +1). Поэтому.

Интенсивность света пропорциональна квадрату амплитуды: . Отсюда можно сделать вывод, что для некогерентных источников интенсивность результирующей волны всюду одинакова и равна сумме интенсивностей, создаваемых каждой из волн в отдельности :

Последнее слагаемое в этом выражении называется интерференционным членом .

В точках пространства, где, (в максимуме), где, интенсивность (в минимуме). Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией света .

Устойчивая интерференционная картина получается лишь при сложении когерентных волн. Некогерентность естественных источников света обусловлена тем, что излучение тела слагается из волн, испускаемых многими атомами. Фазы каждого цуга волны никак не связаны друг с другом. Атомы излучают хаотически.

Периодическая последовательность горбов и впадин волн , образующихся в процессе акта излучения одного атома , называется цугом волн или волновым цугом .

Процесс излучения одного атома длится примерно с. При этом длина цуга.

В одном цуге укладывается примерно длин волн.

Чтобы лучше понять механизм волны, рассмотрим опять идеализированный эксперимент. Предположим, что огромное пространство сплошь заполнено водой, или воздухом, или какой-либо другой «средой». Где-то в центре имеется шар (рис. 40). В начале эксперимента никакого движения нет вовсе. Вдруг шар начинает ритмически «дышать», расширяясь и сжимаясь в объёме, однако всё время оставаясь сферическим по форме. Что происходит в среде? Начнём рассмотрение в тот момент, когда шар начинает расширяться. Частицы среды, находящиеся в непосредственной близости к шару, отталкиваются, так что плотность прилегающего к шару слоя воды или воздуха увеличивается против своего нормального значения. Точно так же, когда шар сжимается, то плотность той части среды, которая непосредственно окружает шар, будет уменьшаться. Эти изменения плотности распространяются во всей среде. Частицы, составляющие среду, проделывают лишь малые колебания, но движение в целом - это движение распространяющейся волны. Существенно новым здесь является то, что впервые мы рассматриваем движение чего-то, что есть не вещество, а энергия, распространяющаяся в веществе.

Используя пример пульсирующего шара, мы можем ввести два общих физических понятия, важных для характеристики волн. Первое - это скорость, с которой распространяется волна. Она будет зависеть от среды и будет различна, например, для воды и воздуха. Второе понятие - длина волны - это расстояние от углубления одной волны до углубления следующей или же расстояние от гребня одной волны до гребня следующей. Морские волны имеют бо́льшую длину волны, чем волны на реке. В наших волнах, образующихся благодаря пульсации шара, длина волны - это расстояние, взятое в некоторый определённый момент между двумя соседними шаровыми слоями, у которых одновременно плотность имеет максимальное или минимальное значение. Очевидно, что это расстояние зависит не только от среды. Большое влияние будет, конечно, иметь быстрота пульсации шара; так, длина волны будет короче, если пульсация становится быстрее, и длиннее, если пульсация медленнее.

Это понятие волны оказывается очень удачным в физике. Оно является определённо механическим понятием. Явление сводится к движению частиц, которые, согласно кинетической теории, образуют вещество. Таким образом, всякая теория, которая употребляет понятие волны, может, вообще говоря, считаться механической теорией. В частности, объяснение акустических явлений существенно опирается на это понятие. Колеблющиеся тела, например, такие, как голосовые связки или скрипичные струны, являются источниками звуковых волн, которые распространяются в воздухе, аналогично тому как это имеет место для волн, образующихся от пульсирующего шара. Таким образом, с помощью понятия волны можно все акустические явления свести к механическим.

Уже было подчёркнуто, что мы должны отличать друг от друга движение частиц и движение самой волны, которая является состоянием среды. Оба движения совершенно различны, но очевидно, что в нашем примере пульсирующего шара оба движения происходят вдоль одной и той же прямой. Частицы среды колеблются в небольших пределах, и плотность увеличивается и уменьшается периодически в соответствии с этим движением. Направление, в котором распространяются волны, и направление, вдоль которого совершаются колебания, одно и то же. Волны этого типа называются продольными . Но является ли этот тип волн единственным? Для наших дальнейших рассуждений важно ясно представить себе возможность другого типа волны, называемой поперечной.

