Значение слова «огонь. Что такое огонь, и почему он жжёт

Которое представляет собой экзотермическую реакцию, в которой окислитель, обычно кислород, окисляет горючее, обычно углерод, в результате чего возникают продукты сгорания, такие как диоксид углерода, вода, тепло и свет. Типичный пример – горение метана:

CH 4 + 2 O 2 → CO 2 + 2 H 2 O

Тепло, возникающее при горении, может использоваться для питания самого горения, и в случае, когда этого достаточно и дополнительной энергии для поддержания горения не требуется, возникает огонь. Чтобы остановить огонь, можно удалить горючее (отключить горелку на плите), окислитель (накрыть огонь специальным материалом), тепло (сбрызнуть огонь водой) или саму реакцию.

Горение, в некотором смысле, противоположно фотосинтезу , эндотермической реакции, в которую вступают свет, вода и диоксид углерода, в результате чего возникает углерод.

Есть искушение предположить, что при сжигании дерева используются углерод, находящийся в целлюлозе . Однако, судя по всему, происходит нечто более сложное . Если подвергнуть дерево воздействию тепла, оно подвергается пиролизу (в отличие от горения, не требующему кислорода), преобразующий её в более горючие вещества, такие, как газы, и именно эти вещества загораются при пожарах.

Если дерево горит достаточно долго, пламя исчезнет, но тление продолжится, и в частности дерево продолжит светиться. Тление – это неполное горение , в результате которого, в отличие от полного горения, возникает монооксид углерода .

Повседневные объекты постоянно излучают тепло, большая часть которого находится в инфракрасном диапазоне. Его длина волны больше, чем у видимого света, поэтому без специальных камер его не увидеть. Огонь достаточно ярок для того, чтобы выдавать видимый свет, хотя и инфракрасного излучения у него хватает.

Другой механизм возникновения цвета у огня – спектр излучения сжигаемого объекта. В отличие от излучения АЧТ, спектр излучения имеет дискретные частоты. Это происходит благодаря тому, что электроны порождают фотоны на определённых частотах, переходя из высокоэнергетического в низкоэнергетическое состояние. Эти частоты можно использовать для определения присутствующих в пробе элементов. Схожая идея (использующая спектр поглощения) используется для определения состава звёзд. Спектр излучения также отвечает за цвет фейерверков и цветного огня .

Форма пламени на Земле зависит от гравитации. Когда огонь разогревает окружающий воздух, происходит конвекция : горячий воздух, содержащий, помимо прочего, горячую золу, поднимается, а холодный (содержащий кислород), опускается, поддерживая огонь и придавая пламени его форму. При низкой гравитации, к примеру, на космической станции, этого не происходит. Огонь питается диффузией кислорода, поэтому горит медленнее и в виде сферы (поскольку горение происходит только там, где огонь соприкасается с содержащим кислород воздухом. Внутри сферы кислорода не остаётся).

Излучение абсолютно чёрного тела

Излучение АЧТ описывает формула Планка , относящаяся к квантовой механике. Исторически она была одной из первых применений квантовой механики. Её можно вывести из квантовой статистической механики следующем образом.

Мы подсчитываем распределение частот в фотонном газе при температуре T. То, что оно совпадает с распределением частот фотонов, испускаемых абсолютно чёрным телом той же температуры, следует из закона излучения Кирхгофа . Идея в том, что АЧТ можно привести в температурное равновесие с фотонным газом (поскольку у них одинаковая температура). Фотонный газ поглощается ЧТ, также испускающим фотоны, так что для равновесия необходимо, чтобы для каждой частоты, на которой ЧТ испускает излучение, оно и поглощало бы его с той же скоростью, что определяется распределением частот в газе.

В статистической механике вероятность нахождения системы в микросостоянии s, если оно находится в тепловом равновесии при температуре T, пропорциональна

Где E s - энергия состояния s, а β = 1 / k B T, или термодинамическая бета (Т – температура, k B - постоянная Больцмана). Это распределение Больцмана . Одно из объяснений этого дано в блогпосте Теренса Тао. Это значит, что вероятность равна

P s = (1/Z(β)) * e - β E s

Где Z(β) – нормализующая константа

Z(β) = ∑ s e - β E s

Для описания состояния фотонного газа нужно знать что-то по поводу квантового поведения фотонов. При стандартном квантовании электромагнитного поля поле можно рассматривать как набор квантовых гармонических осцилляций , каждая из которых осциллирует с разными угловыми частотами ω. Энергии собственных состояний гармонического осциллятора обозначаются неотрицательным целым n ∈ ℤ ≥ 0 , которое можно интерпретировать, как количество фотонов частоты ω. Энергии собственных состояний (с точностью до константы):

