Что такое движение земной коры. Почему земная кора движется? Какие виды движений известны современной науке? Как они отражаются в рельефе земной поверхности? Какие движения земной коры. История изучения движений земной коры


Положение земной коры между мантией и внешними оболочками – атмосферой, гидросферой и биосферой – обусловливает воздействие на нее внешних и внутренних сил Земли.

Строение земной коры неоднородно (рис. 19). Верхний слой, мощность которого колеблется от 0 до 20 км, сложен осадочными породами – песком, глиной, известняками и др. Это подтверждают данные, полученные при изучении обнажений и керна буровых скважин, а также результаты сейсмических исследований: породы эти рыхлые, скорость прохождения сейсмических волн невелика.



Рис. 19. Строение земной коры


Ниже, под материками, расположен гранитный слой, сложенный породами, плотность которых соответствует плотности гранита. Скорость прохождения сейсмических волн в этом слое, как и в гранитах, составляет 5,5–6 км/с.

Под океанами гранитный слой отсутствует, а на материках в некоторых местах он выходит на дневную поверхность.

Еще ниже расположен слой, в котором сейсмические волны распространяются со скоростью 6,5 км/с. Эта скорость характерна для базальтов, поэтому, несмотря на то что слой сложен разными породами, его называют базальтовым.

Граница между гранитным и базальтовым слоями называется поверхностью Конрада . Этому разделу соответствует скачок скорости сейсмических волн от 6 до 6,5 км/с.

В зависимости от строения и мощности выделяют два вида коры – материковую и океаническую. Под материками кора содержит все три слоя – осадочный, гранитный и базальтовый. Ее мощность на равнинах достигает 15 км, а в горах увеличивается до 80 км, образуя «корни гор». Под океанами гранитный слой во многих местах вообще отсутствует, и базальты покрыты тонким чехлом осадочных пород. В глубоководных частях океана мощность коры не превышает 3–5 км, а ниже залегает верхняя мантия.

Мантия. Это промежуточная оболочка, расположенная между литосферой и ядром Земли. Нижняя ее граница проходит предположительно на глубине 2900 км. На мантию приходится более половины объема Земли. Вещество мантии находится в перегретом состоянии и испытывает огромное давление вышележащей литосферы. Мантия оказывает большое влияние на процессы, происходящие на Земле. В верхней мантии возникают магматические очаги, образуются руды, алмазы и другие ископаемые. Отсюда же на поверхность Земли поступает внутреннее тепло. Вещество верхней мантии постоянно и активно перемещается, вызывая движение литосферы и земной коры.

Ядро. В ядре различают две части: внешнюю, до глубины 5 тыс. км, и внутреннюю, до центра Земли. Внешнее ядро жидкое, так как через него не проходят поперечные волны, внутреннее – твердое. Вещество ядра, особенно внутреннего, сильно уплотнено и по плотности соответствует металлам, поэтому его и называют металлическим.

§ 17. Физические свойства и химический состав Земли

К физическим свойствам Земли относят температурный режим (внутреннюю теплоту), плотность и давление.

Внутренняя теплота Земли. По современным представлениям Земля после ее образования была холодным телом. Затем распад радиоактивных элементов постепенно разогревал ее. Однако в результате излучения тепла с поверхности в околоземное пространство происходило ее охлаждение. Образовались относительно холодная литосфера и земная кора. На большой глубине и сегодня высокие температуры. Рост температур с глубиной можно наблюдать непосредственно в глубоких шахтах и буровых скважинах, при извержении вулканов. Так, изливающаяся вулканическая лава имеет температуру 1200–1300 °C.

На поверхности Земли температура постоянно изменяется и зависит от притока солнечного тепла. Суточные колебания температур распространяются до глубины 1–1,5 м, сезонные – до 30 м. Ниже этого слоя лежит зона постоянных температур, где они всегда остаются неизменными и соответствуют среднегодовым температурам данной местности на поверхности Земли.

Глубина залегания зоны постоянных температур в разных местах неодинакова и зависит от климата и теплопроводности горных пород. Ниже этой зоны начинается повышение температур, в среднем на 30 °C через каждые 100 м. Однако величина эта непостоянна и зависит от состава горных пород, наличия вулканов, активности теплового излучения из недр Земли. Так, в России она колеблется от 1,4 м в Пятигорске до 180 м на Кольском полуострове.

Зная радиус Земли, можно подсчитать, что в центре ее температура должна достигать 200 000 °C. Однако при такой температуре Земля превратилась бы в раскаленный газ. Принято считать, что постепенное повышение температур происходит только в литосфере, а источником внутреннего тепла Земли служит верхняя мантия. Ниже рост температур замедляется, и в центре Земли она не превышает 50 000 °C.

Плотность Земли. Чем плотнее тело, тем больше масса единицы его объема. Эталоном плотности принято считать воду, 1 см 3 которой весит 1 г, т. е. плотность воды равна 1 г/с 3 . Плотность других тел определяется отношением их массы к массе воды такого же объема. Отсюда понятно, что все тела, имеющие плотность больше 1, тонут, меньше – плавают.

Плотность Земли в разных местах неодинакова. Осадочные породы имеют плотность 1,5–2 г/см 3 , а базальты – более 2 г/см 3 . Средняя плотность Земли составляет 5,52 г/см 3 – это в 2 с лишним раза больше плотности гранита . В центре Земли плотность слагающих ее пород возрастает и составляет 15–17 г/см 3 .

Давление внутри Земли. Горные породы, находящиеся в центре Земли, испытывают огромное давление со стороны вышележащих слоев. Подсчитано, что на глубине всего лишь 1 км давление составляет 10 4 гПа, а в верхней мантии оно превышает 6 * 10 4 гПа. Лабораторные эксперименты показывают, что при таком давлении твердые тела, например мрамор, изгибаются и могут даже течь, т. е. приобретают свойства, промежуточные между твердым телом и жидкостью. Такое состояние веществ называют пластическим. Данный эксперимент позволяет утверждать, что в глубоких недрах Земли материя находится в пластическом состоянии.

Химический состав Земли. В Земле можно найти все химические элементы таблицы Д. И. Менделеева. Однако количество их неодинаково, распределены они крайне неравномерно. Например, в земной коре кислород (О) составляет более 50 %, железо (Fе) – менее 5 % ее массы. Подсчитано, что базальтовый и гранитный слои состоят в основном из кислорода, кремния и алюминия, а в мантии возрастает доля кремния, магния и железа. В целом же принято считать, что на 8 элементов (кислород, кремний, алюминий, железо, кальций, магний, натрий, водород) приходится 99,5 % состава земной коры, а на все остальные – 0,5 %. Данные о составе мантии и ядра носят предположительный характер.

§ 18. Движение земной коры

Земная кора только кажется неподвижной, абсолютно устойчивой. На самом же деле она совершает непрерывные и разнообразные движения. Некоторые из них происходят очень медленно и не воспринимаются органами чувств человека, другие, например землетрясения, носят обвальный, разрушительный характер. Какие же титанические силы приводят в движение земную кору?

Внутренние силы Земли, источник их происхождения. Известно, что на границе мантии и литосферы температура превышает 1500 °C. При этой температуре материя должна либо расплавиться, либо превратиться в газ. При переходе твердых тел в жидкое или газообразное состояние объем их должен увеличиваться. Однако этого не происходит, так как перегретые породы находятся под давлением вышележащих слоев литосферы. Возникает эффект «парового котла», когда стремящаяся расшириться материя давит на литосферу, приводя ее в движение вместе с земной корой. При этом чем выше температура, тем сильнее давление и тем активнее движется литосфера. Особенно сильные очаги давления возникают в тех местах верхней мантии, где концентрируются радиоактивные элементы, распад которых разогревает слагающие породы до еще более высоких температур. Движения земной коры под действием внутренних сил Земли называют тектоническими. Эти движения подразделяют на колебательные, складкообразовательные и разрывные.

Колебательные движения. Эти движения происходят очень медленно, незаметно для человека, поэтому их еще называют вековыми или эпейрогеническими. В одних местах земная кора поднимается, в других – опускается. При этом нередко поднятие сменяется опусканием, и наоборот. Проследить за этими движениями можно только по тем «следам», которые остаются после них на земной поверхности. Например, на побережье Средиземного моря, близ Неаполя, находятся развалины храма Сераписа, колонны которого источены морскими моллюсками на высоте до 5,5 м над уровнем современного моря. Это служит безусловным доказательством того, что храм, построенный в IV в., побывал на дне моря, а затем произошло его поднятие. Сейчас этот участок суши вновь опускается. Нередко на побережьях морей выше их современного уровня находятся ступени – морские террасы, созданные когда-то морским прибоем. На площадках этих ступеней можно найти остатки морских организмов. Это свидетельствует о том, что площадки террас когда-то были дном моря, а затем берег поднялся и море отступило.

Опускание земной коры ниже 0 м над уровнем моря сопровождается наступлением моря – трансгрессией, а поднятие – его отступлением – регрессией. В настоящее время в Европе поднятия происходят в Исландии, Гренландии, на Скандинавском полуострове. Наблюдениями установлено, что область Ботнического залива поднимается со скоростью 2 см в год, т. е. на 2 м в столетие. Одновременно с этим происходит опускание территории Голландии, Южной Англии, Северной Италии, Причерноморской низменности, побережья Карского моря. Признаком опускания морских побережий служит образование морских заливов в устьевых участках рек – эстуариев (губ) и лиманов.

При поднятии земной коры и отступлении моря морское дно, сложенное осадочными породами, оказывается сушей. Так образуются обширные морские (первичные) равнины: например, Западно-Сибирская, Туранская, Северо-Сибирская, Амазонская (рис. 20).



Рис. 20. Строение первичных, или морских, пластовых равнин


Складкообразовательные движения. В тех случаях, когда пласты горных пород достаточно пластичны, под действием внутренних сил происходит смятие их в складки. Когда давление направлено по вертикали, породы смещаются, а если в горизонтальной плоскости – сжимаются в складки. Форма складок бывает самой разнообразной. Когда изгиб складки направлен вниз, ее называют синклиналью, вверх – антиклиналью (рис. 21). Образуются складки на больших глубинах, т. е. при высоких температурах и большом давлении, а затем под действием внутренних сил они могут быть подняты. Так возникают складчатые горы Кавказские, Альпы, Гималаи, Анды и др. (рис. 22). В таких горах складки легко наблюдать там, где они обнажены и выходят на поверхность.