Изменим наш предыдущий пример. Пусть мы по-прежнему имеем шар, но он погружён в среду другого рода: вместо воздуха или воды взято нечто вроде студня или желе. Более того, шар больше не пульсирует, а поворачивается на небольшой угол сначала в одном направлении, а затем в обратном, всегда в одном и том же ритме и вокруг определённой оси (рис. 41). Желе прилипает к шару, и прилипающие частицы вынуждены повторять его движение. Эти частицы вынуждают частицы, расположенные немного дальше, повторять то же движение и т. д., так что в среде возникает волна. Если мы помним о различии между движением среды и движением волны, то мы видим, что в данном случае они явно не совпадают. Волна распространяется в направлении радиуса шара, а частицы среды движутся перпендикулярно к этому направлению. Следовательно, мы создали поперечную волну.

Волны, распространяющиеся на поверхности воды, поперечны. Плавающая пробка движется вверх и вниз, а волна распространяется вдоль горизонтальной плоскости. С другой стороны, звуковые волны дают нам наиболее известный пример продольных волн.

Ещё одно замечание: волна, созданная пульсирующим или колеблющимся в однородной среде шаром, - это сферическая волна . Она называется так потому, что в любой данный момент все точки среды, размещающиеся на любой сфере, окружающей источник, ведут себя одинаковым образом. Рассмотрим часть такой сферы на большом расстоянии от источника (рис. 42). Чем дальше от источника мы берём такую часть сферы и чем меньшую часть мы берём, тем больше она похожа на часть плоскости. Не стремясь быть слишком строгими, мы можем сказать, что нет существенного различия между частью плоскости и частью сферы, радиус которой достаточно велик. Очень часто мы говорим о небольших частях сферической волны, далеко продвинувшейся от её источника, как о плоских волнах. Чем дальше мы помещаем заштрихованную на рисунке часть поверхности от центра сферы и чем меньше угол между двумя радиусами, тем более она приближается к представлению о плоской волне. Понятие плоской волны, подобно многим другим физическим понятиям, есть не больше как абстракция, которую мы можем осуществить лишь с известной степенью точности. Тем не менее это полезное понятие, и оно нам понадобится в дальнейшем.

Волновая теория света

Вспомним, почему мы прекратили описание оптических явлений. Нашей целью было ввести другую теорию света, отличную от корпускулярной, но также пытающуюся объяснить ту же область фактов. Чтобы сделать это, мы должны были прервать наш рассказ и ввести понятие волн. Теперь мы можем вернуться к нашему предмету. Первым, кто выдвинул совершенно новую теорию света, был современник Ньютона - Гюйгенс. В своём трактате о свете он писал:

«Если, кроме того, свет употребляет для своего прохождения некоторое время - что мы сейчас проверим, - то из этого следует, что это движение, сообщённое окружающей материи, следует одно за другим во времени; поэтому оно, подобно звуку, распространяется сферическими поверхностями и волнами; я называю их волнами по тому сходству, которое они имеют с волнами, образующимися на воде, когда в неё брошен камень, и представляющими собой последовательно расширяющиеся круги, хотя они и возникают от другой причины и находятся лишь на плоской поверхности».

По Гюйгенсу, свет - это волна, передача энергии, а не субстанции. Мы видели, что корпускулярная теория объясняет многие наблюдённые факты. В состоянии ли это сделать и волновая теория? Мы должны снова поставить те вопросы, на которые уже дали ответ с помощью корпускулярной теории, чтобы увидеть, может ли волновая теория ответить на них с таким же успехом. Сделаем это здесь в форме диалога между Н и Г, где Н - собеседник, убеждённый в справедливости корпускулярной теории Ньютона, а Г - собеседник, убеждённый в справедливости теории Гюйгенса. Ни тому, ни другому не разрешено применять доводы, полученные после того, как работа обоих великих мастеров была закончена.

Интерес к оптическим проблемам в начале XIX в. был продиктован развитием учения об электричестве, химии и паротехнике. Казалось очень вероятным, что в природе теплоты, света и электричества есть нечто общее. Открытие и изучение фотохимических реакций, химических реакций с выделением теплоты и света, тепловых и химических действий электричества - все это заставляло думать, что изучение света окажется полезным для решения важных научных и практических задач.