В свою очередь, квантовая нормализующая константа предсказывает, что на низких частотах (относительно температуры) классический ответ приблизительно верен, но на высоких средняя энергия экспоненциально падает, при этом падение получается большим при меньших температурах. Это происходит потому, что на высоких частотах и низких температурах квантовый гармонический осциллятор большую часть времени проводит в основном состоянии, и не переходит так легко на следующий уровень, что вероятность чего экспоненциально ниже. Физики говорят, что большая часть этой степени свободы (свободы осциллятора колебаться на определённой частоте) «замораживается».

Плотность состояний и формула Планка

Теперь, зная, что происходит на определённой частоте ω, необходимо просуммировать по всем возможным частотам. Эта часть вычислений классическая и никаких квантовых поправок делать не надо.

Мы используем стандартное упрощение, что фотонный газ заключён в объём со стороной длиной в L с периодическими граничными условиями (то есть, реально это будет плоский тор T = ℝ 3 / L ℤ 3). Возможные частоты классифицируются по решениям уравнения электромагнитных волн для стоячих волн в объёме с указанными граничными условиями, которые, в свою очередь, соответствуют, с точностью до множителя, собственным значениям лапласиану Δ. Точнее, если Δ υ = λ υ, где υ(x) – гладкая функция T → ℝ, тогда соответствующее решение уравнения электромагнитной волны для стоячей волны будет

υ(t, x) = e c √λ t υ(x)

И поэтому, учитывая, что λ обычно отрицательная, и значит, √λ обычно мнимый, соответствующая частота будет равна

ω = c √(-λ)

Такая частота встречается dim V λ раз, где V λ - λ-собственное значение лапласиана.

Упрощаем мы условия при помощи объёма с периодическими граничными условиями потому, что в этом случае очень просто записать все собственные функции лапласиана. Если использовать для простоты комплексные числа, то они определяются, как

υ k (x) = e i k x

Где k = (k 1 , k 2 , k 3) ∈ 2 π / L * ℤ 3 , волновой вектор . Соответствующее собственное значение лапласиана будет

λ k = - | k | 2 = - k 2 1 - k 2 2 - k 2 3

Соответствующей частотой будет

И соответствующей энергией (одного фотона этой частоты)

E k = ℏ ω k = ℏ c |k|

Здесь мы аппроксимируем вероятностное распределение по возможным частотам ω k , которые, строго говоря, дискретны, непрерывным вероятностным распределением, и подсчитываем соответствующую плотность состояний g(ω). Идея в том, что g(ω) dω должна соответствовать количеству доступных состояний с частотами в диапазоне от ω до ω + dω. Затем мы проинтегрируем плотность состояний и получим окончательную нормализующую константу.

Почему эта аппроксимация разумна? Полную нормализующую константу можно описать следующим образом. Для каждого волнового числа k ∈ 2 π / L * ℤ 3 существует число n k ∈ ℤ ≥0 , описывающее количество фотонов с таким волновым числом. Общее количество фотонов n = ∑ n k конечно. Каждый фотон добавляет к энергии ℏ ω k = ℏ c |k|, из чего следует, что

Z(β) = ∏ k Z ω k (β) = ∏ k 1 / (1 - e -βℏc|k|)

По всем волновым числам k, следовательно, его логарифм записывается, как сумма

Log Z(β) = ∑ k log 1 / (1 - e -βℏc|k|)

И эту сумму мы хотим аппроксимировать интегралом. Оказывается, что для разумных температур и больших объёмов подынтегральное выражение меняется очень медленно с изменением k, поэтому такая аппроксимация будет весьма близкой. Она перестаёт работать только при сверхнизких температурах, где возникает конденсат Бозе-Эйнштейна .

Плотность состояний вычисляется следующим образом. Волновые векторы можно представить в виде равномерных точек решётки, живущих в «фазовом пространстве», то есть, количество волновых векторов в некоем регионе фазового пространства пропорционально его объёму, по крайней мере, для регионов, крупных по сравнению с шагом решётки 2π/L. По сути, количество волновых векторов в регионе фазового пространства равно V/8π 3 , где V = L 3 , наш ограниченный объём.

