Телескопы ближайшего будущего — что день грядущий нам готовит

Последний «рекордсмен» среди оптических телескопов заработал в 2008 году, правда крупнейшая радиоастрономическая обсерватория ALMA или Атакамская большая миллиметровая/субмиллиметровая решётка) вступила в строй совсем недавно - в марте 2013 года. Но мы сейчас находимся на пороге множества новых открытий - в ближайшие десять лет планируется ввести в строй множество новых, крупнейших в своих областях телескопов. Об этих телескопах я и расскажу далее.

Слева направо - Квадратная километровая решётка, Телескоп с пятисот метровой апертурой, Чрезвычайно большой телескоп, Тридцатиметровый телескоп, Гигансткий Магелланов телескоп и космический телескоп «Джеймс Уэбб».

Оптические телескопы

Ближайшим телескопом, превосходящим возможности современных инструментов станет «Джеймс Уэбб» или JWST (James Webb Space Telescope), который планируется запустить в октябре 2018 года:

Он будет иметь диаметр главного зеркала 6,5 метра и превосходить телескоп «Хаббл» по этому параметру в 2,7 раза. Правда хоть он и предполагается, как замена «Хаббла» - он будет работать в инфракрасном диапазоне, и по этому его скорее стоит сравнивать с космическим телескопом «Гершель», относительно которого, разница не столь велика - примерно 1,9 раза. Приёмники инфракрасного излучения позволяют ему фиксировать экзопланеты с температурой, близкую к Земной. Он так же сможет значительно продвинуться в изучении очень далеких от нас объектов:

Для обеспечения хороших условий наблюдений телескоп будет отправлен в точку Лагранжа L2, а для дополнительного охлаждения будет использоваться пять последовательно расположенных экранов из полиамидной плёнки, покрытых с разных сторон алюминием и кремнием, которые будут очень хорошо рассеивать доходящие до телескопа свет и тепло Солнца. Эти пассивные средства позволят добиться температуры главного зеркала и аппаратуры телескопа ниже 50 К, а часть из датчиков будут так же охлаждаться дополнительно.

Применение одного цельного зеркала, как для «Хаббла» для данного телескопа оказалось невозможным - оно было бы слишком тяжёлым (а носителем для нового телескопа должен стать Ариан-5, который имеет в два раза меньшую полезную нагрузку, нежели Шаттл выводивший «Хаббл») и зеркало такого диаметра просто «не влезало» бы в обтекатель этого ракетоносителя, поэтому зеркало имеет складную конструкцию - две части главного зеркала по три сегмента будут вставать на своё место уже в процессе полёта телескопа в точку своего базирования (видео-обзор на этот и другие телескопы находятся в конце статьи).

За основу главного зеркала были взяты бериллиевые шестигранники диаметром около 1,5 метров, покрытые золотым напылением толщиной 120 нм, для лучшего отражения инфракрасного света. Всего телескоп состоит из 18 зеркал весом около 20 кг каждое. Благодаря всем ухищрениям вес удалось снизить до 6,5 тонн - против 11 тонн у «Хаббла». Однако все эти проблемы сделали своё чёрное дело - и стоимость проекта выросла до астрономических 8,8 млрд $, и по этому показателю он занял четвёртое место среди всех научных проектов, после международной космической станции, ITER и большого адронного коллайдера.

Гигантский Магелланов телескоп (GMT) с диаметром 25,4 м, является лишь третьим по размерам из строящихся оптических, и будет состоять из семи сегментов по 8,4 м диаметром каждое:

Точности изготовления зеркал для всех трёх телескопов - просто потрясающие, ведь неровности поверхности не должны превышать 1/10 от длинны волны (а это для видимого света - 380-780 нм), то есть метровых размеров зеркала необходимо изготавливать с отклонениями от идеальной поверхности 40 нм, и даже менее. Телескоп располагаться в обсерватории Лас-Кампанас в Чили, довольно далеко от старых Магеллановых телескопов (целых 115 км). На данный момент готовы уже четыре зеркала, однако различные проблемы привели к тому, что закончить его планируется только к 2025 году (эта дата «съехала» с планируемой - уже на пять лет). Подобные проблемы преследуют и двух других великанов - их даты окончания строительства также серьёзно сдвигались.

Следующий крупный телескоп, который планируется построить - TMT (тридцатиметровый телескоп):

Он будет строиться на горе Мауна Кеа на Гавайях, эта гора уже буквально «кишит» телескопами:

Главными из которых сейчас бесспорно являются 10-метровые телескопы Кек 1 и Кек 2, которые обычно и ассоциируют с обсерваторией:

Главное зеркало нового телескопа будет состоять из 492 1,4-метровых шестиугольных сегментов, как и в телескопах Кека тут будет использоваться адаптивная оптика*, управляющая каждым зеркалом отдельно. Высота расположения даёт ему значительные преимущества: для наблюдений будет использоваться видимый свет, ближний ультрафиолет, ближний и средний инфракрасный диапазон. Планируемая дата окончания строительства - 2024 год.