В XVIII в. подавляющее большинство ученых придерживалось корпускулярной теории света, которая хорошо объясняла многие, но не все оптические явления. В начале XIX в. в поле зрения физиков попадают вопросы интерференции, дифракции и поляризации света, которые неудовлетворительно объяснялись корпускулярной теорией. Это приводит к возрождению, казалось, забытых идей волновой оптики. В оптике происходит настоящая научная революция, закончившаяся победой волновой теории света над корпускулярной.

Первым в защиту волновой теории света выступил в 1799 г. английский врач Т. Юнг, разносторонне образованный человек, занимавшийся исследованиями в области математики, физики, механики, ботаники и т.д., обладавший обширными знаниями в литературе, истории, многое сделавший для расшифровки египетских иероглифов. Юнг критиковал корпускулярную теорию света, указывая на явления, которые нельзя объяснить с ее позиций, в частности, одинаковые скорости световых корпускул, выбрасываемых слабыми и сильными источниками, а также то обстоятельство, что при переходе из одной среды в другую одна часть лучей постоянно отражается, а другая постоянно преломляется. Юнг предложил рассматривать свет как колеблющееся движение частиц эфира: «...Светоносный эфир, в высокой степени разреженный и упругий, заполняет Вселенную... Колебательные движения возбуждаются в этом эфире каждый раз, как тело начинает светиться». Волновую природу света он обосновывал прежде всего явлением интерференции света.

Опыт, демонстрирующий явление интерференции света, состоит в следующем. В экране прокалывают два маленьких отверстия на близком расстоянии друг от друга и освещают его солнечным светом, проходящим через отверстие в окне. За этим экраном помещают второй экран, на который падают два световых конуса, образовавшиеся за первым экраном. В том месте, где эти конусы перекрываются, на втором экране видны светлые и темные полосы. От присоединения света к свету образуется темнота! Юнг правильно предположил, что темные полосы образуются там, где гребни световых волн поглощают друг друга. Если закрыть одно отверстие, то полосы пропадают, а на экране видны только дифракционные кольца. Измеряя расстояние между кольцами, Юнг определил длины волн красного, фиолетового и некоторых других цветов. Он рассмотрел и некоторые случаи дифракции света. Появление дифракционных полос он объяснял интерференцией двух волн: прошедшей прямо и отраженной от края препятствия. Кроме того, он высказал важную догадку о том, что явление поляризации света возможно только в том случае, если световая волна является поперечной, а не продольной.



Хотя работы Юнга свидетельствовали в пользу волновой теории света, они тем не менее не привели к отказу от корпускулярной теории, которая продолжала господствовать в оптике.

В 1815 г. против корпускулярной теории выступил французский ученый О.Френель. После окончания Политехнической школы в Париже он работал в провинции инженером по прокладке и ремонту дорог, а в свободное время занимался научными исследованиями. Заинтересовался вопросами оптики и самостоятельно пришел к убеждению, что справедлива не корпускулярная, а волновая теория света. В 1818 г. Френель объединил полученные результаты и изложил их в работе о дифракции света, представленной на конкурс, объявленный Французской академией наук.

Работу Френеля рассматривала специальная комиссия в составе Ж.Б. Био, Д.Ф. Араго, П.С. Лапласа, Ж.Л. Гей-Люссака и С.Д. Пуассона - сторонников корпускулярной теории. Но результаты работы Френеля настолько соответствовали эксперименту, что просто отвергнуть ее было невозможно. Пуассон заметил, что из теории Френеля можно вывести следствие, противоречащее здравому смыслу: как будто в центре тени от круглого экрана должно наблюдаться светлое пятно. Эту «несообразность» подтвердил опыт: возражение превратилось в свою противоположность. Комиссия в конце концов признала правильность результатов волновой теории Френеля и присудила ему премию. Однако теория Френеля еще не стала общепринятой, и большинство физиков продолжало придерживаться старых взглядов.