Рис. 21. Синклинальная (1) и антиклинальная (2) складки




Рис. 22. Складчатые горы


Разрывные движения. Если горные породы недостаточно прочны, чтобы выдержать действие внутренних сил, в земной коре образуются трещины – разломы и происходит вертикальное смещение горных пород. Опустившиеся участки называют грабенами, а поднявшиеся – горстами (рис. 23). Чередование горстов и грабенов создает глыбовые (возрожденные) горы. Примерами таких гор служат: Алтай, Саянские, Верхоянский хребет, Аппалачи в Северной Америке и многие другие. Возрожденные горы отличаются от складчатых как по внутреннему строению, так и по внешнему виду – морфологии. Склоны этих гор часто отвесные, долины, как и водоразделы, широкие, плоские. Пласты горных пород всегда смещены относительно друг друга.




Рис. 23. Возрожденные складчато-глыбовые горы


Опустившиеся участки в этих горах, грабены, иногда заполняются водой, и тогда образуются глубокие озера: например, Байкал и Телецкое в России, Танганьика и Ньяса в Африке.

§ 19. Вулканы и землетрясения

При дальнейшем повышении температуры в недрах Земли горные породы, несмотря на высокое давление, расплавляются, образуя магму. При этом выделяется много газов. Это еще больше увеличивает и объем расплава, и его давление на окружающие породы. В результате очень плотная, насыщенная газами магма стремится туда, где давление меньше. Она заполняет трещины в земной коре, разрывает и приподнимает пласты слагающих ее пород. Часть магмы, не достигнув земной поверхности, застывает в толще земной коры, образуя магматические жилы и лакколиты. Иногда же магма вырывается на поверхность, и происходит ее извержение в виде лавы, газов, вулканического пепла, обломков горных пород и застывших сгустков лавы.

Вулканы. У каждого вулкана имеется канал, по которому происходит извержение лавы (рис. 24). Это жерло, которое всегда заканчивается воронкообразным расширением – кратером. Диаметр кратеров колеблется от нескольких сот метров до многих километров. Например, диаметр кратера Везувия – 568 м. Очень большие кратеры называют кальдерами. Например, кальдера вулкана Узона на Камчатке, которую заполняет озеро Кроноцкое, достигает 30 км в поперечнике.

Форма и высота вулканов зависят от вязкости лавы. Жидкая лава быстро и легко растекается и не образует горы конусообразной формы. Примером может служить вулкан Килауза на Гавайских островах. Кратер этого вулкана представляет собой округлое озеро диаметром около 1 км, заполненное клокочущей жидкой лавой. Уровень лавы, подобно воде в чаше родника, то опускается, то поднимается, выплескиваясь через край кратера.




Рис. 24. Вулканический конус в разрезе


Более широко распространены вулканы с вязкой лавой, которая, остывая, образует вулканический конус. Конус всегда имеет слоистое строение, которое свидетельствует о том, что излияния происходили многократно, а вулкан вырастал постепенно, от извержения к извержению.

Высота вулканических конусов колеблется от нескольких десятков метров до нескольких километров. Например, вулкан Аконкагуа в Андах имеет высоту 6960 м.

Гор-вулканов, действующих и потухших, насчитывается около 1500. Среди них такие гиганты, как Эльбрус на Кавказе, Ключевская Сопка на Камчатке, Фудзияма в Японии, Килиманджаро в Африке и многие другие.

Большая часть действующих вулканов расположена вокруг Тихого океана, образуя Тихоокеанское «огненное кольцо», и в Средиземноморско-Индонезийском поясе. Только на Камчатке известно 28 действующих вулканов, а всего их более 600. Распространены действующие вулканы закономерно – все они приурочены к подвижным зонам земной коры (рис. 25).




Рис. 25. Зоны вулканизма и землетрясений


В геологическом прошлом Земли вулканизм был более активным, чем теперь. Кроме обычных (центральных) извержений происходили трещинные излияния. Из гигантских трещин (разломов) в земной коре, протянувшихся на десятки и сотни километров, лава извергалась на земную поверхность. Создавались сплошные или пятнистые лавовые покровы, выравнивающие рельеф местности. Толща лавы достигала 1,5–2 км. Так образовались лавовые равнины. Примером таких равнин служат отдельные участки Среднесибирского плоскогорья, центральной части плоскогорья Декан в Индии, Армянское нагорье, плато Колумбия.

Землетрясения. Причины землетрясений бывают разные: извержение вулканов, обвалы в горах. Но наиболее сильные из них возникают в результате движений земной коры. Такие землетрясения называют тектоническими. Зарождаются они обычно на большой глубине, на границе мантии и литосферы. Место зарождения землетрясения называется гипоцентром или очагом. На поверхности Земли, над гипоцентром, находится эпицентр землетрясения (рис. 26). Здесь сила землетрясения наиболее велика, а при удалении от эпицентра она ослабевает.




Рис. 26. Гипоцентр и эпицентр землетрясения


Земная кора сотрясается непрерывно. В течение года наблюдается свыше 10 000 землетрясений, но большая часть из них настолько слаба, что не ощущается человеком и фиксируется только приборами.

Сила землетрясений измеряется в баллах – от 1 до 12. Мощные 12-балльные землетрясения бывают редко и носят катастрофический характер. При таких землетрясениях происходят деформации в земной коре, образуются трещины, сдвиги, сбросы, обвалы в горах и провалы на равнинах. Если они происходят в густонаселенных местах, то возникают большие разрушения и многочисленные человеческие жертвы. Крупнейшими землетрясениями в истории являются Мессинское (1908), Токийское (1923), Ташкентское (1966), Чилийское (1976) и Спитакское (1988). В каждом из этих землетрясений погибли десятки, сотни и тысячи человек, а города были разрушены почти до основания.

Нередко гипоцентр находится под океаном. Тогда возникает разрушительная океаническая волна – цунами.

§ 20. Внешние процессы, преображающие поверхность Земли

Одновременно с внутренними, тектоническими процессами на Земле действуют процессы внешние. В отличие от внутренних, охватывающих всю толщу литосферы, они действуют только на поверхности Земли. Глубина их проникновения в земную кору не превышает нескольких метров и лишь в пещерах – до нескольких сот метров. Источником происхождения сил, вызывающих внешние процессы, служит тепловая солнечная энергия.

Внешние процессы очень разнообразны. К ним относятся выветривание горных пород, работа ветра, воды и ледников.

Выветривание. Оно подразделяется на физическое, химическое и органическое.

Физическое выветривание – это механическое раздробление, измельчение горных пород.

Происходит оно при резком изменении температуры. При нагревании порода расширяется, при охлаждении – сжимается. Так как коэффициент расширения разных минералов, входящих в породу, неодинаков, процесс ее разрушения усиливается. Вначале порода распадается на крупные глыбы, которые с течением времени измельчаются. Ускоренному разрушению породы способствует вода, которая, проникая в трещины, замерзает в них, расширяется и разрывает породу на отдельные части. Наиболее активно физическое выветривание действует там, где происходит резкая смена температуры, а на поверхность выходят твердые магматические породы – гранит, базальт, сиениты и т. д.

Химическое выветривание – это химическое воздействие на горные породы различных водных растворов.

При этом, в отличие от физического выветривания, происходят разнообразные химические реакции, а вследствие этого изменение химического состава и, возможно, образование новых горных пород. Действует химическое выветривание повсеместно, но особенно интенсивно протекает в легкорастворимых породах – известняках, гипсах, доломитах.

Органическое выветривание представляет собой процесс разрушения горных пород живыми организмами – растениями, животными и бактериями.

Лишайники, например, поселяясь на скалах, истачивают их поверхность выделяемой кислотой. Корни растений также выделяют кислоту, а кроме того, корневая система действует механически, как бы разрывая породу. Дождевые черви, пропуская через себя неорганические вещества, преобразуют породу и улучшают доступ в нее воды и воздуха.

Выветривание и климат. Все виды выветривания протекают одновременно, но действуют с разной интенсивностью. Зависит это не только от слагающих пород, но и главным образом от климата.

В полярных странах наиболее активно проявляется морозное выветривание, в умеренных – химическое, в тропических пустынях – механическое, во влажных тропиках – химическое.

Работа ветра. Ветер способен разрушать горные породы, переносить и откладывать их твердые частицы. Чем сильнее ветер и чем чаще он дует, тем большую работу он способен производить. Там, где на поверхность Земли выходят скалистые обнажения, ветер бомбардирует их песчинками, постепенно стирая и разрушая даже самые твердые породы. Менее устойчивые породы разрушаются быстрее, возникают специфические, эоловые формы рельефа – каменные кружева, эоловые грибы, столбы, башни.

В песчаных пустынях и по берегам морей и крупных озер ветер создает специфические формы рельефа – барханы и дюны.

Барханы – это подвижные песчаные холмы серповидной формы. Наветренный склон их всегда пологий (5-10°), а подветренный – крутой – до 35–40° (рис. 27). Образование барханов связано с торможением ветрового потока, несущего песок, которое происходит из-за каких-либо препятствий – неровностей поверхности, камней, кустов и т. д. Сила ветра ослабевает, и начинается отложение песка. Чем постояннее ветры и чем больше песка, тем быстрее растет бархан. Наиболее высокие барханы – до 120 м – обнаружены в пустынях Аравийского полуострова.



Рис. 27. Строение бархана (стрелкой показано направление ветра)


Передвигаются барханы по направлению ветра. Ветер гонит песчинки по пологому склону. Достигнув гребня, ветровой поток завихряется, скорость его уменьшается, песчинки выпадают и скатываются по крутому подветренному склону. Это обусловливает перемещение всего бархана со скоростью до 50–60 м в год. Передвигаясь, барханы могут засыпать оазисы и даже целые поселки.