Остаётся вычислить объём региона фазового пространства для всех волновых векторов k с частотами ω k = c |k| в диапазоне от ω до ω + dω. Это сферическая оболочка толщиной dω/c и радиусом ω/c, поэтому её объём

2πω 2 /c 3 dω

Поэтому плотность состояний для фотона

G(ω) dω = V ω 2 / 2 π 2 c 3 dω

На самом деле эта формула в два раза занижена: мы забыли учесть поляризацию фотонов (или, что эквивалентно, спин фотона), которая удваивает количество состояний для данного волнового числа. Правильная плотность:

G(ω) dω = V ω 2 / π 2 c 3 dω

То, что плотность состояний линейна в объёме V работает не только в плоском торе. Это свойство собственных значений лапласиана по закону Вейла . Это значит, что логарифм нормализующей константы

Log Z = V / π 2 c 3 ∫ ω 2 log 1 / (1 - e - βℏω) dω

Производная по β даёт среднюю энергию фотонного газа

< E > = - ∂/∂β log Z = V / π 2 c 3 ∫ ℏω 3 / (e βℏω - 1) dω

Но для нас важно подынтегральное выражение, дающее «плотность энергий»

E(ω) dω = Vℏ / π 2 c 3 * ω 3 / (e βℏω - 1) dω

Описывающее количество энергии фотонного газа, происходящее от фотонов с частотами из диапазона от ω до ω + dω. В итоге получилась форма формулы Планка, хотя с ней нужно немного поиграть, чтобы превратить в формулу, относящуюся к АЧТ, а не к фотонным газам (нужно поделить на V, чтобы получить плотность в единице объёма, и проделать ещё кое-что, чтобы получить меру излучения).

У формулы Планка есть два ограничения. В случае, когда βℏω → 0, знаменатель стремится к βℏω, и мы получаем

E(ω) dω ≈ V / π 2 c 3 * ω 2 /β dω = V k B T ω 2 / π 2 c 3 dω

Теги:

  • огонь
  • квантовая физика
Добавить метки

Вы сидите около костра, чувствуете его тепло, ощущаете запах древесного дыма, слышите лёгкое потрескивание. Кажется, на это пламя можно смотреть вечно. На то, как мерцают его угли и взлетают в небо яркие искры. Но задумываетесь ли вы, на что вы смотрите, что вас греет?

Что такое огонь, для детей объяснение

Огонь — это не твёрдое вещество. Это понятно даже ребёнку. Но он и не жидкий. Он стремится вверх и кажется, что больше похож на газ — разве что его можно увидеть. Но с точки зрения науки он отличается от газа, потому что тот может пребывать в своём состоянии бесконечно, а огонь рано или поздно тухнет.

Существует заблуждение, что это плазма — четвёртое состояние вещества, в котором атомы лишаются своих электронов. Она тоже, как и огонь, не имеет стабильного состояния на нашей планете. Плазма образуется только тогда, когда газ подвергается воздействию электрического поля или нагревается до температуры в тысячи и десятки тысяч градусов. Но такое топливо, как дерево и бумага, горят при температуре всего в несколько сот градусов — гораздо ниже этого порога.

Что есть огонь на самом деле?

Итак, огонь — это не твёрдое вещество, не жидкость, не газ и не плазма. Что нам вообще остаётся? Наверное, вовсе не считать огонь материей. Это наше чувственное восприятие химической реакции, которая называется горением. В каком-то смысле огонь похож на листья, меняющие цвет по осени, на запах созревающих фруктов, на мерцающий огонёк светлячка. Всё это сенсорные ощущения, говорящие нам о том, что происходит какая-то химическая реакция. Огонь отличается только тем, что задействует одновременно множество наших чувств, создавая такую гамму ощущений, которую мы ожидаем увидеть только от чего-то живого и материального.

Определение «что такое огонь» Википедия дает такое:

В физике (да и в химии тоже) горение (огонь) создаёт эту иллюзию с помощью топлива, тепла и кислорода. Когда дерево внутри костра разогревается то температуры возгорания, стенки составляющих его клеток распадаются, выпуская в воздух и другие молекулы. Они, в свою очередь, вступают в реакцию с находящимся в воздухе кислородом, создавая воду и углекислый газ. В то же время, та вода, что находится в дереве, испаряясь, расширяется — она разрывает органику вокруг себя, создавая тот характерный треск в костре, камине или печи, который мы так любим.

Когда огонь набирает жар, водяные пары и углекислый газ, генерирующиеся в процессе горения, рассеиваются. Теряя плотность, они столбом поднимаются вверх. И расширение, и рассеивание, и воспарение газов — всё это вызывается силой тяжести, которая, вдобавок ко всему, придаёт огню характерную коническую форму. Без гравитации молекулы не разделяются по плотности, и огонь имеет совершенно другую форму.