Заключительным аккордом в борьбе корпускулярной и волновой теорий света явились результаты измерения скорости света в воде. Согласно корпускулярной теории, скорость света в оптически более плотной среде должна быть больше, чем в оптически менее плотной, а по волновой теории - наоборот. В 1850 г. французские физики Ж.Б.Л. Фуко и А.И.Л. Физо, измеряя скорость света с помощью вращающегося зеркала, показали, что скорость света в воде меньше, чем в воздухе, и тем самым окончательно подтвердили волновую теорию света. К середине XIX в. приверженцев корпускулярной теории света осталось уже мало.

Проблема эфира. Любая новая теория, решая одни проблемы, вместе с тем ставит и ряд новых. Так случилось и с волновой теорией света. В отличие от корпускулярной волновая теория света должна была решить вопрос о свойствах среды - носителя световой волны. Такую среду еще со времен Декарта назвали эфиром. Ответ на вопрос, каковы свойства эфира, предполагал решение двух фундаментальных проблем:

во-первых, какую волну представляют собой световые колебания - продольную или поперечную. Если бы световые волны были продольными, как звуковые колебания, то теорию эфира следовало строить по аналогии с акустикой и теорией газов. Теория поперечных колебаний гораздо сложнее, поскольку такие колебания распространяются только в плотных (не газообразных) средах;

во-вторых, каким образом эфир взаимодействует с движущимся источником света (не увлекается им или увлекается, полностью либо частично). Иначе говоря, может ли эфир служить абсолютной системой отсчета для механического движения, поиск которой считал необходимым для обоснования физического знания И. Ньютон.

Для ответа на первый вопрос решающим оказалось объяснение поляризации света, которое (как показал еще Т. Юнг) было возможным только на основе гипотезы поперечных колебаний. Теорию поляризации света также разработал Френель. Согласно этой теории свет, испускаемый светящимся телом, не является поляризованным. Хотя каждая молекула тела в каждый момент времени излучает плоскополяризованный свет, но вследствие хаотичности движения каждой молекулы они колеблются в разных направлениях, причем направление колебаний каждой молекулы непрерывно изменяется в результате беспорядочных толчков, которые испытывает молекула нагретого тела. Складываясь, волны, испускаемые молекулами светящегося тела, дают одну волну, которая колеблется непрерывно и хаотично, меняя направление колебаний. Это и есть естественный свет. Поляризация света в твердом кристалле объясняется разложением колебаний естественного света вдоль осей кристалла по двум взаимно перпендикулярным направлениям. А из того, что поляризованные лучи не интерферируют, не влияют друг на друга, Френель сделал правильный вывод о поперечности световых колебаний.

Но выявление поперечного характера световых колебаний привело к ряду новых затруднений: с одной стороны, эфир как носитель поперечных колебаний (с высочайшей скоростью распространяющихся) должен быть чрезвычайно твердым веществом, а с другой стороны, он не должен оказывать заметного препятствия прохождению через него небесных тел. Объяснить это противоречие было очень сложно. Выдвигалось множество (в том числе и очень остроумных) гипотез по поводу свойств эфира, но ни одна из них не удержалась в науке.

В волновой теории света возникает еще одна кардинальная проблема - определение характера взаимодействия между движущейся Землей и эфиром как носителем световых волн; более широко - проблема взаимодействия между эфиром и веществом. Конкретно она выражалась в вопросе: увлекается или не увлекается эфир Землей при ее движении в Космосе. Если эфир не увлекается движущимися телами, значит, он является абсолютной системой отсчета, и тогда механические, электрические, магнитные и оптические процессы можно связать в единое целое. Если эфир увлекается движущимися телами, то он не является абсолютной системой отсчета, значит, существует взаимодействие между эфиром и веществом в оптических явлениях, но такое взаимодействие отсутствует в механических явлениях, следовательно, необходимо было по-разному объяснять явление аберрации, эффект Допплера и др. Эта проблема в течение всего XIX в., вплоть до возникновения специальной теории относительности, определяла развитие фундаментальных проблем теоретической физики. Особенно она обострилась после создания Дж.К. Максвеллом теории электромагнитного поля.

Интерес к оптическим проблемам в начале XIX в. был продиктован развитием учения об электричестве, химии и паротехнике. Казалось очень вероятным, что в природе теплоты, света и электричества есть нечто общее. Открытие и изучение фотохимических реакций, химических реакций с выделением теплоты и света, тепловых и химических действий электричества - все это заставляло думать, что изучение света окажется полезным для решения важных научных и практических задач.