На песчаных пляжах развеваемые пески образуют дюны. Они тянутся вдоль берега в виде громадных песчаных гряд или холмов высотой до 100 м и более. В отличие от барханов они не имеют постоянной формы, но также могут передвигаться в направлении от пляжа в глубь суши. Для того чтобы остановить движение дюн, высаживают древесно-кустарниковые растения, в первую очередь сосны.

Работа снега и льда. Снег, особенно в горах, выполняет значительную работу. На склонах гор накапливаются огромные массы снега. Время от времени они срываются со склонов, образуя снежные лавины. Такие лавины, двигаясь с огромной скоростью, захватывают обломки скал и увлекают вниз, сметая все на своем пути. За грозную опасность, которую несут снежные лавины, их называют «белой смертью».

Твердый материал, который остается после таяния снега, образует громадные каменистые бугры, перегораживающие и заполняющие межгорные впадины.

Еще большую работу выполняют ледники. Они занимают на Земле громадные площади – более 16 млн км 2 , что составляет 11 % площади суши.

Различают ледники материковые, или покровные, и горные. Материковые льды занимают огромные площади в Антарктиде, Гренландии, на многих полярных островах. Толщина льда материковых ледников неодинакова. Например, в Антарктиде она достигает 4000 м. Под действием громадной тяжести лед сползает в море, обламывается, и образуются айсберги – ледяные плавучие горы.

У горных ледников различают две части – области питания или накопления снега и таяния. Накапливается снег в горах выше снеговой линии. Высота этой линии в разных широтах неодинакова: чем ближе к экватору, тем выше снеговая линия. В Гренландии, например, она лежит на высоте 500–600 м, а на склонах вулкана Чимборасо в Андах – 4800 м.

Выше снеговой линии снег накапливается, уплотняется и постепенно превращается в лед. Лед обладает пластическими свойствами и под давлением вышележащих масс начинает скользить по склону вниз. В зависимости от массы ледника, его насыщенности водой и крутизны склона скорость движения колеблется от 0,1 до 8 м в сутки.

Двигаясь по склонам гор, ледники выпахивают рытвины, сглаживают выступы скал, расширяют и углубляют долины. Обломочный материал, который ледник захватывает при своем движении, при таянии (отступлении) ледника, остается на месте, образуя ледниковую морену. Морена – это груды обломков скал, валунов, песка, глины, оставленные ледником. Различают морены донные, боковые, поверхностные, срединные и конечные.

Горные долины, по которым когда-либо проходил ледник, легко отличить: в этих долинах всегда обнаруживаются остатки морен, а форма их напоминает корыто. Такие долины называют трогами.

Работа текучих вод. К текучим водам относятся временные дождевые потоки и талые снеговые воды, ручьи, реки и подземные воды. Работа текучих вод с учетом фактора времени грандиозна. Можно сказать, что весь облик земной поверхности в той или иной мере создан текучей водой. Все текучие воды объединяет то, что они производят три вида работ:

– разрушение (эрозию);

– перенос продуктов (транзит);

– отношение(аккумуляцию).

В результате образуются разнообразные неровности на поверхности Земли – овраги, борозды на склонах, обрывы, долины рек, песчаные и галечные острова и т. д., а также пустоты в толще горных пород – пещеры.

Действие силы тяжести. Все тела – жидкие, твердые, газообразные, находящиеся на Земле, – притягиваются к ней.

Сила, с которой тело притягивается к Земле, называется силой тяжести.

Под действием этой силы все тела стремятся занять самое низкое положение на земной поверхности. В результате возникают водные потоки в реках, дождевые воды просачиваются в толщу земной коры, обрушиваются снежные лавины, движутся ледники, вниз по склонам перемещаются обломки горных пород. Сила тяжести – необходимое условие действия внешних процессов. В противном случае продукты выветривания оставались бы на месте их образования, покрывая, как плащом, нижележащие породы.

§ 21. Минералы и горные породы

Как вы уже знаете, Земля состоит из множества химических элементов – кислорода, азота, кремния, железа и т. д. Соединяясь между собой, химические элементы образуют минералы.

Минералы. Большая часть минералов состоит из двух или нескольких химических элементов. Узнать, какое количество элементов содержится в минерале, можно по его химической формуле. Например, галит (поваренная соль) состоит из натрия и хлора и имеет формулу NCl; магнетит (магнитный железняк) – из трех молекул железа и двух кислорода (F 3 O 2) и т. д. Некоторые минералы образованы одним химическим элементом, например: сера, золото, платина, алмаз и др. Такие минералы называют самородными. В природе известно около 40 самородных элементов, на долю которых приходится 0,1 % массы земной коры.

Минералы могут быть не только твердыми, но и жидкими (вода, ртуть, нефть), и газообразными (сероводород, углекислый газ).

Большинство минералов имеют кристаллическое строение. Форма кристалла для данного минерала всегда постоянна. Например, кристаллы кварца имеют форму призмы, галита – форму куба и т. д. Если поваренную соль растворить в воде, а затем выкристаллизовать, то вновь образованные минералы приобретут кубическую форму. Многие минералы обладают способностью расти. Размеры их колеблются от микроскопических до гигантских. Например, на острове Мадагаскар найден кристалл берилла длиной 8 м и диаметром 3 м. Вес его составляет почти 400 т.

По образованию все минералы делятся на несколько групп. Одни из них (полевой шпат, кварц, слюда) выделяются из магмы при ее медленном остывании на больших глубинах; другие (сера) – при быстром остывании лавы; третьи (гранат, яшма, алмаз) – при высоких температурах и давлении на больших глубинах; четвертые (гранаты, рубины, аметисты) выделяются из горячих водных растворов в подземных жилах; пятые (гипс, соли, бурый железняк) образуются при химическом выветривании.

Всего в природе насчитывается более 2500 минералов. Для их определения и изучения большое значение имеют физические свойства, к которым относят блеск, цвет, цвет черты, т. е. следа, оставляемого минералом, прозрачность, твердость, спайность, излом, удельный вес. Например, у кварца форма кристаллов призматическая, блеск стеклянный, спайности нет, излом раковистый, твердость 7, удельный вес 2,65 г/см 3 , черты не имеет; у галита форма кристалла кубическая, твердость 2,2, удельный вес 2,1 г/см 3 , блеск стеклянный, цвет белый, спайность совершенная, вкус соленый и т. д.

Из минералов наиболее известны и широко распространены 40–50, которые называют породообразующими (полевой шпат, кварц, галит и пр.).

Горные породы. Данные породы представляют собой скопление одного или нескольких минералов. Мрамор, известняк, гипс состоят из одного минерала, а гранит, базальт – из нескольких. Всего в природе насчитывается около 1000 горных пород. В зависимости от происхождения – генезиса – горные породы подразделяются на три основные группы: магматические, осадочные и метаморфические.

Магматические породы. Образуются при остывании магмы; кристаллического строения, не имеют слоистости; не содержат остатков животных и растений. Среди магматических пород различают глубинные и излившиеся. Глубинные породы образовались в глубине земной коры, где магма находится под большим давлением и ее остывание происходит очень медленно. Примером глубинной породы может служить гранит – наиболее распространенная кристаллическая порода, состоящая в основном из трех минералов: кварца, полевого шпата и слюды. Цвет гранитов зависит от цвета полевого шпата. Чаще всего они серые или розовые.

При излиянии магмы на поверхность образуются излившиеся породы. Они представляют либо спекшуюся массу, напоминающую шлак, либо стекловидную, тогда их называют вулканическим стеклом. В отдельных случаях образуется мелкокристаллическая порода типа базальта.

Осадочные породы. Покрывают примерно 80 % всей поверхности Земли. Для них характерны слоистость и пористость. Как правило, осадочные породы являются результатом накопления в морях и океанах остатков отмерших организмов или снесенных с суши частиц разрушенных твердых пород. Процесс накопления происходит неравномерно, поэтому образуются слои разной мощности (толщины). Во многих осадочных породах находят окаменелости или отпечатки животных и растений.

В зависимости от места образования осадочные породы подразделяют на континентальные и морские. К континентальным породам относятся, например, глины. Глины – измельченный продукт разрушения твердых пород. Они состоят из мельчайших чешуйчатообразных частиц, обладают способностью впитывать воду. Глины пластичны, водоупорны. Цвет их различен – от белого до синего и даже черного. Белые глины используют для производства фарфора.

Континентального происхождения и широко распространенная горная порода – лёсс. Это мелкозернистая, неслоистая порода желтоватого цвета, состоящая из смеси кварца, глинистых частиц, углекислой извести и гидратов окиси железа. Легко пропускает воду.

Морские породы обычно формируются на дне океанов. К ним относят некоторые глины, пески, гравий.

Большая группа осадочных биогенных горных пород образовалась из остатков умерших животных и растений. К ним относят известняки, доломиты и некоторые горючие полезные ископаемые (торф, каменный уголь, горючие сланцы).

Особенно широко в земной коре распространен известняк, состоящий из углекислого кальция. В его фрагментах легко можно заметить скопления мелких раковин и даже скелетов небольших животных. Цвет известняков различный, чаще серый.

Мел также образован из мельчайших раковин – обитателей моря. Огромные запасы этой горной породы находятся в Белгородской области, где по крутым берегам рек можно увидеть выходы мощных слоев мела, выделяющегося своей белизной.

Известняки, в которых имеется примесь углекислого магния, называют доломитами. Известняки имеют широкое применение в строительстве. Из них изготовляют известь для штукатурных работ и цемент. Лучший цемент изготовляют из мергеля.

В тех морях, где раньше обитали животные, имеющие кремневые раковины, и росли водоросли, содержащие кремень, образовалась горная порода трепел. Это легкая, плотная, обычно желтоватая или светло-серая порода, являющаяся строительным материалом.

К осадочным относят также породы, образовавшиеся путем осаждения из водных растворов (гипс, каменная соль, калийная соль, бурый железняк и др.).

Метаморфические породы. Эта группа пород образовалась из осадочных и магматических пород под воздействием высоких температур, давления, а также химических изменений. Так, при действии температуры и давления на глину образуются глинистые сланцы, на песок – плотные песчаники, а на известняки – мрамор. Изменения, т. е. метаморфоз, происходят не только с осадочными породами, но и с магматическими. Под воздействием высоких температур и давления гранит приобретает слоистое строение и образуется новая порода – гнейс.