Какой цвет огня самый горячий

Видим мы всё это благодаря тому, что в процессе горения генерируется световое излучение. Молекулы испускают его, когда нагреваются, и цвет его зависит от температуры элементарных частиц. Самый горячий огонь — белый или голубой. Тип молекул внутри костра также может влиять на цвет. Например, все не вступившие в реакцию атомы углерода образуют небольшие частички сажи, которые, взлетая вверх, испускают жёлто-оранжевый свет. Тот самый, что ассоциируется с костром в первую очередь. Такие вещества, как медь, хлорид кальция и хлорид калия тоже могут добавить свои характерные оттенки в гамму. Костёр — это не только свет, но и тепло. Оно поддерживает огонь, разогревая топливо до или выше температуры возгорания.

В конечном итоге, однако, любой костёр, даже самый большой и жаркий, затухает. Огонь, испустив прощальный дымок, прячется и исчезает. Как будто его и не было никогда. Что ж, такова судьба у всего, что есть в этой Вселенной…

В разделе на вопрос Что такое огонь с точки зрения физики? заданный автором Колосовые лучший ответ это Мне кажется, автора интересует именно сама механика процесса: как молекулы сближаются, далее, какие развиваются при этом силы, которые, собс-но, и приводят к увеличению их тепловой скорости.
Это вполне осмысленный, нормальный и, добавлю, неизбежный научный вопрос. Но я, ес-но, ответа на него не знаю - тут нужны достаточно узкие специалисты, типа химфизиков или физхимиков. Есть такое направление - кажется, физика горения называется.

Ответ от »Ecio Auditore de Firence..>© [новичек]
а ты в школе учился?


Ответ от Прослойка [гуру]
Газы раскаляются из-за тепла, которое выделяется в процессе реакции окисления - соединение атомов элементов (С, Н, S, N и пр) . с кислородом


Ответ от V Kaulio [новичек]
плазма


Ответ от Вровень [гуру]
"Так с хера ли они расскалились? что происходит с молекулами, чтобы газы расскалялись? "
Экзотермическая реакция окисления. При перестройке химических связей выделяется энергия, т. е. происходит увеличение скорости движения молекул (это называется "повышение температуры") и свечению (атомы переходят в возбужденное состояние, а потом возвращаются на более низкий энергетический уровень с испусканием фотона) .
Почитайте в Википедии про низкотемпературную плазму.
Только при чем тут философский подтекст? Натурфилософия уже давно превратилась в ряд естественных наук, в том числе физику. А философия больше к подобным вопросам касательства не имеет.


Ответ от Proteirei [гуру]
Процесс сгорания кислорода.
Википедия:
Ого́нь - в узком смысле, совокупность раскалённых газов и плазмы, выделяющихся в результате:
произвольного/непроизвольного нагревания горючего материала до определённой точки (здесь и далее под горючими материалами понимаются такие материалы, как древесина, а не вступившие в реакцию компоненты, например, сера) ;
химической реакции;
соприкосновения тока высокого напряжения с горючим материалом.
Огонь является основной фазой процесса горения и имеет свойство к самораспространению по затронутым им другим горючим материалам. Собственная температура огня зависит от источника, вызвавшего реакцию воспламенения и/или от материалов, участвующих в реакции горения.
В военном деле под «огнём» понимается стрельба из огнестрельного оружия (пулями или другими снарядами) . Такой смысл слово обрело по причине того, что первые образцы огнестрельного оружия были фитильными. Отсюда же команда "Пли".


Quest Pistols Show на Википедии
Посмотрите статью на википедии про Quest Pistols Show

В процессе горения образуется пламя, строение которого обусловлено реагирующими веществами. Его структура поделена на области в зависимости от температурных показателей.

Определение

Пламенем называют газы в раскаленном виде, в которых присутствуют составляющие плазмы или вещества в твердой дисперсной форме. В них осуществляются преобразования физического и химического типа, сопровождающиеся свечением, выделением тепловой энергии и разогревом.

Наличие же в газообразной среде ионных и радикальных частичек характеризует его электрическую проводимость и особое поведение в электромагнитном поле.

Что такое языки пламени

Обычно так называют процессы, связанные с горением. По сравнению с воздухом, газовая плотность меньше, но высокие температурные показатели обуславливают поднятие газа. Так и образуются языки пламени, которые бывают длинными и короткими. Часто происходит и плавный переход одних форм в другие.