В XVIII в. подавляющее большинство ученых придерживалось корпускулярной теории света, которая хорошо объясняла многие, но не все оптические явления. В начале XIX в. в поле зрения физиков попадают вопросы интерференции, дифракции и поляризации света, которые неудовлетворительно объяснялись корпускулярной теорией. Это приводит к возрождению, казалось, забытых идей волновой оптики. В оптике происходит настоящая научная революция, закончившаяся победой волновой теории света над корпускулярной.

Первым в защиту волновой теории света выступил в 1799 г. английский врач Т. Юнг, разносторонне образованный человек, занимавшийся исследованиями в области математики, физики, механики, ботаники и т.д., обладавший обширными знаниями в литературе, истории, многое сделавший для расшифровки египетских иероглифов. Юнг критиковал корпускулярную теорию света, указывая на явления, которые нельзя объяснить с ее позиций, в частности, одинаковые скорости световых корпускул, выбрасываемых слабыми и сильными источниками, а также то обстоятельство, что при переходе из одной среды в другую одна часть лучей постоянно отражается, а другая постоянно преломляется. Юнг предложил рассматривать свет как колеблющееся движение частиц эфира: «...Светоносный эфир, в высокой степени разреженный и упругий, заполняет Вселенную... Колебательные движения возбуждаются в этом эфире каждый раз, как тело начинает светиться». Волновую природу света он обосновывал прежде всего явлением интерференции света.

Опыт, демонстрирующий явление интерференции света, состоит в следующем. В экране прокалывают два маленьких отверстия на близком расстоянии друг от друга и освещают его солнечным светом, проходящим через отверстие в окне. За этим экраном помещают второй экран, на который падают два световых конуса, образовавшиеся за первым экраном. В том месте, где эти конусы перекрываются, на втором экране видны светлые и темные полосы. От присоединения света к свету образуется темнота! Юнг правильно предположил, что темные полосы образуются там, где гребни световых волн поглощают друг друга. Если закрыть одно отверстие, то полосы пропадают, а на экране видны только дифракционные кольца. Измеряя расстояние между кольцами, Юнг определил длины волн красного, фиолетового и некоторых других цветов. Он рассмотрел и некоторые случаи дифракции света. Появление дифракционных полос он объяснял интерференцией двух волн: прошедшей прямо и отраженной от края препятствия. Кроме того, он высказал важную догадку о том, что явление поляризации света возможно только в том случае, если световая волна является поперечной, а не продольной.

Хотя работы Юнга свидетельствовали в пользу волновой теории света, они тем не менее не привели к отказу от корпускулярной теории, которая продолжала господствовать в оптике.

В 1815 г. против корпускулярной теории выступил французский ученый О.Френель. После окончания Политехнической школы в Париже он работал в провинции инженером по прокладке и ремонту дорог, а в свободное время занимался научными исследованиями. Заинтересовался вопросами оптики и самостоятельно пришел к убеждению, что справедлива не корпускулярная, а волновая теория света. В 1818 г. Френель объединил полученные результаты и изложил их в работе о дифракции света, представленной на конкурс, объявленный Французской академией наук.

Работу Френеля рассматривала специальная комиссия в составе Ж.Б. Био, Д.Ф. Араго, П.С. Лапласа, Ж.Л. Гей-Люссака и С.Д. Пуассона - сторонников корпускулярной теории. Но результаты работы Френеля настолько соответствовали эксперименту, что просто отвергнуть ее было невозможно. Пуассон заметил, что из теории Френеля можно вывести следствие, противоречащее здравому смыслу: как будто в центре тени от круглого экрана должно наблюдаться светлое пятно. Эту «несообразность» подтвердил опыт: возражение превратилось в свою противоположность. Комиссия в конце концов признала правильность результатов волновой теории Френеля и присудила ему премию. Однако теория Френеля еще не стала общепринятой, и большинство физиков продолжало придерживаться старых взглядов.