Высокая температура и давление способствуют перекристаллизации пород. Из песчаников образуется очень прочная кристаллическая порода – кварцит.

§ 22. Развитие земной коры

Наукой установлено, что более 2,5 млрд лет назад планета Земля была полностью покрыта океаном. Затем под действием внутренних сил началось поднятие отдельных участков земной коры. Процесс поднятия сопровождался бурным вулканизмом, землетрясениями, горообразованием. Так возникли первые участки суши – древние ядра современных материков. Академик В. А. Обручев называл их «древним теменем Земли».

Как только суша поднялась над океаном, на поверхности ее начали действовать внешние процессы. Горные породы разрушались, продукты разрушения сносились в океан и накапливались по его окраинам в виде осадочных горных пород. Толща осадков достигала нескольких километров, и под ее давлением океанское дно начинало прогибаться. Такие гигантские прогибы земной коры под океанами называют геосинклиналями. Образование геосинклиналей в истории Земли идет непрерывно с древнейших времен по настоящее время. В жизни геосинклиналей различают несколько стадий:

эмбриональная – прогиб земной коры и накопление осадков (рис. 28, А);

созревания – заполнение прогиба осадками, когда толща их достигает 15–18 км и возникает радиальное и боковое давление;

складчатости – образование складчатых гор под давлением внутренних сил Земли (процесс этот сопровождается бурным вулканизмом и землетрясениями) (рис. 28, Б);

затухания – разрушение возникших гор внешними процессами и образование на их месте остаточной холмистой равнины (рис. 28).




Рис. 28. Схема строения равнины, образовавшейся в результате разрушения гор (пунктиром показана реконструкция бывшей горной страны)


Так как осадочные горные породы в области геосинклинали являются пластичными, то в результате возникшего давления они сминаются в складки. Образуются складчатые горы, такие как Альпы, Кавказ, Гималаи, Анды и др.

Периоды, когда в геосинклиналях идет активное образование складчатых гор, называют эпохами складчатости. В истории Земли известно несколько таких эпох: байкальская, каледонская, герцинская, мезозойская и альпийская.

Процесс горообразования в геосинклинали может охватить и внегеосинклинальные области – области бывших, ныне разрушенных гор. Так как породы здесь жесткие, лишены пластичности, то они не сминаются в складки, а разбиваются разломами. Одни участки поднимаются, другие опускаются – возникают возрожденные глыбовые и складчато-глыбовые горы. Например, в альпийскую эпоху складчатости образовались складчатые горы Памир и возродились Алтайские и Саянские. Поэтому возраст гор определяют не по времени их образования, а по возрасту складчатого основания, который всегда обозначен на тектонических картах.

Геосинклинали, находящиеся на разных стадиях развития, существуют и сегодня. Так, вдоль азиатского побережья Тихого океана, в Средиземном море расположена современная геосинклиналь, переживающая стадию созревания, а на Кавказе, в Андах и других складчатых горах завершается процесс горообразования; Казахский мелкосопочник – это пенеплен, холмистая равнина, образовавшаяся на месте разрушенных гор каледонской и герцинской складчатости. На поверхность здесь выходит основание древних гор – мелкие сопки – «горы-свидетели», сложенные прочными магматическими и метаморфическими породами.

Обширные участки земной коры, обладающие сравнительно малой подвижностью и равнинным рельефом, называют платформами. В основании платформ, в их фундаменте, лежат прочные магматические и метаморфические породы, свидетельствующие о некогда происходивших здесь процессах горообразования. Обычно фундамент покрыт толщей осадочных пород. Иногда породы фундамента выходят на поверхность, образуя щиты. Возраст платформы соответствует возрасту фундамента. К древним (докембрийским) платформам относятся Восточно-Европейская, Сибирская, Бразильская и др.

Платформы – это в основном равнины. Они испытывают преимущественно колебательные движения. Однако в отдельных случаях на них возможно и образование возрожденных глыбовых гор. Так, в результате возникновения Великих африканских разломов произошло поднятие и опускание отдельных участков древней Африканской платформы и образовались глыбовые горы и нагорья Восточной Африки, горы-вулканы Кения и Килиманджаро.

Литосферные плиты и их движение. Учение о геосинклиналях и платформах получило в науке название «фиксизм», поскольку согласно этой теории крупные блоки коры зафиксированы на одном месте. Во второй половине XX в. многие ученые поддержали теорию мобилизма, в основе которой лежит представление о горизонтальных движениях литосферы. Согласно этой те ории вся литосфера глубинными разломами, достигающими верхней мантии, разбита на гигантские блоки – литосферные плиты. Границы между плитами могут проходить как по суше, так и по дну океанов. В океанах этими границами обычно служат срединные океанические хребты. В этих областях зафиксировано большое количество разломов – рифтов, по которым вещество верхней мантии изливается на дно океана, растекаясь по нему. В тех областях, где проходят границы между плитами, нередко активизируются процессы горообразования – в Гималаях, Андах, Кордильерах, Альпах и т. д. Основание плит находится в астеносфере, и по ее пластическому субстрату литосферные плиты, подобно гигантским айсбергам, медленно перемещаются в разных направлениях (рис. 29). Перемещение плит зафиксировано точнейшими измерениями из космоса. Так, африканский и аравийский берега Красного моря медленно удаляются друг от друга, что позволило некоторым ученым назвать это море «зародышем» будущего океана. Космические снимки позволяют проследить и направление глубинных разломов земной коры.




Рис. 29. Движение литосферных плит


Теория мобилизма убедительно объясняет образование гор, так как для их возникновения необходимо не только радиальное, но и боковое давление. Там, где сталкиваются две плиты, одна из них погружается под другую, а вдоль границы столкновения образуются «торосы», т. е. горы. Этот процесс сопровождается землетрясениями и вулканизмом.

§ 23. Рельеф земного шара

Рельеф – это совокупность неровностей земной поверхности, различающихся по высоте над уровнем моря, происхождению и т. п.

Эти неровности придают неповторимый облик нашей планете. На формирование рельефа оказывают воздействие как внутренние, тектонические, так и внешние силы. Благодаря тектоническим процессам возникают в основном крупные неровности поверхности – горы, нагорья и т. д., а внешние силы направлены на их разрушение и создание более малых форм рельефа – речных долин, оврагов, барханов и т. д.

Все формы рельефа подразделяют на вогнутые (впадины, долины рек, овраги, балки и т. д.), выпуклые (холмы, горные хребты, вулканические конусы и пр.), просто горизонтальные и наклонные поверхности. Размер их может быть самым разнообразным – от нескольких десятков сантиметров до многих сотен и даже тысяч километров.

В зависимости от масштаба выделяют планетарные, макро-, мезо– и микроформы рельефа.

К планетарным относят выступы материков и впадины океанов. Материки и океаны нередко являются антиподами. Так, Антарктика лежит против Северного Ледовитого океана, Северная Америка – против Индийского, Австралия – против Атлантического и только Южная Америка – против Юго-Восточной Азии.

Глубины океанических впадин колеблются в больших пределах. Средняя глубина составляет 3800 м, а максимальная, отмеченная в Марианской впадине Тихого океана, – 11 022 м. Высшая точка суши – гора Эверест (Джомолунгма) достигает 8848 м. Таким образом, амплитуда высот достигает почти 20 км.

Преобладающие глубины в океане – от 3000 до 6000 м, а высоты на суше – менее 1000 м. Высокие горы и глубоководные впадины занимают всего лишь доли процента поверхности Земли.

Средняя высота материков и их частей над уровнем океана также неодинакова: Северная Америка – 700 м, Африка – 640, Южная Америка – 580, Австралия – 350, Антарктида – 2300, Евразия – 635 м, причем высота Азии 950 м, а Европы – всего 320 м. Средняя высота суши 875 м.

Рельеф дна океана. На дне океана, как и на суше, имеются разнообразные формы рельефа – горы, равнины, впадины, желоба и т. д. Они обычно имеют более мягкие очертания, чем аналогичные формы рельефа суши, так как внешние процессы протекают здесь более спокойно.

В рельефе океанского дна выделяют:

материковую отмель, или шельф (полка), – мелководная часть до глубины 200 м, ширина которой в ряде случаев достигает многих сотен километров;

материковый склон – довольно крутой уступ до глубины 2500 м;

ложе океана, которое занимает большую часть дна с глубинами до 6000 м.

Наибольшие глубины отмечены в желобах, или океанических впадинах, где они превышают отметку 6000 м. Желоба обычно протягиваются вдоль материков по окраинам океана.

В центральных частях океанов располагаются срединные океанические хребты (рифты): Южно-Атлантический, Австралийский, Антарктический и др.

Рельеф суши. Основные элементы рельефа суши – это горы и равнины. Они образуют макрорельеф Земли.

Горой называют возвышенность, имеющую вершинную точку, склоны, подошвенную линию, поднимающиеся над местностью выше 200 м; возвышение же высотой до 200 м называется холмом. Линейно вытянутые формы рельефа, имеющие гребень и склоны, – это горные хребты. Хребты разделяются расположенными между ними горными долинами. Соединяясь между собой, горные хребты образуют горные цепи. Совокупность хребтов, цепей и долин называют горным узлом, или горной страной, а в обиходе – горами. Например, Алтайские горы, Уральские горы и т. п.

Обширные участки земной поверхности, состоящие из горных хребтов, долин и высоких равнин, называются нагорьями. Например, Иранское нагорье, Армянское нагорье и др.

По происхождению горы бывают тектоническими, вулканическими и эрозионными.

Тектонические горы образуются в результате движений земной коры, они состоят из одной или множества складок, поднятых на значительную высоту. Все высочайшие горы мира – Гималаи, Гиндукуш, Памир, Кордильеры и др. – складчатые. Для них характерны остроконечные вершины, узкие долины (теснины), вытянутые гребни.