Самым крупным оптическим телескопом на ближайшее будущее станет E-ELT (чрезвычайно большой телескоп) с диаметром главного зеркала 39,3 м состоящим из 798 сегментов(этот размер уже был сокращён с изначальных 45 м, а ещё раньше в пользу этого проекта отказались от проекта 100-метрового телескопа, который посчитали слишком дорогим). Размер вторичного зеркала этого гиганта - 4,1 м, или почти в два раза больше, чем основное зеркало «Хаббла». На телескоп будет установлена самая совершенная система адаптивной оптики - она состоит из 6 сенсоров, 3 электромоторов для перемещения сегмента зеркала и 12 электромоторов - для его деформации, всё это необходимо для сохранения изгибов поверхности (допустимые отклонения от идеальной формы не более 30 нм) и для парирования возмущений атмосферы - для этого считывание данных с датчиков будет проводиться 1000 раз в секунду. В итоге это позволит получить разрешающую способность почти в пять раз лучше, чем без этой системы. Общий вес конструкции телескопа - 2 800 тонн.


Здесь можно различить фигуры людей, и шестигранные сегменты зеркала (их размеры составляют 1,4 м)

Он будет строиться на горе Армасонес в Чили, рядом с VLT (очень большой телескоп). Выбор места обусловлен атмосферными условиями в данной местности - эта гора расположена в пустыне Атакама, и воздух в этих местах очень сухой, что позволяет кроме оптических инструментов применять также рассчитанные на ближний инфракрасный свет - ведь их поглощение в Земной атмосфере обусловлены в основном водяными парами, и углекислым газом. Его также планируется ввести в строй в 2024 году.

Все три телескопа имеют значительные преимущество по разрешению относительно существующих телескопов:

Любовь учёных к «эффектным» названиям своих телескопов привела к появлению шуточного плана, по строительству телескопов:

Радиотелескопы

Телескоп FAST (телескоп с пятисот метровой апертурой) - откроется уже в сентябре 2016 года, и станет крупнейшим телескопом использующим одну апертуру (то есть «одну тарелку» грубо говоря), из когда-либо созданных. Он будет состоять из 4600 отдельных треугольных панелей значительно превысит телескоп в Аресибо диаметром 305 м (людям не знакомым с астрономией этот телескоп может быть известен по фильму «Золотой глаз» из «бондианы»). FAST будет использовать тот же принцип - когда отражающая поверхность (рефлектор) остаётся на месте, а облучатель двигается для наведения на определённую точку в небе. Можно отметить, что благодаря использованию природного рельефа (как и в случае с предыдущем рекордсменом) его строительство будет не столь дорогим - 196 млн $, это меньше стоимости уже существующих оптических телескопов, и значительно уступает - строящимся.

Последний из представленных здесь астрономическим инструментов является SKA (квадратная километровая решётка). Общая площадь этого радиоинтерферометра (сети из нескольких радиотелескопов, разнесённых на местности) как ясно из названия, будет составлять целый квадратный километр. Его части должны быть построены в Австралии, Аргентине, Чили и Южной Африке, при этом штаб-квартира телескопа будет находиться в Астрофизическом центре Джодрелл Бэнк рядом с Манчестером, Англия. Он будет состоять из сети в 90 штук 100-метровых, несколько тысяч радиотелескопов 15 × 12 метров и сети 12-15 метровых параболических антенн.

Телескоп будет производить 160 терабайт необработанных данных в секунду. Его постройка, разбитая на две фазы, должна будет проходить в течении целых 12 лет - с 2018 по 2030, однако использовать его можно будет уже начиная с 2020 года (не в полную мощность, конечно). Общая стоимость проекта - 2 млрд $, из которых 650 $ млн уже выделено. База радиотелескопа будет составлять 5 000 километров, что позволит ему на максимальной частоте в 14 ГГц получить разрешение в 1 угловую микросекунду. Он сможет «увидеть» процессы флуктуации плотности в ранней Вселенной и формирования первых галактик, тестирование космологических моделей и моделей тёмной энергии.

С грустью надо отметить, что Россия не участвует не в одном из этих проектов, нам предлагали поучаствовать в проекте E-ELT - но не срослось.

*Атмосфера Земли помогает нам от высокоэнергетических частиц, приходящих из космоса и от излучения Солнца, но сильно мешает астрономам - толщина земной атмосферы примерно соответствует толще воды в 10 метров - не очень то удобно глядеть на объекты находящиеся в миллиардах световых лет от тебя, сквозь такой слой вещества, который ещё и постоянно перемещается ветрами. Поэтому с 90-х годов на уже существующих, и строящихся телескопах стали применять адаптивную оптику - принцип её работы заключается в следующем:


Фотография двух телескопов обсерватории Кека работающими в режиме интерферометра

Лазерный луч специальной частоты направляется в ту область, в которую смотрит телескоп, этот луч достигает высоты в 90 км, где ионизирует атомы натрия, которые начинают светиться «как маленькая звезда». За этим свечением наблюдает прибор, который выдаёт команды электродвигателям на перемещения частей зеркала так, чтобы скомпенсировать турбулентность воздуха. Конструкция получается невероятно сложной (у телескопов обсерватории Кека по 38 сегментов зеркал, и каждый - управляется отдельно) но результат работы этой системы поражает:

Система телескопа E-ELT будет ещё сложнее, и будет состоять из четырёх лучей:

**Здесь указывается максимально возможное разрешение (у телескопа «Хаббл» для сравнения - оно составляет 120 миллисекунд), на самом деле оно также зависит от частоты по формуле:

где θ - угловое разрешение, λ - длина волны и D - диаметр телескопа, так что разрешение в ультрафиолетовом спектре для телескопа примерно на порядок выше, чем в инфракрасном. С учётом углового диаметра Бетельгейзе в 55 угловых миллисекунд, телескоп E-ELT сможет получить её фотографию 11 × 11 пикселей, для Беты Живописца - это будет фотография 10 × 10. Но с учётом гигантских дистанций до звёзд (расстояние до Бетельгейзе оценивается в 643±146 световых лет) - это огромное достижение для астрономии. В перспективе это позволит проводить спектроскопию атмосфер звёзд, близко расположенных к своим звёздам планет (это можно делать и сейчас - но сигнал приходится «вычленять» из света звезды - что сильно ограничивает точность измерений). Так же увеличение углового разрешения позволяет видеть отдельные звёзды с больших дистанций - это важно при исследованиях тел на дистанциях в млрд световых лет. Основными целями этих оптических телескопов и будет как раз наблюдения за тем, что сейчас просто не видно (из-за слабого света - далёкие звёзды, экзопалнеты), очень далеко находится (а следователь - и являются очень старыми объектами - вплоть до нескольких сот млн лет от большого взрыва), или слишком близко расположено друг к другу.

Видео обзоры данных телескопов.

С каждым дополнительным сантиметром апертуры, каждой дополнительной секундой времени наблюдения и каждым дополнительным атомом атмосферных помех, удаленным из поля обзора телескопа, лучше, глубже и понятнее можно будет увидеть Вселенную.

25 лет «Хабблу»

Когда телескоп «Хаббл» начал функционировать в 1990 году, он открыл новую эру в астрономии - космическую. Не нужно было больше бороться с атмосферой, беспокоиться об облаках или электромагнитных мерцаниях. Все, что требовалось, - это развернуть спутник на цель, стабилизировать его и собирать фотоны. За 25 лет космические телескопы начали охватывать весь электромагнитный спектр, что позволило впервые рассмотреть Вселенную на каждой длине волны света.

Но поскольку наше знание увеличилось, выросло и наше понимание неизвестного. Чем дальше мы заглядываем во Вселенную, тем более глубокое прошлое мы видим: конечное количество времени с момента Большого взрыва в сочетании с конечной скоростью света обеспечивает предел того, что мы можем наблюдать. Более того, расширение самого пространства работает против нас, растягивая звезд, пока он путешествует по Вселенной к нашим глазам. Даже космический телескоп «Хаббл», дающий нам самое глубокое, самое захватывающее изображение Вселенной, которое мы когда-либо открывали, в этом отношении ограничен.

Недостатки «Хаббла»

«Хаббл» - удивительный телескоп, но он имеет ряд принципиальных ограничений:

  • Всего 2,4 м в диаметре, что ограничивает его
  • Несмотря на покрытие светоотражающими материалами, он постоянно находится под прямыми солнечными лучами, которые его нагревают. Это значит, что из-за тепловых эффектов он не может наблюдать длину волны света более 1,6 мкм.
  • Сочетание ограниченной светосилы и длин волн, к которым он чувствителен, означает, что телескоп может видеть галактики возрастом не старше 500 млн лет.

Эти галактики прекрасны, далеки и существовали тогда, когда Вселенной было всего около 4% от ее нынешнего возраста. Но известно, что звезды и галактики существовали еще раньше.

Чтобы увидеть должен обладать более высокой чувствительностью. Это означает переход на более длинные волны и более низкие температуры, чем у «Хаббла». Именно поэтому и создается космический телескоп Джеймса Вебба.

Перспективы для науки

James Webb Space Telescope (JWST) предназначен для преодоления именно этих ограничений: с диаметром 6,5 м телескоп позволяет собирать в 7 раз больше света, чем "Хаббл". Он открывает возможность ультра-спектроскопии высокого разрешения от 600 нм до 6 мкм (в 4 раза больше длины волны, которую способен увидеть "Хаббл"), проводить наблюдения в средней инфракрасной области спектра с более высокой чувствительностью, чем когда-либо прежде. JWST использует пассивное охлаждение до температуры поверхности Плутона и способен активно охлаждать приборы средней инфракрасной области вплоть до 7 K. Телескоп Джеймса Вебба даст возможность заниматься наукой так, как никто раньше этого не делал.

Он позволит:

  • наблюдать самые ранние галактики, когда-либо сформировавшиеся;
  • видеть сквозь нейтральный газ и зондировать первые звезды и реионизацию Вселенной;
  • проводить спектроскопический анализ самых первых звезд (населения III), образовавшихся после Большого взрыва;
  • получить удивительные сюрпризы, подобные открытию самых ранних и квазаров во Вселенной.

Уровень научных исследований JWST не похож ни на что в прошлом, и поэтому телескоп был избран в качестве флагманской миссии НАСА 2010-х годов.