Заключительным аккордом в борьбе корпускулярной и волновой теорий света явились результаты измерения скорости света в воде. Согласно корпускулярной теории, скорость света в оптически более плотной среде должна быть больше, чем в оптически менее плотной, а по волновой теории - наоборот. В 1850 г. французские физики Ж.Б.Л. Фуко и А.И.Л. Физо, измеряя скорость света с помощью вращающегося зеркала, показали, что скорость света в воде меньше, чем в воздухе, и тем самым окончательно подтвердили волновую теорию света. К середине XIX в. приверженцев корпускулярной теории света осталось уже мало.

Проблема эфира. Любая новая теория, решая одни проблемы, вместе с тем ставит и ряд новых. Так случилось и с волновой теорией света. В отличие от корпускулярной волновая теория света должна была решить вопрос о свойствах среды - носителя световой волны. Такую среду еще со времен Декарта назвали эфиром. Ответ на вопрос, каковы свойства эфира, предполагал решение двух фундаментальных проблем:

во-первых, какую волну представляют собой световые колебания - продольную или поперечную. Если бы световые волны были продольными, как звуковые колебания, то теорию эфира следовало строить по аналогии с акустикой и теорией газов. Теория поперечных колебаний гораздо сложнее, поскольку такие колебания распространяются только в плотных (не газообразных) средах;

во-вторых, каким образом эфир взаимодействует с движущимся источником света (не увлекается им или увлекается, полностью либо частично). Иначе говоря, может ли эфир служить абсолютной системой отсчета для механического движения, поиск которой считал необходимым для обоснования физического знания И. Ньютон.

Для ответа на первый вопрос решающим оказалось объяснение поляризации света, которое (как показал еще Т. Юнг) было возможным только на основе гипотезы поперечных колебаний. Теорию поляризации света также разработал Френель. Согласно этой теории свет, испускаемый светящимся телом, не является поляризованным. Хотя каждая молекула тела в каждый момент времени излучает плоскополяризованный свет, но вследствие хаотичности движения каждой молекулы они колеблются в разных направлениях, причем направление колебаний каждой молекулы непрерывно изменяется в результате беспорядочных толчков, которые испытывает молекула нагретого тела. Складываясь, волны, испускаемые молекулами светящегося тела, дают одну волну, которая колеблется непрерывно и хаотично, меняя направление колебаний. Это и есть естественный свет. Поляризация света в твердом кристалле объясняется разложением колебаний естественного света вдоль осей кристалла по двум взаимно перпендикулярным направлениям. А из того, что поляризованные лучи не интерферируют, не влияют друг на друга, Френель сделал правильный вывод о поперечности световых колебаний.

Но выявление поперечного характера световых колебаний привело к ряду новых затруднений: с одной стороны, эфир как носитель поперечных колебаний (с высочайшей скоростью распространяющихся) должен быть чрезвычайно твердым веществом, а с другой стороны, он не должен оказывать заметного препятствия прохождению через него небесных тел. Объяснить это противоречие было очень сложно. Выдвигалось множество (в том числе и очень остроумных) гипотез по поводу свойств эфира, но ни одна из них не удержалась в науке.

В волновой теории света возникает еще одна кардинальная проблема - определение характера взаимодействия между движущейся Землей и эфиром как носителем световых волн; более широко - проблема взаимодействия между эфиром и веществом. Конкретно она выражалась в вопросе: увлекается или не увлекается эфир Землей при ее движении в Космосе. Если эфир не увлекается движущимися телами, значит, он является абсолютной системой отсчета, и тогда механические, электрические, магнитные и оптические процессы можно связать в единое целое. Если эфир увлекается движущимися телами, то он не является абсолютной системой отсчета, значит, существует взаимодействие между эфиром и веществом в оптических явлениях, но такое взаимодействие отсутствует в механических явлениях, следовательно, необходимо было по-разному объяснять явление аберрации, эффект Допплера и др. Эта проблема в течение всего XIX в., вплоть до возникновения специальной теории относительности, определяла развитие фундаментальных проблем теоретической физики. Особенно она обострилась после создания Дж.К. Максвеллом теории электромагнитного поля.

Первые научные гипотезы о природе света были высказаны в 17 веке. К этому времени были обнаружены два замечательных свойства света – прямолинейность распространения в однородной среде и независимость распространения световых пучков, т.е. отсутствие влияния одного пучка света на распространение другого светового пучка.