Глыбовые и складчато-глыбовые горы образуются в результате поднятия и опускания блоков (глыб) земной коры по плоскостям разломов. Для рельефа этих гор характерны плоские вершины и водоразделы, широкие, с плоским дном, долины. Это, например, Уральские горы, Аппалачи, Алтай и др.

Вулканические горы образуются в результате накопления продуктов вулканической деятельности.

На поверхности Земли достаточно широко распространены эрозионные горы, которые образуются в результате расчленения высоких равнин внешними силами, в первую очередь текучими водами.

По высоте горы подразделяются на низкие (до 1000 м), средне-высотные (от 1000 до 2000 м), высокие (от 2000 до 5000 м) и высочайшие (выше 5 км).

Высоту гор легко определить по физической карте. По ней же можно определить, что большая часть гор относится к средне-высотным и высоким. Выше 7000 м поднимаются немногие вершины, и все они находятся в Азии. Высоту более 8000 м имеют всего лишь 12 горных вершин, расположенных в горах Каракорум и Гималаях. Высшей точкой планеты является гора, или, точнее, горный узел, Эверест (Джомолунгма) – 8848 м.

Большую часть поверхности суши занимают равнинные пространства. Равнины – это участки земной поверхности, имеющие плоский или слабохолмистый рельеф. Чаще всего равнины слегка наклонные.

По характеру поверхности равнины делят на плоские, волнистые и холмистые, но на обширных равнинах, например Туранской или Западно-Сибирской, можно встретить участки с различными формами рельефа поверхности.

В зависимости от высоты над уровнем моря равнины подразделяются на низменные (до 200 м), возвышенные (до 500 м) и высокие (плоскогорья) (свыше 500 м). Возвышенные и высокие равнины всегда сильно расчленены водными потоками и имеют холмистый рельеф, низменные часто бывают плоскими. Некоторые равнины расположены ниже уровня моря. Так, Прикаспийская низменность имеет высоту 28 м. Нередко на равнинах встречаются замкнутые котловины большой глубины. Например, впадина Карагис имеет отметку 132 м, а впадина Мертвого моря – 400 м.

Возвышенные равнины, ограниченные крутыми уступами, отделяющими их от окружающей местности, называются плато. Таковы плато Устюрт, Путорана и др.

Плоскогорья – плосковершинные участки земной поверхности, могут иметь значительную высоту. Так, например, плоскогорье Тибет поднимается выше 5000 м.

По происхождению выделяют несколько типов равнин. Значительные пространства суши занимают морские (первичные) равнины, образовавшиеся в результате морских регрессий. Это, например, Туранская, Западно-Сибирская, Великая Китайская и ряд других равнин. Почти все они относятся к великим равнинам планеты. Большая часть их – низменности, рельеф плоский или слегка холмистый.

Пластовые равнины – это плоские участки древних платформ с почти горизонтальным залеганием пластов осадочных пород. К таким равнинам относится, например, Восточно-Европейская. Равнины эти большей частью имеют холмистый рельеф.

Небольшие пространства в долинах рек занимают аллювиальные (наносные) равнины, образовавшиеся в результате выравнивания поверхности речными отложениями – аллювием. К этому типу относятся равнины Индо-Гангская, Месопотамская, Лабрадорская. Эти равнины низкие, плоские, очень плодородные.

Высоко над уровнем моря приподняты равнины – лавовые покровы (Среднесибирское плоскогорье, Эфиопское и Иранское нагорья, плоскогорье Декан). Некоторые равнины, например Казахский мелкосопочник, образовались в результате разрушения гор. Их называют эрозионными. Эти равнины всегда возвышенные и холмистые. Эти холмы сложены прочными кристаллическими породами и представляют собой остатки бывших здесь некогда гор, их «корни».

§ 24. Почва

Почва – это верхний плодородный слой литосферы, обладающий рядом свойств, присущих живой и неживой природе.

Образование и существование этого природного тела нельзя представить без живых существ. Поверхностные слои горной породы являются лишь исходным субстратом, из которого под воздействием растений, микроорганизмов и животных образуются различные виды почв.

Основоположник почвоведения русский ученый В. В. Докучаев показал, что

почва – это самостоятельное природное тело, образовавшееся на поверхности горных пород под воздействием живых организмов, климата, воды, рельефа, а также человека.

Это природное образование создавалось тысячелетиями. Процесс почвообразования начинается с поселения на голых скалах, камнях микроорганизмов. Питаясь углекислым газом, азотом и парами воды из атмосферы, используя минеральные соли горной породы, микроорганизмы выделяют в результате жизнедеятельности органические кислоты. Эти вещества постепенно изменяют химический состав горных пород, делают их менее прочными и в конечном итоге разрыхляют поверхностный слой. Затем на такой породе поселяются лишайники. Неприхотливые к воде и питательным веществам, они продолжают процесс разрушения, одновременно обогащая породу органическими веществами. В результате деятельности микроорганизмов и лишайников горная порода постепенно превращается в субстрат, пригодный для заселения растениями и животными. Окончательное преобразование исходной породы в почву происходит за счет жизнедеятельности этих организмов.

Растения, поглощая из атмосферы углекислый газ, а из почвы воду и минеральные вещества, создают органические соединения. Отмирая, растения обогащают почву этими соединениями. Животные питаются растениями и их остатками. Продукты их жизнедеятельности – экскременты, а после смерти и их трупы также попадают в почву. Вся масса мертвой органической материи, накопившаяся в результате жизнедеятельности растений и животных, служит кормовой базой и местом обитания для микроорганизмов и грибов. Они деструктируют органические вещества, минерализуют их. В результате деятельности микроорганизмов образуются сложные органические вещества, составляющие гумус почвы.

Гумус почвы – это смесь устойчивых органических соединений, образующихся при разложении растительных и животных остатков и продуктов их жизнедеятельности с участием микроорганизмов.

В почве происходят распад первичных минералов и образование глинистых вторичных минералов. Таким образом, в почве протекает круговорот веществ.

Влагоемкость – это способность почвы удерживать воду.

Почва, в которой много песка, плохо удерживает воду и обладает низкой влагоемкостью. Глинистая почва, наоборот, удерживает много воды и обладает высокой влагоемкостью. В случае обильных осадков вода заполняет все поры в такой почве, препятствуя прохождению воздуха вглубь. Рыхлые, комковатые почвы лучше удерживают влагу, чем плотные.

Влагопроницаемость – это способность почвы пропускать воду.

Почва пронизана мельчайшими порами – капиллярами. По капиллярам вода может передвигаться не только вниз, но и во все стороны, в том числе снизу вверх. Чем выше капиллярность почвы, тем выше ее влагопроницаемость, тем быстрее вода проникает в почву и поднимается из более глубоких слоев вверх. Вода «прилипает» к стенкам капилляров и как бы ползет вверх. Чем тоньше капилляры, тем выше по ним поднимается вода. При выходе капилляров на поверхность вода испаряется. Песчаные почвы обладают высокой влагопроницаемостью, а глинистые – низкой. Если после дождя или полива на поверхности почвы образовалась корка (со множеством капилляров), вода испаряется очень быстро. При рыхлении почвы капилляры разрушаются, это уменьшает испарение воды. Недаром рыхление почвы называют сухим поливом.

Почвы могут иметь различную структуру, т. е. состоять из различных по форме и величине комочков, в которые склеены почвенные частицы. У лучших почв, например черноземов, структура мелкокомковатая или зернистая. По химическому составу почвы могут быть богатыми или бедными элементами питания. Показателем плодородия почвы служит количество гумуса, так как в нем есть все основные элементы питания растений. Так, например, черноземные почвы содержат до 30 % гумуса. Почвы могут быть кислыми, нейтральными и щелочными. Наиболее благоприятны для растений нейтральные почвы. Для уменьшения кислотности их известкуют, а для уменьшения щелочности в почву вносят гипс.

Механический состав почв. По механическому составу почвы подразделяются на глинистые, песчаные, суглинистые и супесчаные.

Глинистые почвы обладают высокой влагоемкостью и лучше всего обеспечены элементами питания.

Песчаные почвы маловлагоемки, хорошо влагопроницаемы, но бедны гумусом.

Суглинистые – наиболее благоприятные по своим физическим свойствам для земледелия, со средней влагоемкостью и влагопроницаемостью, хорошо обеспечены гумусом.

Супесчаные – бесструктурные почвы, бедные гумусом, хорошо водо– и воздухопроницаемы. Чтобы использовать такие почвы, необходимо улучшать их состав, вносить удобрения.

Типы почв. В нашей стране наиболее распространены следующие типы почв: тундровые, подзолистые, дерново-подзолистые, черноземные, каштановые, сероземные, красноземные и желтоземные.

Тундровые почвы находятся на Крайнем Севере в зоне вечной мерзлоты. Они переувлажнены и крайне бедны гумусом.

Подзолистые почвы распространены в тайге под хвойными, а дерново-подзолистые – под хвойно-широколиственными лесами. Широколиственные леса растут на серых лесных почвах. Все эти почвы содержат достаточно гумуса, хорошо структурированы.

В лесостепной и степной зонах расположены черноземные почвы. Они образовались под степной и травянистой растительностью, богаты гумусом. Перегной придает почве черный цвет. Они имеют прочную структуру и обладают высоким плодородием.

Каштановые почвы находятся южнее, они образуются в более сухих условиях. Для них характерен недостаток влаги.

Сероземные почвы характерны для пустынь и полупустынь. Они богаты питательными веществами, но бедны азотом, не хватает здесь и воды.

Красноземы и желтоземы образуются в субтропиках в условиях влажного и теплого климата. Они хорошо структурированы, достаточно влагоемки, но имеют более низкое содержание гумуса, поэтому для повышения плодородия в эти почвы вносят удобрения.

Для повышения плодородия почв нужно регулировать в них не только содержание питательных веществ, но и наличие влаги и аэрацию. Пахотный слой почвы должен всегда быть рыхлым для обеспечения доступа воздуха к корням растений.


Сборный груз: грузоперевозки из москвы автоперевозки грузов marstrans.ru .