Научный шедевр

С технической точки зрения, новый телескоп Джеймса Вебба представляет собой настоящее произведение искусства. Проект прошел долгий путь: были перерасходы бюджета, отставания от графика и опасность отмены проекта. После вмешательства нового руководства все изменилось. Проект вдруг заработал как часы, были выделены средства, учтены ошибки, неудачи и проблемы, и команда JWST стала укладываться во все сроки, графики и бюджетные рамки. Запуск аппарата запланирован на октябрь 2018 года на ракете «Ариан-5». Команда не только следует расписанию, у нее есть девять месяцев в запасе, чтобы учесть все непредвиденные ситуации, чтобы все было собрано и готово к этой дате.

Телескоп Джеймса Вебба состоит из 4 основных частей.

Оптический блок

Включает все зеркала, из которых наиболее эффективны восемнадцать первичных сегментированных позолоченных зеркала. Они будут использоваться для сбора далекого звездного света и фокусирования его на инструментах для анализа. Все эти зеркала в настоящее время готовы и безупречны, сделаны точно по расписанию. По окончании сборки они будут сложены в компактную конструкцию, чтобы быть запущенными на расстояние более 1 млн км от Земли до точки Лагранжа L2, а затем автоматически развернуться с образованием сотовой структуры, которая долгие годы будет собирать сверхдальний свет. Это действительно красивая вещь и успешный результат титанических усилий многих специалистов.

Камера ближнего инфракрасного диапазона

«Вебб» оборудован четырьмя научными инструментами, которые уже готовы на 100%. Основной камерой телескопа является камера ближнего ИК-диапазона: от видимого оранжевого света до глубокой инфракрасной области. Она позволит получить беспрецедентные изображения самых ранних звезд, самых молодых галактик, находящихся еще в процессе формирования, молодых звезд Млечного Пути и близлежащих галактик, сотен новых объектов в поясе Койпера. Она оптимизирована для непосредственного получения изображений планет вокруг других звезд. Это будет основная камера, используемая большинством наблюдателей.

Ближний инфракрасный спектрограф

Данный инструмент не только разделяет свет на отдельные длины волн, но способен это делать для более 100 отдельных объектов одновременно! Этот прибор будет универсальным спектрографом «Вебба», который способен работать в 3-х различных режимах спектроскопии. Он был построен но многие компоненты, включая детекторы и батарея мульти-затвора, предоставлены Центром космических полетов им. Годдарда (НАСА). Этот прибор был протестирован и готов к установке.

Средне-инфракрасный инструмент

Прибор будет использоваться для широкополосной визуализации, то есть с его помощью будут получены наиболее впечатляющие изображения со всех инструментов «Вебба». С научной точки зрения, он будет наиболее полезным при измерении протопланетных дисков вокруг молодых звезд, измерении и визуализации с беспрецедентной точностью объектов пояса Койпера и пыли, разогретой светом звезд. Он будет единственным инструментом с криогенным охлаждением до 7 К. По сравнению с космическим телескопом Spitzer, это позволит улучшить результаты в 100 раз.

Бесщелевой спектрограф ближнего ИК-диапазона (NIRISS)

Прибор позволит производить:

  • широкоугольную спектроскопию в ближней инфракрасной области длин волн (1,0 - 2,5 мкм);
  • гризм-спектроскопию одного объекта в видимом и инфракрасном диапазоне (0,6 - 3,0 мкм);
  • апертурно-маскирующую интерферометрию на длинах волн 3,8 - 4,8 мкм (где ожидаются первые звезды и галактики);
  • широкодиапазонную съемку всего поля зрения.

Этот инструмент создан Канадским космическим агентством. После прохождения криогенного тестирования он также будет готов к интеграции в приборный отсек телескопа.

Солнцезащитное устройство

Космические телескопы ими еще не оборудовались. Одной из самых пугающих сторон каждого запуска является применение совершенно нового материала. Вместо того, чтобы охлаждать весь космический аппарат активно с помощью одноразового расходуемого хладагента, телескоп Джеймса Вебба использует совершенно новую технологию - 5-слойный солнцезащитный экран, который будет развернут для отражения солнечного излучения от телескопа. Пять 25-метровых листов будут соединены титановыми стержнями и установлены после развертывания телескопа. Защита тестировалась в 2008 и 2009 годах. Полномасштабные модели, участвовавшие в лабораторных испытаниях, выполнили все, что они должны были сделать, здесь на Земле. Это красивая инновация.

К тому же это еще и невероятная концепция: не просто блокировать свет от Солнца и поместить телескоп в тени, а сделать это таким образом, чтобы все тепло излучалось в направлении, противоположном ориентации телескопа. Каждый из пяти слоев в вакууме космоса будет становится холодным по мере удаления от наружного, который будет немного теплее, чем температура поверхности Земли - около 350-360 K. Температура последнего слоя должна опуститься до 37-40 К, что холоднее, чем ночью на поверхности Плутона.

Кроме того, предприняты значительные меры предосторожности для защиты от неблагоприятной среды глубокого космоса. Одной из вещей, о которых здесь следует беспокоиться, являются крошечные камешки, размером с гальку, песчинки, пылинки и еще меньше, пролетающие через межпланетное пространство со скоростью десятков или даже сотен тысяч км/ч. Эти микрометеориты способны проделывать крошечные, микроскопические отверстия во всем, с чем они сталкиваются: космических аппаратах, костюмах космонавтов, зеркалах телескопов и многом другом. Если зеркала получат только вмятины или отверстия, что слегка уменьшит количество доступного «хорошего света», то солнечный щит может порваться от края до края, что сделает весь слой бесполезным. Для борьбы с этим явлением была использована блестящая идея.