И. Ньютон в 1672 г. высказал предположение о корпускулярной природе света. Против корпускулярной теории света выступали современники Ньютона – Р. Гук и Х. Гюйгенс, разработавшие волновую теорию света.

Скорость света. Первым большим успехом в изучении природы света было измерение скорости света.

Самый простой способ измерения скорости света заключается в измерении времени распространения светового сигнала на известное расстояние.

Однако попытки осуществления такого рода опытов оканчивались неудачей, никакого запаздывания света даже при расстоянии до зеркала в несколько километров обнаружить не удалось.

Впервые экспериментально скорость света была определена астрономическим методом. Датским ученым Олафом Ремером (1644-1710) в 1676г. он обнаружил, что при изменении расстояния между Землёй и планетой Юпитер вследствие их обращения вокруг Солнца происходит изменение периодичности появления спутника Юпитера Ио его тени. В том случае, когда Земля находится по другую сторону от Солнца по отношению к Юпитеру, спутник Ио появляется из-за Юпитера на 22минуты позже, чем это должно произойти по расчетам. Но спутники обращаются вокруг планет равномерно, - следовательно, это запаздывание кажущееся. Ремер догадался, что причиной запаздывания появления спутника Юпитера при увеличении расстояния между Землёй и Юпитером является конечность скорости света. Таким образом, он смог определить скорость света.

Определение света

Свет – это электромагнитное излучение, невидимое для глаза. Свет становится видимым при столкновении с поверхностью. Цвета образуются из волн разной длины. Все цвета вместе образуют белый свет. При преломлении светового луча в призме или капле воды весь спектр цветов становится видимым, например, радуга. Глаз воспринимает диапазон видимого света, 380 - 780 нм, за пределами которого находятся ультрафиолетовый (УФ) и инфракрасный (ИК) свет.

Возникновение теории о свете

В XVII веке возникло две теории света волновая и корпускулярная. Корпускулярную теорию предложил Ньютон, а волновую Гюйгенс. Согласно представлениям Гюйгенса свет волны, распространяющиеся в особой среде эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Если по одной из теорий нельзя было объяснить какое либо явление, то по другой это явление можно было объяснить. Именно по этому эти две теории так долго существовали параллельно друг другу.

Например: прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция и интерференция, что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

Корпускулярная теория

Эмиссионная (корпускулярная): свет состоит из мелких частиц (корпускул), излучаемых светящимся телом. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию. От сюда происходит волновая теория.

Волновая теория

Волновая: свет представляет собой волну в невидимом мировом эфире. Оппонентов Ньютона (Гука, Гюйгенса) нередко называют сторонниками волновой теории, однако надо иметь в виду, что под волной они понимали не периодическое колебание, как в современной теории, а одиночный импульс; по этой причине их объяснения световых явлений были мало правдоподобны и не могли составить конкуренцию ньютоновским (Гюйгенс даже пытался опровергнуть дифракцию). Развитая волновая оптика появилась только в начале XIX века.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял» и охотно допускал, что свет может быть связан и с волнами в эфире. В трактате, представленном в Королевское общество в 1675 году, он пишет, что свет не может быть просто колебаниями эфира, так как тогда он, например, мог бы распространяться по изогнутой трубе, как это делает звук. Но, с другой стороны, он предлагает считать, что распространение света возбуждает колебания в эфире, что и порождает дифракцию и другие волновые эффекты. По существу, Ньютон, ясно сознавая достоинства и недостатки обоих подходов, выдвигает компромиссную, корпускулярно-волновую теорию света. В своих работах Ньютон детально описал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света: «Учение моё о преломлении света и цветах состоит единственно в установлении некоторых свойств света без всяких гипотез о его происхождении». Волновая оптика, когда она появилась, не отвергла модели Ньютона, а вобрала их в себя и расширила на новой основе.

Несмотря на свою нелюбовь к гипотезам, Ньютон поместил в конце «Оптики» список нерешённых проблем и возможных ответов на них. Впрочем, в эти годы он уже мог себе такое позволить – авторитет Ньютона после «Начал» стал непререкаемым, и докучать ему возражениями уже мало кто решался. Ряд гипотез оказались пророческими. В частности, Ньютон предсказал:

    отклонение света в поле тяготения;

    явление поляризации света;

    взаимопревращение света и вещества.