Поверхность Земли постоянно изменяется. В течение своей жизни мы замечаем, как движется земная кора, изменяя природу: осыпаются берега рек, образуются новые рельефы. Все эти изменения мы видим, но есть и такие, которые нами не ощущаются. И это к лучшему, ведь сильные движения земной коры способны вызывать сильнейшие разрушения: примером таких сдвигов являются землетрясения. Скрытые в недрах Земли силы способны перемещать континенты, пробуждать спящие вулканы, полностью изменять привычный рельеф, создавать горы.

Активность земной коры

Основная причина активности земной коры - это процессы, происходящие внутри планеты. Многочисленные исследования показали, что в некоторых участках земная кора более устойчива, а в других - подвижна. На основании этого была разработана целая схема возможных движений земной коры.

Типы движения коры

Движения коры могут быть нескольких типов: ученые их разделили на горизонтальные и вертикальные. В отдельную категорию внесли вулканизм и землетрясения. К каждому виду движения земной коры относят определенные типы смещения. Горизонтальные включают разломы, прогибы и складки. Движения происходят очень медленно.

К вертикальным типам относят поднятие и опускание грунта, увеличение высоты гор. Эти смещения происходят медленно.

Землетрясения

В отдельных уголках планеты происходят сильные движения земной коры, которые мы называем землетрясениями. Они возникают в результате толчков в глубинах Земли: за доли секунд или секунды земля опускается или поднимается на сантиметры или даже метры. В результате колебаний происходит изменение расположения одних участков коры относительно других в горизонтальных направлениях. Причиной движения является разрыв или смещение земли, происходящий на большой глубине. Это место в недрах планеты называют очагом землетрясения, а эпицентр находится на поверхности, где люди ощущают тектоническое движения земной коры. Именно в эпицентрах происходят самые сильные толчки, идущие снизу вверх, а затем расходящиеся в стороны. Сила землетрясений измеряется в баллах - от одного до двенадцати.

Наука, изучающая движение земной коры, а именно землетрясения - это сейсмология. Для измерения силы толчков применяют специальное устройство - сейсмограф. Он в автоматическом режиме измеряет и записывает любые, даже самые маленькие колебания земли.

Шкала землетрясений

При сообщениях о землетрясениях, мы слышим упоминание о баллах по шкале Рихтера. Единица ее измерения - это магнитуда: физическая величина, обозначающая энергию землетрясения. С каждым баллом сила энергии возрастает почти в тридцать раз.

Но чаще всего применяется шкала относительного типа. Оба варианта оценивают разрушающее действие толчков на постройки и людей. По этим критериям колебания земной коры от одного до четырех баллов практически не замечаются людьми, правда, могут раскачиваться люстры на верхних этажах здания. При показателях от пяти до шести баллов на стенах зданий возникают трещины, лопаются стекла. При девяти баллах рушится фундамент, падают линии электропередач, а землетрясение в двенадцать баллов способно стереть целые города с лица Земли.

Медленные колебания

Во время ледникового периода окутанная льдами земная кора сильно прогнулась. По мере таяния ледников поверхность стала подниматься. Увидеть происходящие в древние времена события можно по береговой линии суши. Из-за движения земной коры география морей изменялась, формировались новые берега. Особенно четко видны изменения на берегу Балтийского моря - и на суше, и на высоте до двухсот метров.

Сейчас под большими массами льда находятся Гренландия и Антарктида. По данным ученых, поверхность в этих местах прогнута почти на треть толщины ледников. Если предположить, что когда-нибудь придет время и льды растают, то перед нами появятся горы, равнины, озера и реки. Постепенно грунт будет подниматься.

Тектонические движения

Причинами движения земной коры является результат перемещения мантии. В пограничном слое между земной плитой и мантией температура очень высокая - порядка +1500 о С. Сильно нагретые слои находятся под давлением земных пластов, что вызывает эффект парового котла и провоцирует смещение коры. Эти перемещения могут быть колебательными, складкообразовательными или разрывными.

Колебательные движения

Под колебательными смещениями принято понимать медленное движение земной коры, которое не ощутимо для людей. В результате таких движений происходит смещение в вертикальной плоскости: одни участки поднимаются, а другие - опускаются. Эти процессы можно выявить, используя особые устройства. Так было выявлено, что Приднепровская возвышенность каждый год поднимается и опускается на 9 мм, а северо-восточная часть Восточноевропейской равнины опускается на 12 мм.

Вертикальные движения земной коры провоцируют сильные приливы. Если же уровень земли опускается ниже уровня моря, то вода наступает на сушу, а если поднимается выше - вода отступает. В наше время процесс отступления воды наблюдается на Скандинавском полуострове, а наступление воды - в Голландии, в северной части Италии, на Причерноморской низменности, а также в южных районах Великобритании. Характерными чертами опускания суши - образование морских заливов. Во время поднятия коры морское дно превращается в сушу. Таким образом сформировались известные равнины: Амазонская, Западно-Сибирская и некоторые другие.

Движения разрывного типа

Если горные породы не обладают достаточной прочностью, чтобы выдержать воздействие внутренних сил, начинается их движение. В таких случаях образуются трещины, разломы с вертикальным типом смещения грунта. Опущенные участки (грабены) чередуются с горстами - поднявшимися горными образованиями. Примером таких разрывных движений являются Алтайские горы, Аппалачи и т.д.

Глыбовые и складчатые горы имеют различия во внутреннем строении. Для них характерны широкие отвесные склоны, долины. В некоторых случаях опущенные места заполняются водой, образуя озера. Одним из самых знаменитых озер России является Байкал. Оно образовалось в результате разрывного движения земли.

Складкообразовательные движения

Если уровни горных пород пластичны, то во время горизонтального движения начинается смятие и сбор горных пород в складки. Если направление силы вертикальное, то породы смещаются вверх и вниз, и только при горизонтальном движении наблюдается складкообразование. Размеры и внешний вид складок может быть любым.

Складки в земной коре образуются на достаточно больших глубинах. Под воздействием внутренних сил они поднимаются наверх. Подобным образом возникли Альпы, Кавказские горы, Анды. В этих горных системах складки отчетливо видны на тех участках, где они выходят на поверхность.

Сейсмические пояса

Как известно, земная кора образована литосферными плитами. На пограничных участках этих образований наблюдается высокая подвижность, возникают частые землетрясения, образуются вулканы. Эти участки называются сейсмологическими поясами. Их протяженность составляет тысячи километров.

Ученые выделили два пояса-гиганта: меридиональный Тихоокеанский и широтный Средиземноморско-Трансазиатский. Пояса сейсмологической активности полностью соответствует активному горообразованию и вулканизму.

В отдельную категорию ученые выделяют первостепенные и второстепенные зоны сейсмичности. Ко вторым относятся Атлантический океан, Арктика, район Индийского океана. Примерно 10 % движений земной коры происходит в этих районах.

Первичные зоны представлены районами с очень высокой сейсмической активностью, сильными землетрясениями: Гавайские острова, Америка, Япония и т. д.

Вулканизм

Вулканизм - это процессы, во время которых происходит движение магмы в верхних слоях мантии и ее приближение к земной поверхности. Типичным проявлением вулканизма является образование геологических тел в осадочных породах, а также выход лавы на поверхность с формированием специфического рельефа.

Вулканизм и движение земной коры - это два взаимосвязанных явления. В результате движения земной коры образуются геологические возвышенности или вулканы, под которыми проходят трещины. Они настолько глубокие, что по ним поднимается лава, горячие газы, пары воды, а также обломки горных пород. Колебания земной коры провоцируют извержения лавы с выбросом огромного количества пепла в атмосферу. Эти явления оказывают сильное влияние на погоду, изменяют рельеф вулканов.

Тектонические движения земной коры происходят под воздействием радиоактивной, химической и тепловой энергий. Эти движения приводят к различным деформациям земной поверхности, а также вызывают землетрясения и извержения вулканов. Все это приводит к изменению рельефа в горизонтальном или вертикальном направлении.

На протяжении долгих лет ученые изучают эти явления, разрабатывают аппараты, позволяющие регистрировать любые сейсмологические явления, даже самые незначительные колебания земли. Полученные данные помогают разгадать тайны Земли, а также предупредить людей о предстоящих извержениях вулканов. Правда, предугадать предстоящее сильное землетрясение пока не удается.

Тектоническими называют движения земной коры, связанные с внутренними силами в земной коре и мантии Земли. Отрасль геологии , которая изучает эти движения, а также современное строение и развитие структурных элементов земной коры называетсятектоникой .

Крупнейшими структурными элементами земной коры являются платформы, геосинклинали и океанические плиты.

Платформы – огромные относительно неподвижные, устойчивые участки земной коры. Для платформ характерно двухъярусное строение. Нижний, более древний ярус (кристаллический фундамент) сложен осадочными породами, смятыми в складки, либо магматическими породами, подвергнутыми метаморфизму. Верхний ярус (платформенный чехол) почти целиком состоит из горизонтально залегающих осадочных горных пород.

Классическими примерами платформенных областей являются Восточно-Европейская (Русская) платформа, Западно-Сибирская, Туранская и Сибирская, занимающие огромные пространства. В мире известны также Северо-Африканская, Индийская и другие платформы.

Мощность верхнего яруса платформ достигает 1,5-2,0 км и более. Участок земной коры, где верний ярус отсутствует и кристаллический фундамент выходит непосредственно на наружную поверхность, называют щитами (Балтийский, Воронежский, Украинский и др.).

В пределах платформ тектонические движения выражаются в виде медленных вертикальныз колебательных движений земной коры. Слабо развиты или совсем отсутствуют вулканизм и сейсмические движения (землятресения). Рельеф платформ имеет тесную связь с глубинным строением земной коры и выражен главным образом в виде обширных равнин (низменностей).

Геосинклинали – наиболее подвижные, линейно вытянутые участки земной коры, обрамляющие платформы. На ранних стадиях своего развития они характеризуются интенсивными погружениями, а на заключительных – импульсивными поднятиями.

Геосинклинальные области – это Альпы, Карпаты, Крым, Кавказ, Памир, Гималаи, полоса Тихоокеанского побережья и другие горно-складчатые сооружения. Для всех этих областей характерны активные тектонические движения, высокая сейсмичность и вулканизм. В этих же областях активно развиваются мощные магматические процессы с образованием эффузивных лавовых покровов и потоков и интрузивных тел (штоков и др.). В Северной Евразии наиболее подвижным и сейсмически активным регионом является Курило-Камчатская зона.