Весь солнечный щит был разделен на участки таким образом, что, если возникнет небольшой разрыв в одном, двух или даже трех из них, слой не порвется дальше, как трещина в лобовом стекле автомобиля. Секционирование сохранит всю структуру целой, что важно для предотвращения деградации.

Космический аппарат: системы сборки и управления

Это самый обычный компонент, так как есть у всех космических телескопов и научных миссий. У JWST он уникален, но также полностью готов. Все, что осталось сделать генеральному подрядчику проекта компании Northrop Grumman, - закончить щит, собрать телескоп и проверить его. Аппарат будет готов к запуску через 2 года.

10 лет открытий

Если все пойдет правильно, человечество окажется на пороге больших научных открытий. Завеса нейтрального газа, которая до сих пор заслоняла обзор самых ранних звезд и галактик, будет устранена инфракрасными возможностями «Вебба» и его огромной светосилой. Это будет самый большой, самый чувствительный телескоп с огромным диапазоном длин волн от 0,6 до 28 микрон (человеческий глаз видит от 0,4 до 0,7 мкм) из когда-либо построенных. Ожидается, что он обеспечит десятилетие наблюдений.

Согласно НАСА, срок миссии «Вебба» составит от 5,5 до 10 лет. Он ограничен количеством топлива, которое необходимо для поддержания орбиты, и сроком службы электроники и оборудования в суровых условиях космоса. Орбитальный телескоп Джеймса Вебба будет нести запас топлива на весь 10-летний срок, а через 6 месяцев после запуска будет произведено тестирование обеспечения полета, которое гарантирует 5 лет научных работ.

Что может пойти не так?

Основным ограничивающим фактором является количество топлива на борту. Когда оно закончится, спутник будет дрейфовать в сторону от L2, выйдя на хаотическую орбиту в непосредственной близости от Земли.

Коме этого, могут произойти и другие неприятности:

  • деградация зеркал, которая повлияет на количество собираемого света и создаст артефакты изображения, но не повредит дальнейшей эксплуатации телескопа;
  • выход из строя части или всего солнечного экрана, что приведет к повышению температуры космического аппарата и сузит используемый диапазон длин волн до очень близкой инфракрасной области (2-3 мкм);
  • поломка системы охлаждения инструмента среднего ИК-диапазона, что сделает его непригодным для использования, но не повлияет на другие инструменты (от 0,6 до 6 мкм).

Наиболее тяжелое испытание, которое ожидает телескоп Джеймса Вебба, - запуск и выведение на заданную орбиту. Именно эти ситуации тестировались и были успешно пройдены.

Революция в науке

Если телескоп Вебба заработает в штатном режиме, топлива хватит, чтобы обеспечить его работу с 2018 по 2028 год. Кроме того, существует потенциальная возможность дозаправки, которая могла бы увеличить срок службы телескопа еще на одно десятилетие. Подобно тому, как «Хаббл» эксплуатировался в течение 25 лет, JWST мог бы обеспечить поколение революционной науки. В октябре 2018 года ракета-носитель «Ариан-5» выведет на орбиту будущее астрономии, которое после более 10 лет напряженной работы уже готово начать приносить плоды. Будущее космических телескопов почти наступило.

November 12th, 2015

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира. В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.

Вот как это будет выглядеть:

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения. Сооружение будет действительно исполинским - высотой 56 и шириной 66 м. Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м². По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.

Однако мировым чемпионом TMT пробудет недолго. На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO). Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.

Тридцать метров науки Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

Фото 2.

Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен. В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него. Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние. Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре). Вторичное зеркало - не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала. В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году. По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.

Фото 3.

Сила - в приборах

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе - IRIS, IRMS и WFOS. IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения. IRMS - это многощелевой инфракрасный спектрометр, а WFOS - широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут. В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.

Фото 4.

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов - от Солнечной системы до сверхдальнего космоса. И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, - рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией. - На это есть две причины: во-первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий. Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов. Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».

Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик. Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам. Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют. Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно. Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики - не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света. И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.

Фото 5.

Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи. Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения. Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ. Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений. Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.

По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи - главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд. Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов. Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе. На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.

Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м. Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров). Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

Гавайский проект

«TMT - единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, - говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте. - Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория - одно из лучших мест на планете. Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North. Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа. К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».

По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет. Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено. Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей. Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало. Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

Оптика для супертелескопов

Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы. TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические). E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое). GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Апертура (диаметр) нового телескопа составит 30 метров. Если все пойдет по плану, TMT впервые увидит свет звезд в 2022 году, а спустя еще год начнутся регулярные наблюдения.

Супертелескоп E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути.

Любой телескоп сам по себе - просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

Фото 6.

На земле и в небесах

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST). Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают). Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала - 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше. Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

Фото 7.

Фото 9.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

И Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Развитие астрономии не прекращается и много новых телескопов строятся по всему миру для различных целей. Краткое описание самых примечательных проектов в этом обзоре:

Поиск планет

Современные телескопы способны найти планету у другой звезды только если она очень близко к звезде или очень велика (глядя на аналог солнечной системы «Кеплер» нашел бы только Сатурн и Юпитер). Чтобы находить аналоги земли у других звезд и узнать, что с ними стало, создается новое поколение космических и наземных телескопов.