Пламя: строение и структура

Для определения внешнего вида описываемого явления достаточно зажечь Появившееся несветящееся пламя нельзя назвать однородным. Визуально можно выделить три его основные области. Кстати, изучение строения пламени показывает, что различные вещества горят с образованием различного типа факела.

При горении смеси из газа и воздуха вначале происходит формирование короткого факела, цвет которого имеет голубые и фиолетовые оттенки. В нем просматривается ядро - зелено-голубое, напоминающее конус. Рассмотрим это пламя. Строение его разделяется на три зоны:

  1. Выделяют подготовительную область, в которой происходит нагревание смеси из газа и воздуха при выходе из отверстия горелки.
  2. За ней следует зона, в которой происходит горение. Она занимает верхушку конуса.
  3. Когда имеется недостаток воздушного потока, газ сгорает не полностью. Выделяется углерода двухвалентный оксид и водородные остатки. Их догорание протекает в третьей области, где есть кислородный доступ.

Теперь отдельно рассмотрим разные процессы горения.

Горение свечи

Горение свечи подобно горению спички или зажигалки. А строение пламени свечи напоминает раскаленный газовый поток, который вытягивается вверх за счет выталкивающих сил. Процесс начинается с нагревания фитиля, за которым следует испарение парафина.

Самую нижнюю зону, находящуюся внутри и прилегающую к нити, называют первой областью. Она обладает небольшим свечением из-за большого количества топлива, но малого объема кислородной смеси. Здесь осуществляется процесс неполного сгорания веществ с выделением который в дальнейшем окисляется.

Первую зону окружает светящаяся вторая оболочка, характеризующая строение пламени свечи. В нее поступает больший кислородный объем, что обуславливает продолжение окислительной реакции с участием топливных молекул. Температурные показатели здесь будут выше, чем в темной зоне, но недостаточные для конечного разложения. Именно в первых двух областях при сильном нагревании капелек несгоревшего топлива и угольных частичек появляется светящийся эффект.

Вторая зона окружена слабозаметной оболочкой с высокими температурными значениями. В нее заходит много кислородных молекул, что способствует полному догоранию топливных частичек. После окисления веществ, в третьей зоне светящийся эффект не наблюдается.

Схематическое изображение

Для наглядности представляем вашему вниманию изображение горения свечи. Схема пламени включает:

  1. Первую или темную область.
  2. Вторую светящуюся зону.
  3. Третью прозрачную оболочку.

Нить свечи не подвергается горению, а только происходит обугливание загнутого конца.

Горение спиртовки

Для химических экспериментов часто используют небольшие резервуары со спиртом. Их называют спиртовками. Фитиль горелки пропитывается залитым через отверстие жидким топливом. Этому способствует давление капиллярное. При достижении свободной верхушки фитиля, спирт начинает испаряться. В парообразном состоянии он поджигается и горит при температуре не более 900 °C.

Пламя спиртовки имеет обычную форму, оно практически бесцветное, с небольшим оттенком голубого. Его зоны не так четко видны, как у свечки.

У названной в честь ученого Бартеля, начало огня располагается над калильной сеткой горелки. Такое заглубление пламени приводит к уменьшению внутреннего темного конуса, а из отверстия выходит средний участок, который считается самым горячим.

Цветовая характеристика

Излучения различных вызывается электронными переходами. Их еще называют тепловыми. Так, в результате горения углеводородного компонента в воздушной среде, синее пламя обусловлено выделением соединения H-C. А при излучении частичек C-C, факел окрашивается в оранжево-красный цвет.

Трудно рассмотреть строение пламени, химия которого включает соединения воды, углекислого и угарного газа, связь OH. Его языки практически бесцветны, так как вышеуказанные частички при горении выделяют излучения ультрафиолетового и инфракрасного спектра.

Окраска пламени взаимосвязана с температурными показателями, с наличием в нем ионных частиц, которые относятся к определенному эмиссионному или оптическому спектру. Так, горение некоторых элементов приводит к изменению цвета огня в горелке. Отличия в окрашивании факела связаны с расположением элементов в разных группах системы периодической.

Огонь на наличие излучений, относящихся к видимому спектру, изучают спектроскопом. При этом было установлено, что простые вещества из общей подгруппы оказывают и подобное окрашивание пламени. Для наглядности используют горение натрия в качестве теста на данный металл. При внесении его в пламя, языки становятся ярко-желтыми. На основании цветовых характеристик выделяют натриевую линию в эмиссионном спектре.