Океанические плиты – крупнейшие тектонические структуры земной коры, составляют основу дна океанов. В отличие от континентов океанические плиты изучены недостаточно, что связано со значительными трудностями получения геологической информации об их строении и составе вещества.

Различают следующие главнейшие тектонические движения земной коры:

- колебательные;

- складчатые;

- разрывные.

Колебательные тектонические движения проявляются в виде медленных неравномерных поднятий и опусканий отдельных участков земной коры. Колебательный характер их движения заключается в изменении его знака: поднятие в одни геологические эпохи сменяется опусканием в другие. Тектонические движения этого типа происходят непрерывно и повсеместно. На земной поверхности нет тектонически неподвижных участков земной коры – одни поднимаются, другие опускаются.

По времени их проявления колебательные движения подразделяются на современные (последние 5-7 тыс.лет), новейшие (неоген и четвертичный период) и движения прошлых геологических периодов.

Современные колебательные движения изучают на специальных полигонах с помощью повторных геодезических наблюдений методом высокоточного нивелирования. О более древних колебательных движениях судят по чередованию морских и континентальных отложений и ряду других признаков.

Скорость поднятия или опускания отдельных участков земной коры варьируется в широких пределах и может достигать 10-20 мм в год и более. Например, южное побережье Северного моря в Голландии опускается на 5-7 мм в год. От вторжения моря на сушу (трансгрессии) Голландию спасают дамбы высотой до 15 м, которые постоянно надстраиваются. В тоже время на близко расположенных участках в Северной Швеции в прибрежной зоне отмечаются современные поднятия земной коры до 10-12 мм в год. В этих районах часть портовых сооружений оказалась удаленной от моря вследствие его отступания от берегов (регресии).

Геодезические наблюдения, проведенные в районах Черного, Каспийского и Азовского морей, показали, что Прикаспийская низменность, восточный берег Ахзовского моря, впдины в устьях рек Терека и Кубани, северо-западный берег Черного моря опускаются со скоростью 2-4 мм в год. Как следствие, в этих районах отмечается трансгрессия, т.е. наступление моря на сушу. Наоборот, медленные поднятия испытывают участки суши на побережье Балтийского моря, а также, например, районы Курска, горняе районы Алтая, Саян, Новая земля и др. Другие участки продолжают погружаться Москва (3,7 мм/год), Санкт-Петербург (3,6 мм/год) и т.д.

Наибольшая интенсивность колебательных движений земной коры отмечается в геосинклинальных областях, а наименьшая в платформенных областях.

Геологическое значение колебательных движений огромно. Они определяют условия осадконакопления, положение границ между сушей и морем, обмеление или усиление размывающей деятельности рек. Колебательные движения, происходившие в новейшее время (неоген-четвертичный период), оказали решающее влияние на формирование современного рельефа Земли.

Колебательные (современные) движения необходимо учитывать при строительстве гидротехнических сооружений типа водохранилищ, плотин, судоходных каналов, городов у моря и т.д.

Складчатые тектонические движения. В геосинклинальных областях тектонические движения могут существенно нарушать первоначальную форму залегания горных пород. Нарушение форм первичного залегания горных пород, вызванные тектоническим движением земной коры, называют дислокациями. Их подразделяют на складчаты и разрывные.

Складчатые дислокации могут быть в форме вытянутых линейных складок или выражаться в общем наклоне слоев в одну сторону.

Антиклиналь – вытянутая линейная складка, обращенная выпуклостью вверх. В ядре (центре) антиклинали залегают более древние слои, на крыльях складки более молодые.

Синклиналь – складка, аналогичная антиклинали, но направленная выпуклостью вниз. В ядре синклинали залегают более молодые слои, чем на крыльях.

Моноклиналь – представляет собой толщу слоев горных пород, наклоненных в одну сторону под одинаковым углом.

Флексура – коленообразная складка со ступенчатым изгибом слоев.

Ориентировку слоев при моноклинальном залегании характеризуют с помощью линии простирания, линии падения и угла падения.

Разрывные тектонические движения. Приводят к нарушению сплошности горных пород и разрыву их по какой-либо поверхности. Разрывы в горных породах возникают в тех случаях, когда напряжения в земной коре превышают предел прочности горных пород.

К разрывным дислокациям относят сбросы, взбросы, надвиги, сдвиги, грабены и горсты.

Сброс – образуется в результате опускания одной части толщи относительно другой.

Взброс - образуется при поднятии одной части толщи относительно другой.

Надвиг – смещение блоков горных пород по наклонной поверхности разлома.

Сдвиг – смещение блоков горных пород в горизонтальном направлении.

Грабен – участок земной коры, ограниченный тектоническими разрывами (сбросами) и опущенный по ним относительно смежных участков.

Примером крупных грабенов могут служить впадина озера Байкал и долина р.Рейн.

Горст – приподнятый участок земной коры, ограниченный сбросами или взбросами.

Разрывные тектонические движения часто сопровождаются образованием различных тектонических трещин, для которых характерны захват ими мощных толщ горных пород, выдержанность ориентировки, наличие следов смещений и другие признаки.

Особым типом разрывных тектонических нарушений являются глубинные разломы, разделяющие земную кору на отдельные крупные блоки. Глубинные разломы имеют протяженность сотни и тысячи километров и глубину более 300 км. К зонам их развития приурочены современные интенсивные землетрясения и активная вулканическая деятельность (например разломы Курило-Камчатской зоны).

Тектонические движения, вызывающие формирование складок и разрывов, называются горообразовательными.

Значение тектонических условий для строительства. Тектонические особенности района весьма существенно влияют на выбор места расположения различных зданий и сооружений, их компоновку, условия возведения и эксплуатацию строительных объектов.

Благоприятны для строительства участки с горизонтальным ненарушенным залеганием слоев. Наличие дислокаций и развитой системы тектонических трещин существенно ухудшает инженерно-геологические условия района строительства. В частности, при строительном освоении территории, с активной тектонической деятельностью необходимо учитывать интенсивную трещиноватость и раздробленность горных пород, которая снижает их прочность и устойчивость, резкое повышение сейсмической активности в местах развития разрывных дислокаций и другие особенности.

Интенсивность колебательных движений земной коры обязательно учитывают при строительстве защитных дамб, а также линейных сооружений значительной протяженности (каналов, железных дорог и пр.).
















Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы сейсмографы. Одни сейсмографы чувствительны к горизонтальным движениям, другие к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).


В эпоху поздней Хань императорский астроном Чжан Хэн (78-139) изобрел первый в мире сейсмоскоп, который отмечал слабые землетрясения на больших расстояниях. Это устройство не сохранилось до наших дней. О его конструкции можно судить по неполному описанию в Хоу Хань шу (История Второй Хань). Современная реконструкция сейсмографа, изготовленного Чжан Хэном в 132 г. н.э




Змеи, особенно ядовитые, в предчувствии приближающегося землетрясения уже за несколько дней покидают обжитые норы. То же самое делают ящерицы и муравьи. Некоторые ученые склонны объяснять этот неоспоримый факт высокой чувствительностью кожи к температурному изменению почвы.






По поведению планктона можно предсказывать землетрясения, считает группа ученых из Индии и США. Они выяснили, что перед сильными подводными толчками мельчайшие растения океана активно зеленеют. Как сообщает BBC, такой вывод подтверждают спутниковые снимки, сделанные незадолго до четырех недавних катаклизмов - в индийском штате Гуджарат, на Андаманских островах, в Алжире и в Иране.


1)§ 18, читать, пересказывать 2) с. 49 ответы на вопросы устно 3)На к/к отметить штриховкой районы, для которых характерны землетрясения. 4)Рабочая тетрадь (стр).

Для земной коры свойственны тектонические процессы, которые обусловливают ее постоянную перестройку и развитие. Движущей силой этих процессов является, в основном, внутренняя энергия Земли. Тектонические процессы вызывают движения в земной коре - тектонические движения.

Тектонические процессы в земной коре изучает геологическая наука геотектоника. Изложенное далее относится согласно современным представлениям глобальной геотектоники к внутриплитной тектонике, само же движение материков и земной коры под океанами обусловлено перемещением литосферных плит, таких, например, как

Тихоокеанская или Евразийская. Формирование геосинклинальных зон приурочено к зонам субдукции (подныривания) или обдукции (наползания) одной такой литосферной плиты на другую как в случае с Японскими островами. В связи с тем, что строительство пока сосредоточено преимущественно на суше, т. е. на континетах, расположенных на литосферных плитах, то представления внутриплитной тектоники для инженерной геологии носят весьма важный характер.

Тектонические движения. В земной коре они проявляются по-разному, как во времени, так и в пространстве. Во времени движения проявляются в виде медленных (эпейрогенических) и быстрых (оро-генических - горообразовательных) движений. По положению в пространстве (по преобладающему направлению) тектонические движения бывают радиальные (по радиусам Земли), действующие вертикально вверх и вниз, и тангенциальные, направленные горизонтально. Различный характер движений связан со строением земной коры по горизонтали, т. е. с ее основными структурами.

Основные структуры земной коры. Строение земной коры по горизонтали очень сложное, но для понимания тектонических движений его можно упростить, если принять за основу положение, что земная кора состоит из двух основных структур - платформ и геосинклиналей.

Платформы являются наиболее крупными структурами земной коры. Это континенты и впадины океанов. Это устойчивые, жесткие, малоподвижные структуры. Им свойственны выровненные формы рельефа земной поверхности (типа равнины). Для платформ типичны спокойные, медленные движения вертикального характера (эпей-рогенические).