Телескоп TESS будет запущен в 2017. Его задача – искать экзопланеты при благоприятном исходе он найдет 10000 новых экзопланет в 2 раза больше чем обнаружено на сегодняшний день.
подробнее

CHEOPS


Запускаемый в 2017 космический телескоп CHEOPS будет искать экзопланеты у ближайших к солнечной системе звезд и изучать их.
подробнее

Телескоп Джеймса Вебба

Телескоп Джеймса Вебба это преемник Хаббла и будущее астрономии. Он первым сможет находить планеты размером с Землю и меньше, а также делать фотографии ещё более далеких туманностей. Постройка телескопа обошлась в $8 млрд. Он будет отправлен в космос осенью 2018 года.
подробнее

Тридцатиметровый телескоп

Тридцатиметровый телескоп мог бы быть первым из серии «экстремально больших телескопов» способных видеть значительно дальше существующих телескопов, но для жителей гавайских островов, гора, на которой его строят - священна, и они добились его отмены. Так что теперь он будет отложен и в лучшем случае построен в другом месте.
подробнее

Гигантский Магелланов телескоп

Наземный Гигантский Магелланов телескоп будет иметь разрешающую способность в 10 раз выше чем у Хаббла. Полностью функциональным он станет в 2024.
подробнее

European Extremely Large Telescope (E-ELT)

Но самый большим в мире телескопом будет European Extremely Large Telescope (E-ELT). В лучшем случае, он даже будет способен визуально наблюдать экзопланеты, так что мы сможем впервые увидеть планеты у других звезд. Начало работы также - 2024.
подробнее

Телескоп PLATO будет наследником уже Джеймса Вебба и запущен в 2020е. Основной его задачей, как и остальных будет нахождение и изучение экзопланет и он сможет определять их строение (твердые они или газовые гиганты)
подробнее

Также планируемый на 2020е телескоп Wfirst будет специализироваться на поисках далеких галактик, но также сможет находить экзопланеты и передавать изображение самых больших из них.
подробнее

STEP (Search for Terrestrial Exo-Planets)

Китайский телескоп STEP (Search for Terrestrial Exo Planets) будет способен обнаруживать похожие на землю планеты на расстоянии до 20 парсеков от солнца. Его запуск ожидается в период 2021-2024.

Планируемый на второю половину 2020х космический телескоп NASA - ATLAST будет искать в галактике биомаркеры свидетельствующие о наличии жизни (кислорода, озона, воды)
подробнее

Lockheed Martin разрабатывает новый телескоп - SPIDER. Он должен собирать свет иным способом и это позволит сделать эффективный телескоп меньшего размера, потому что, если посмотреть на предыдущие проекты, они становятся всё более гигантскими.
подробнее

А пока новые телескопы для поиска экзопланет ещё не запущены и не построены, всё что у нас есть на сегодня это 3 наблюдательных проекта. Подробнее о них в таблице поиска планет:

Таблица поиска планет

Kepler K2

В 2013 телескоп «Кеплер» - самый эффективный в поиске экзопланет телескоп вышел из строя, и многие издания написали для него что-то вроде некролога. Но после запуска миссии K2 в 2014 оказалось, что телескоп ещё вполне способен находить планеты. С апреля 2016 он начнет новые наблюдения, и исследователи рассчитывают найти от 80 до 120 новых экзопланет. 1 2
Menerva

Очень дешевый по сравнению с аналогами, телескоп Гарвардского университета - Менерва в декабре 2015 приступил к своей миссии по поиску экзопланет у красных карликов, по соседству с солнечной системой. Астрономы рассчитывают найти не менее 10-20 планет. 3 4
Pale red dot

Никак не понятно вращается вокруг звезды Альфа-центавра (ближайшего соседа солнечной системы) планета или нет. Эта загадка не отпускает астрономов и часть из них организовала проект Pale red dot для тщательного наблюдения и выяснения этого вопроса (если планета есть, то на ней все равно температура 1000 градусов). Наблюдения уже завершены, результаты в виде научной статьи будут в конце 2016го. 5 6

Планета 9

Планета 9 (или планета X) внезапно была обнаружена косвенными методами в начале 2016го. Первая новая планета солнечной системы за более чем 150 лет, но, чтобы наблюдать её в телескоп и тем самым подтвердить её существование может понадобиться до 5 лет поисков.
подробнее

Поиск звезд

В галактике млечный путь от 200 до 400 млрд. звезд и астрономы пытаются создать карту или каталог хотя бы ближайших к нам звезд.

Космический телескоп GAIA составит карту 1 млрд. ближайших к нам звезд. Публикация первого каталога запланирована на лето 2016.
подробнее

Японский проект JASMINE - это третий в истории астрометрический проект (GAIA – второй) и включает в себя запуск 3 телескопов в 2017, 2020 и после 2020 для уточнения расстояния до астрономических объектов и также нанесения расположения звезд на карту.

Наземный телескоп LSST будет использоваться для картографирования Млечного Пути и составления новейшей интерактивной карты звёздного неба. Он начнет работу примерно в 2022 году.
подробнее

На сегодняшний день у нас есть только вот такая звездная карта от Google.