Для характерно свойство быстрого возбуждения светового излучения атомарных частиц. При внесении труднолетучих соединений таких элементов в огонь горелки Бунзена происходит его окрашивание.

Спектроскопическое исследование показывает характерные линии в области, видимой для глаза человека. Быстрота возбуждения светового излучения и простое спектральное строение тесно взаимосвязаны с высокой электроположительной характеристикой данных металлов.

Характеристика

В основе классификации пламени лежат следующие характеристики:

  • состояние агрегатное сгорающих соединений. Они бывают газообразной, аэродисперсной, твердой и жидкой формы;
  • тип излучения, которое может быть бесцветным, светящимся и окрашенным;
  • распределительная скорость. Существует быстрое и медленное распространение;
  • высота пламени. Строение может быть коротким и длинным;
  • характер передвижения реагирующих смесей. Выделяют пульсирующее, ламинарное, турбулентное перемещение;
  • визуальное восприятие. Вещества горят с выделением коптящего, цветного или прозрачного пламени;
  • температурный показатель. Пламя может быть низкотемпературным, холодным и высокотемпературным.
  • состояние фазы топливо - окисляющий реагент.

Возгорание происходит в результате диффузии или при предварительном перемешивании активных компонентов.

Окислительная и восстановительная область

Процесс окисления протекает в слабозаметной зоне. Она самая горячая и располагается вверху. В ней топливные частицы подвергаются полному сгоранию. А наличие в кислородного избытка и горючего недостатка приводит к интенсивному процессу окисления. Этой особенностью следует пользоваться при нагревании предметов над горелкой. Именно поэтому вещество погружают в верхнюю часть пламени. Такое горение протекает намного быстрее.

Восстановительные реакции проходят в центральной и нижней части пламени. Здесь содержится большой запас горючих веществ и малое количество O 2 молекул, осуществляющих горение. При внесении в эти области осуществляется отщепление O элемента.

В качестве примера восстановительного пламени используют процесс расщепления железа двухвалентного сульфата. При попадании FeSO 4 в центральную часть факела горелки, происходит вначале его нагревание, а затем разложение на оксид трехвалентного железа, ангидрид и двуокись серы. В данной реакции наблюдается восстановление S с зарядом от +6 до +4.

Сварочное пламя

Данный вид огня образуется в результате сгорания смеси из газа или пара жидкости с кислородом чистого воздуха.

Примером служит формирование пламени кислородно-ацетиленового. В нем выделяют:

  • зону ядра;
  • среднюю область восстановления;
  • факельную крайнюю зону.

Так горят многие газокислородные смеси. Различия в соотношении ацетилена и окислителя приводят к разному типу пламени. Оно может быть нормального, науглероживающего (ацетиленистого) и окислительного строения.

Теоретически процесс неполного сгорания ацетилена в чистом кислороде можно охарактеризовать следующим уравнением: HCCH + O 2 → H 2 + CO +CO (для реакции необходима одна моль O 2) .

Полученный же молекулярный водород и угарный газ реагируют с воздушным кислородом. Конечными продуктами является вода и оксид четырехвалентного углерода. Уравнение выглядит так: CO + CO + H 2 + 1½O 2 → CO 2 + CO 2 +H 2 O. Для этой реакции необходимо 1,5 моля кислорода. При суммировании O 2 получается, что 2,5 моль затрачивается на 1 моль HCCH. А так как на практике трудно найти идеально чистый кислород (часто он имеет небольшое загрязнение примесями), то соотношение O 2 к HCCH будет 1,10 к 1,20.

Когда значение пропорции кислорода к ацетилену меньше 1,10, возникает науглероживающее пламя. Строение его имеет увеличенное ядро, очертания его становятся расплывчатыми. Из такого огня выделяется копоть, вследствие недостатка кислородных молекул.

Если же соотношение газов больше 1,20, то получается окислительное пламя с кислородным избытком. Лишние его молекулы разрушают атомы железа и другие компоненты стальной горелки. В таком пламени ядерная часть становится короткой и имеет заострения.

Температурные показатели

Каждая зона огня свечи или горелки имеет свои значения, обусловленные поступлением кислородным молекул. Температура открытого пламени в разных его частях колеблется от 300 °C до 1600 °C.

Примером служит пламя диффузионное и ламинарное, которое образовано тремя оболочками. Конус его состоит из темного участка с температурой до 360 °C и недостатком окисляющего вещества. Над ним располагается зона свечения. Ее температурный показатель колеблется от 550 до 850 °C, что способствует разложению термическому горючей смеси и ее горению.

Внешняя область едва заметная. В ней температура пламени доходит до 1560 °C, что обусловлено природными характеристиками топливных молекул и быстротой поступления окисляющего вещества. Здесь горение наиболее энергичное.

Вещества воспламеняются при разных температурных условиях. Так, металлический магний горит только при 2210 °С. Для многих твердых веществ температура пламени около 350 °С. Возгорание спичек и керосина возможно при 800 °С, тогда как древесины - от 850 °С до 950 °С.

Сигарета горит пламенем, температура которого варьируется от 690 до 790 °С, а в пропан-бутановой смеси - от 790 °С до 1960 °С. Бензин воспламеняется при 1350 °С. Пламя горения спирта имеет температуру не более 900 °С.

Также используют дикий огонь для своих представлений. Дикий огонь использовался в битве на Черноводной .

Свойства

В обычных условиях дикий огонь представляет собой жидкость мутно-зеленого цвета. От холода он загустевает и медленно перетекает в наклоненном сосуде, а при нагревании приобретает консистенцию лампадного масла. Это очень летучее и очень текучее вещество; оно способно пропитывать ткань, дерево, кожу и, если верить алхимикам, даже сталь; таким образом, любой материал становится легковоспламеняющимся . Дикий огонь легче воды и при попадании в воду растекается по поверхности.

При воспламенении дикий огонь горит ярко-зеленым пламенем, «цвета желчи, нефрита и пиромантовской мочи» . Он не тушится водой и вообще ничем, так как, по-видимому, содержит в своем составе окислитель и не нуждается в кислороде воздуха. Горение может продолжаться очень долго; известно, что тончайший слой дикого огня на мече Тороса из Мира был способен гореть целый час . Попытки потушить дикий огонь бессмысленны, так что остается лишь ждать, пока субстанция выгорит полностью. У моряков есть присказка, что нельзя пытаться тушить дикий огонь даже струей мочи, ибо «хрен отвалится» . С годами субстанция становится более «капризной», способна воспламениться от малейшего нагрева, даже от солнечного света, и очень легко взрывается. Взрыв одного сосуда заставляет взорваться соседние .

Температура пламени дикого огня очень высока, от его жара плавятся самые прочные металлы и плоть стекает с костей, как воск . По словам пиромантов на свете есть только три вещи горячее дикого огня: драконье пламя, подземный огонь и летнее солнце . Алхимики прекрасно сознавали, насколько опасен их продукт, и постоянно предупреждали об опасности заказчиков-королей .

Приготовление и хранение

Это исключительно ценное вещество готовит Гильдия Алхимиков в Королевской Гавани ; процесс приготовления дикого огня и его состав связан с магией и окружен множеством тщательно оберегаемых тайн. Алхимики, работающие с диким огнем, называются пиромантами. Сам дикий огонь они называют просто «субстанцией» . В Гильдии есть Галерея Железных Факелов, освещенная двадцатифутовыми опорами из черного металла, смазанного диким огнем - впрочем, их зажигают только в честь приезда знатных гостей: дикий огонь слишком дорог, чтобы тратить его впустую .

Хранят дикий огонь в шарообразных глиняных горшках размером с кулак, с очень тонкими стенками; горловина запечатывается воском. Стенки сосуда намеренно делаются грубыми и шершавыми, чтобы сосуд не выскальзывал из пальцев. Сосуды, сделанные во времена короля Эйриса , согласно королевскому пожеланию делались в форме фруктов .

По старым правилам сосуды с диким огнем уничтожали после истечения срока годности, но после восстания Роберта Баратеона у Гильдии не достает средств и людей, чтобы это делать; вместо этого старые сосуды запечатали воском и закачали в подземные хранилища воды .

Перевозка сосудов осуществляется в телегах с песком. Мастерские Гильдии - голые каменные помещения, откуда сосуды с диким огнем уносят в хранилища сразу же после приготовления. Мастерские снабжены примитивными, но действенными системами пожаротушения - над потолком каждой мастерской находится комната с песком, которым в случае пожара внизу можно засыпать пламя вместе с незадачливым алхимиком. Галлин уверял, что на комнаты с песком «наложено заклятие» - Тирион подозревал, что речь о каком-нибудь хитроумном механизме .

Пироманты в подземелье. Кадр телесериала HBO.