Поиск пришельцев

Если внеземная цивилизация в нашей галактике изобрела радио, то мы её когда-нибудь найдем.

Extraterrastrial search

Российский миллиардер и создатель mail.ru Юрий Мильнер вложил в 2015 году $100 млн в новый проект по поиску внеземных цивилизаций. Поиск будет осуществляться на текущем оборудовании.
подробнее

Китай строит самый большой в мире радиотелескоп FAST площадью в 30 футбольных полей и даже выселил жителей этой местности, чтобы его возвести. Радиотелескопы решают научные задачи, но, наиболее интересный способ их применения, это попытки засечь радиосигналы разумной жизни. Телескоп был достроен в 2016 и первые исследования будут проведены уже в сентябре.
подробнее

Square Kilometre Array

Строящийся в Австралии, Южной Африке и Новой Зеландии радиоинтерферометр Square Kilometre Array будет в 50 раз чувствительнее любого радиотелескопа и настолько чувствителен, что сможет засечь радар аэропорта за десятки световых лет от земли. Выход на полную мощность ожидается в 2024 году. Он также сможет разрешить научную загадку о том, откуда берутся короткие радиовсплески и найдет множество новых галактик
подробнее

KIC 8462852


KIC8462852 самая загадочная звезда на сегодняшний день. Что-то огромное заслоняет её свет. Больше чем юпитер в 22 раза и это не другая звезда. Более того она показывает аномальные колебания яркости. Астрономы очень сильно заинтригованы. (1)
подробнее

Не прекращаются споры о том стоит ли отправлять сообщения к звездам или только слушать. С одной стороны, никто нас не найдет если только слушать, с другой получатели сообщений могут быть враждебны. Несколько сообщений уже было отправлено в 20 веке, но сейчас их отправлять перестали.

Поиск астероидов

Никто всерьёз не занимался защитой планеты от астероидов до недавнего времени

NEO detection

С нарастанием беспокойства по поводу астероидов после челябинского метеорита, бюджет НАСА на обнаружение астероидов вырос в 10 раз до $50 млн. в 2016 году.
подробнее

LSST (again)

LSST будет не только составлять карту звездного неба, но и искать «малые объекты солнечной системы». Его возможности по нахождению астероидов, должны будут быть в разы выше чем у современных наземных и космических телескопов.
подробнее

Космический инфракрасный телескоп Neocam – один из 5 претендентов на новую миссию программы Discovery от NASA. Если именно эта миссия будет отобрана для реализации в сентябре 2016 (а она имеет наибольшую поддержку) телескоп будет запущен в 2021 году. Вместе с LSST он позволит Наса осуществить поставленную задачу по нахождению 90% астероидов больше 140 м.
подробнее

АЗТ-33 ВМ

Первый в России телескоп для обнаружения опасных астероидов - АЗТ-33 ВМ был достроен в 2016. Для него ещё нужно закупить оборудование за 500 млн. рублей, и тогда он будет способен обнаружить астероид размером с тунгусский метеорит за месяц до столкновения с землей.
подробнее

Бесполезно наблюдать за опасными астероидами если не удастся изменить их курс. Поэтому NASA и ESA собираются запустить миссию AIDA по столкновению специального зонда и астероида «65803 Didymos» и тестированию таким образом возможности изменения курса астероида. Запуск ожидается в 2020, а столкновение в 2022.
подробнее

Astronomy dream projects

Астрономы очень хотели бы осуществить эти проекты, но пока не могут из-за недостатка финансирования, технологий или внутреннего единства

Overwhelmingly large telescope

Из-за разногласий между астрономами строиться 3 больших телескопа вместо одного гигантского 100 метрового телескопа. Тем не менее астрономы сходятся в мнении что в ближайшие 30 лет стометровый телескоп нужно будет построить.
подробнее

New Worlds

Миссия New Worlds заключается в том, чтобы заслонить свет звезды чтобы увидеть экзопланеты рядом с ней. Для этого придется запустить в космос коронограф в сочетании с телескопом. Детали миссии всё ещё обсуждаются, но она обойдется не менее чем в $1 млрд.
подробнее

Moon observatory

Космические телескопы недостаточно большие, а наземным обсерваториям мешает атмосфера. Поэтому астрономы очень хотели бы построить обсерваторию на луне где нет атмосферы и шума (искажений из-за земных источников). Это было бы идеальное место для наблюдений, но на осуществление такого проекта уйдут десятилетия. Тем не менее небольшие телескопы уже отправляются на луну вместе с луноходами.
подробнее

Итог:

Для такой далекой от практических результатов науки как астрономия, количество вложений и число осуществляемых проектов очень велико. Большинство проектов существует лишь для удовлетворения нашего любопытства. Вероятнее всего мы не найдем инопланетную цивилизацию, внеземную жизнь или реально угрожающий земле астероид. Но мы пытаемся и следить за этим довольно интересно.