Впрочем, возможно, алхимики действительно используют магию при приготовлении дикого огня. Галлин рассказывал Тириону, что некогда спрашивал своего учителя Поллитора , почему многие заклинания алхимиков не так действенны, как говорится в книгах, и тот ответил, что магия стала уходить из мира после смерти последнего дракона . С возвращением драконов в конце «Игры престолов » заклинания алхимиков стали более действенными .

История

Дикий огонь известен и на Востоке: в Кварте Дейнерис Таргариен видела пироманта-фокусника, который, по словам Куэйты , устраивал фокусы с порохом и диким огнем .

Эйрис II и его тайники

Для обороны города еще задолго до битвы Серсея Ланнистер заказала пиромантам 10 тысяч горшков с диким огнем. На момент посещения Тирионом Гильдии Алхимиков они располагали 7840 сосудами, включая 4000 «переспелых» сосудов короля Эйриса . Тем не менее, спустя несколько месяцев Галлин доложил, что готово 13 тысяч сосудов - много больше, чем ожидалось. Тирион заподозрил, что алхимики хотят его обмануть, и пригрозил пироманту королевским палачом .

Тирион распорядился подготовить огнеметные команды, выученные стрелять из катапульт горшками с зеленой краской и горящим маслом . Во время битвы река была перекрыта цепью, после чего большая часть вражеского флота была сожжена с помощью снаряженных диким огнем катапульт, настенных огнеметов и кораблей-брандеров; разлившийся по поверхности реки дикий огонь поджигал корабли ниже по течению . Практически все находившиеся на кораблях обеих сторон рыцари, матросы и солдаты либо сгорели заживо, либо утонули .

Сожжение башни Десницы

На свадьбу Битва королей, Тирион I

Горящая смола – одно дело, а дикий огонь – совсем другое. Потушить его почти невозможно. Накроешь его плащом – плащ загорится, прихлопнешь ладонью – загорится рука. Битва королей, Давос III
Я не знаю, старик, видел ли ты хоть одну битву, но всё может пойти наперекосяк. Мы метаем что-то в Станниса, он метает что-то в нас. Люди гибнут, люди срут под себя, люди бегут. А это значит - горшки бьются. А это значит - огонь в наших стенах. А это значит - несчастные скоты, защищающие город, в итоге спалят его дотла. Телесериал HBO / The Ghost of Harrenhal
Поцелуи дикого огня превращали корабли в погребальные костры, а людей – в живые факелы. Воздух был полон дыма, стрел и криков.<...>Около десятка костров полыхало под городской стеной там, где разбились бочки со смолой, но по сравнению с диким огнем они казались свечками, мигающими в горящем доме, – их красно-оранжевые языки бледнели рядом с ядовито-зеленым адом. Низкие облака, перенимающие цвет горящей реки, окрашивали небо в бегущие диковинно-красивые оттенки зелени. Страшная красота – словно драконий огонь. Быть может, Эйегон Завоеватель чувствовал то же самое, пролетая над Огненным Полем. Битва королей, Тирион XIII
Вниз по течению плыли обгоревшие тела, и тонущие цеплялись за дымящиеся обломки. В пятидесяти футах выше над рекой плясал зеленый огненный демон. В каждой из десяти своих рук он держал бич, и все, на что падали удары, воспламенялось. <...> Казалось, что Черноводная кипит в своих берегах, а по воздуху носились горящие снасти, горящие тела и обломки кораблей. Битва королей, Давос III
Башня, охнув в ответ, осветилась изнутри красным, желтым, оранжевым… и зеленым, зловещей темной зеленью, цвета желчи, жадеита, пиромантовой мочи. Алхимики именуют это вещество «субстанцией», но в народе оно зовется «диким огнем». Пир стервятников, Серсея III

За кулисами

Прообразом дикого огня послужил греческий огонь - похожая горючая смесь, использовавшаяся в Византии с VII века н.э. и до самой гибели империи в 1453 году, оставаясь своего рода супероружием византийцев. Слова wildfire и Greek fire в английском языке были изначально синонимичны. Состав греческого огня, как и в Вестеросе, держался в глубокой тайне и остался неизвестным. Считается, что в рецептуру греческого огня входили сырая нефть, негашеная известь и сера.

Кроме того, дикому огню в ПЛИО присвоены некоторые свойства современных напалмов, точнее, супернапалмов. Супернапалм - сгущенный бензин с загустителями и добавлением порошков легких металлов - не тушится водой и обладает очень высокой температурой горения; образующиеся при горении шлаки способны прожигать даже металлические конструкции (что и происходило с мечом Тороса).