Сейчас с помощью телескопа «Кеплер» мы может иметь хотя бы представление о том, что большая часть звёзд имеет планеты, которые вращаются вокруг них. Если верить подсчетам астрономов, то в принципе во Вселенной имеется около 50 секстиллионов планет, которые могут быть обитаемыми. Впереди нам предстоит сделать очень серьёзный шаг - готовится запуск телескопа, который по утверждению научного сообщества сегодня самый высокотехнологичный. Учёные заявляют, что он способен практически со стопроцентной вероятностью дать ответ на вопрос, какова численность планет, на которых присутствует жизнь на данный момент.

К сожалению, в этом году «Кеплер» сломался. Но когда он был в рабочем состоянии, можно было не только определять звезды, а также планеты, которые вокруг них вращаются, но и расстояние между звездой и планетой, размеры этих планет. Теперь планируется на его замену представить новый телескоп NASA TESS, который ожидают к 2017 году. «Кеплер» имел такие мощности, что можно было сфокусировать его взор в такую область космоса, которая насчитывает примерно 145 тысяч звёзд. У нового космического телескопа TESS (Transiting Exoplanet Survey Satellite) мощность выше в несколько раз, что позволит исследовать пространство, которое насчитывает примерно 500 тысяч звёзд, а также 1000 находящийся вблизи красных карликов. Практически все учёные имеют уверенность в том, что данный телескоп сможет обнаружить вокруг этих пятисот тысяч звёзд тысячи планет, условия которых похожи на нашу Землю.

Конечно, проводить поиски потенциально обитаемых планет и находить их очень увлекательное и к тому полезное занятие, но даже TESS не сможет найти такую планету, на которой в действительности присутствует жизнь, для этого нужна «тяжёлая артиллерия». Нам понадобится телескоп Джеймса Вебба (JWST), который сегодня является самым сверхвысокотехнологичным, он должен прийти на замену «Хаббл», другой орбитальной лаборатории.

Телескоп (JWST) ни что иное как проект европейского, канадского и американского космических агентств, которые планируют его запуск на 2018 год. Основное зеркало телескопа является самым грандиозным, так как оно больше в пять раз, чем такое же зеркало телескопа «Хаббл». Имея в арсенале такое зеркало JWST в состоянии принимать сигналы от наиболее удаленных звезд, а также других объектов, к тому же эти сигналы могут быть существенно слабее. Так появляется возможность узнать о таких объектах, про существование которых мы пока даже не подозреваем. У JWST есть еще одно преимущество - способность работы в инфракрасном спектре («Хаббл» же работает только в оптическом диапазоне), что позволяет не беспокоиться насчёт пылевых облаков. Теперь для нового телескопа они не страшны, а значит, то, что они раньше могли скрывать, станет доступным для изучения, а это может быть очень интересным. Все мы и научное сообщество вместе взятые будем поражены детальностью и красотой изображений, которые телескоп будет доставлять нам на Землю.

Всё-таки нужно вернуться к основной теме сегодняшней беседы, а именно поиску внеземной жизни. Телескоп JWST в бортовой электронике такой спектрометр, который благодаря своей мощности может проводить анализ атмосферы самых отдалённых планет. Если не вдаваться в научные детали, можно сказать так: спектрометр обладает настолько высокой мощностью, которая позволяет телескопу определять не только каждый элемент атмосферы, но и остаточные элементы, которые могут отражать свет. К примеру, в случае обнаружения на планете концентрации кислорода и метана, которые являются признаками наличия биологической жизни, такие элементы станут абсорбировать лишь особые частоты света, при этом отражая другие. Тогда JWST сразу заметит такое отражение и на основе этих данных отражения сможет сказать, какие именно элементы присутствуют в атмосфере этой планеты.

Однако телескоп Джеймса Вебба имеет и некоторые ограничения, в основном из-за низкой силы отражаемого света от планет, ведь они находятся во многих световых годах от Земли. Поэтому JWST сможет изучать лишь планеты относительно больших размеров, которые сейчас вращаются вокруг так называемых белых и красных карликов. Хоть и есть такие ограничения, все равно данный телескоп даёт нам возможность в ближайшем будущем найти хоть какие-то признаки жизни в иных мирах.

Также имеется интересная разработка, которая финансируется аэрокосмическим агентством NASA, она, вероятно, придет в помощь JWST. Обычно звезды, вокруг которых вращаются планеты, в миллиарды раз ярче этих планет. А такой избыточный свет вполне может не только затруднить наблюдение за такими планетами, но и не дать их обнаружить. Чтобы избежать подобных ситуаций был придуман специальный проект New Worlds Mission, суть которого в том, что астрономы планируют применить для решения данного вопроса специальный купол, который будет работать по принципу зонта. Планируется расположить аппарат между телескопом и звездой, которая изучается, он должен раскрываться и блокировать весь лишний свет, источаемый звездой. У аппарата уже имеется название - Starshade, хотя он пока ещё находится в стадии прототипа. Если NASA получит финансирование к 2015 году, то планируется запуск этого аппарата в то же время когда и запуск телескопа JWST.

По большому счёту до 2020 года времени не так уж и много. Конечно, нельзя точно сказать, сколько предстоит проанализировать различных планет, а также их атмосфер телескопу JWST, но предположить можно, что эта цифра будет не в десятках, а скорее всего в миллионах планет. Зато предельно ясно то, что в случае обнаружения на отдаленных планетах метана или другого маркера наличия там жизни, наши представления о Вселенной и её жизненных формах будут полностью перевёрнуты.