Геосинклинали - это участки земной коры, являющиеся подвижными сочленениями платформ. Для них характерны разнообразные тектонические движения, среди которых преобладают сильные, резкие, непредсказуемые по времени и в пространстве, с ними связаны вулканизм и сейсмические явления. В геосинклиналях возникают разломы земной коры, происходит интенсивное накопление мощных толщ осадочных пород. Тектонические силы выводят слои осадочных пород из горизонтального положения и придают им форму складок. К геосинклиналям относятся: 1) широтный пояс, который охватывает Средиземноморье, Кавказ, Переднюю Азию и до Индонезии; в состав пояса входят Алтай, Саяны, Прибайкалье, 2) кольцевой Тихоокеанский пояс - Северная и Южная Америки, Япония, Сахалин, Курильские острова, Камчатка, юг Приморья.

Движения платформ. Этим территориям свойственны медленные вертикальные колебательные движения (эпейрогенические). Они выражаются в том, что отдельные участки земной коры на протяжении многих столетий испытывают поднятие, в то время как другие территории опускаются. Движения медленные, длительные по времени, но от них многое зависит: положение границ между сушей и морями, обмеление или усиление размывающей деятельности рек, формирование рельефа Земли, повышение уровней водохранилищ, движение воды в самотечных каналах, положение прибрежных территорий по отношению к уровню моря и многое другое.

Интересно отметить, что платформы (материки) имеют тенденцию к горизонтальным подвижкам. Так, на основе данных, полученных с искусственных спутников Земли, установлено, что только за пять лет Австралия «подплыла» к Японским островам на 38 см (76 мм в год), Европа - на 19 см, Северная Америка - на 11, Гавайские острова - на 39 см (78 мм в год). Ученые подсчитали, что если такой темп движения сохранится, то ближайший к Японии сосед - Гавайские острова сольются с Японскими островами через 100 млн лет.

Для инженерной геологии особый интерес представляют современные вертикальные колебательные движения платформ, вызывающие изменения высот поверхности земли в том или ином районе. Оценку скорости их проявления осуществляют высокоточными геодезическими работами. Годичная скорость современных колебательных движений платформ чаще всего равна нескольким миллиметрам, но имеются участки, где скорость равна 1-2 см/год и даже больше. Цифры небольшие, но за длительное время они вырастают в значительные величины. Так, например, Скандинавия только за последние 50 лет поднялась на 19 см. Много веков интенсивно опускаются районы Нидерландов (40-60 мм/год).

Колебательные движения прослеживаются также в России. Среднерусская возвышенность поднимается на 1,5-2 см/год, район Курска - до 3,6 мм/год. Ряд территорий испытывает опускание поверхности Земли: Москва (3,7 мм/год), Санкт-Петербург (3,6 мм/год), Восточное Предкавказье (5-7 мм/год). Имеются территории, где подъем поверхности Земли происходит более интенсивно. Так, во второй половине XX в. на 14-15 см/год стал подниматься уровень Каспийского моря, что привело к затоплению многих прибрежных участков Астраханской области. К 2000 г. общий подъем уровня моря превысил 2 м. По всей видимости, это связано с тектоническими движениями земной коры в районе Каспийского моря.

Современные колебания поверхности Земли учитывают при строительстве различных объектов: крупных водохранилищ, высоких плотин, мелиоративных систем, но особенно при сооружении аэродромов и космодромов.

Рис. 4.

Вулканизм. Вулканы - это горы или возвышения конусовидной формы, которые созданы выходящей на поверхность Земли магмой (рис. 4). Магма выходит из вулкана, растекается по его склонам и по окружающей местности. В этих случаях магму называют лавой.

Вулканы разделяют на действующие, периодически извергающие магму, и потухшие, которые в настоящее время не действуют. Но история знает случаи, когда потухшие вулканы возобновляли свое действие, так было с вулканом Везувием (Италия), неожиданное извержение которого произошло в 79 г. н. э., что привело к гибели трех городов. Потухший ныне вулкан Казбек (Кавказ) еще действовал в начале четвертичного периода, и его лавы во многих местах залегают на Военно-Грузинской автодороге.

Вулканы приурочены к подвижным участкам земной коры, т. е. к геосинклиналям. На сегодня известно более 850 действующих вулканов, из них 76 располагаются на дне океанов. На территории России вулканы находятся на Камчатке (28 действующих) и на Курильских островах (10 действующих). Наиболее крупными являются вулканы Ключевская Сопка (высота конуса горы 4850 м), Авачинский, Ка-рымский, Безымянный.

Извержения вулканов происходят по-разному - в виде взрывов и бурного излияния лавы или спокойно, без взрывов, когда лава медленно растекается по округе вулканического конуса. Вулканы Камчатки и Курильских островов относятся к наиболее опасным, т. е. взрывным. Извержение таких вулканов начинается с подземных толчков (землетрясений, иногда силой до 5 баллов), далее следуют взрывы с выбросом лавы, газов и водяных паров.

Лавы образуют потоки, ширина и длина которых зависит от уклонов конусов горы и окружающего рельефа местности. Известен случай (Исландия), когда длина лавового потока достигла 80 км при его мощности 10-50 м. Скорость потоков различная, зависит от типа магмы и колеблется от 5-7 до 30 км/ч. При взрыве вулканов из их жерла одновременно с лавой вылетает твердый материал в виде обломков разных размеров: 1) глыбы (бомбы) весом несколько тонн; 2) куски, которые называют лапилли (1-3 см в диаметре) и 3) частицы в виде песка и пыли. Пылеватые частицы называют вулканическим пеплом. Все эти обломки разлетаются на различные расстояния и создают многометровые наносы. Наиболее далеко уносится вулканический пепел (сотни и даже тысячи километров).

Одновременно с лавой и камнями вулканы выбрасывают газы. В большинстве случаев газы ядовиты. Не менее опасны водяные пары, которые быстро конденсируются, что приводит к образованию на склонах и у подножий конусов грандиозных грязевых потоков (селей). Они обладают большой разрушительной силой и создают многометровые наносы.

Вышесказанное подтверждает, что автодороги и, особенно, аэродромы следует строить на определенном отдалении от действующих вулканов.

Расстояние обычно определяют исходя из многолетнего опыта строительства в каждом конкретном районе и с учетом особенностей извержений того или иного вулкана.

Интересен один из случаев, когда люди пытались бороться со стихией. Извержение вулкана Этна (Сицилия) продолжалось 130 дней. В потоки лавы было заброшено 300 т цементных блоков, связанных тяжелыми стальными цепями. Это изменило направление главного потока.

Сейсмические явления

Сейсмические (от греч. Бе^тоз - сотрясение) явления - упругие колебания земной коры, происходящие вследствие того, что в ее недрах (или в верхней мантии) возникают напряжения, которые в конечном итоге под действием тектонических сил находят выход в деформации сжатых пород, в образовании разрывов, что проявляется в виде толчков. Таким образом, сейсмические толчки - явление чисто механическое. При толчках возникают упругие волны, которые распространяются во все стороны от мест разрывов. Эти волны называются сейсмическими.

Если большинство пород, слагающих земную кору, рассматривать как упругую среду, то сейсмические волны передают деформации, возникающие в горных породах, на значительные расстояния и с большой скоростью. Эти волны по виду деформаций делятся на продольные и поперечные.

Продольные волны (или волны сжатия - растяжения) заставляют колебаться частицы пород в направлении, совпадающем с движением волны. Поперечные волны (или «волны сдвига») распространяются в направлении, перпендикулярном направлению движения продольных волн. Скорость и энергия этих волн в 1,7 раза меньше, чем у продольных.

При встрече подземных упругих волн с поверхностью земли возникает новый вид колебательного движения - так называемые поверхностные волны. Это обычные волны тяжести, которые приводят к деформациям поверхности земли (рис. 5).

Место, где возникает сейсмический толчок, лежащее в глубине земной коры, носит название гипоцентра. Глубина залегания гипоцентра бывает 1 - 10 км - поверхностные сейсмические явления;


Рис. 5. Схема распространения сейсмических волн на поверхности земли (Г) и

в земной коре (2):

Г - гипоцентр; Э - эпицентр. Сейсмические волны: / - продольные; 2- поперечные; 3- поверхностные


Рис. 6. Последствия землетрясений: а - в городском квартале; б - на горном плато в Иране

30-50 км - коровые и 100-700 км - глубокие. Наиболее разрушительными являются поверхностные сейсмические явления.

Проекция гипоцентра на дневную поверхность называется эпицентром. Сила удара продольной волны в эпицентре максимальна.

Анализ случаев сейсмических явлений показал, что в сейсмически активных районах Земли до 70 % гипоцентров располагается до глубины 60 км.

Продолжительность действия сейсмических волн обычно ограничивается несколькими секундами, иногда минутами, но бывают случаи и более длительного воздействия. Так, например, в 1923 г. на Камчатке сейсмическое явление продолжалось с февраля по апрель (195 толчков).

Сотрясения земной коры сейсмического происхождения происходят очень часто и как стихийное бедствие после ураганов и тайфунов занимают второе место по величине материального ущерба, наносимого человечеству (рис. 6). Ежегодно на земном шаре регистрируется около 100 тыс. сейсмических явлений, из которых около 100

Р и с 6. Продолжение

приводят к разрушениям, а в ряде случаев к катастрофам, как, например, в Токио (1923 г.), Сан-Франциско (1906 г.), в Чили и на острове Сицилия (1968 г.). Исключительное по силе сейсмическое явление произошло в Монголии (1956 г.) Один из горных пиков раскололся пополам, часть горы высотой 400 м обрушилась в ущелье, образовалась сбросовая впадина длиной до 18 км и шириной около 800 м, на

  • 5 м и более
  • 0,5...1,0 м

Рис. 7.

поверхности земли появились трещины шириной до 20 м, главная из которых протянулась на 250 км.

Сейсмические явления возникают как на суше, так и на дне океанов. В связи с этим среди них различают моретрясения и землетрясения.

Моретрясения возникают в океанических впадинах Тихого, реже Индийского и Атлантического океанов. Быстрое поднятие и опускание дна порождает на его поверхности пологие волны (цунами) с расстоянием между гребнями в несколько километров и высотой в многие метры (рис. 7). При подходе к берегам вместе с подъемом дна высота волны увеличивается до 15-20 м и более. Уникальный случай произошел в 1964 г. на Аляске, где высота волны достигла 66 м при скорости движения 585 км/ч.

Цунами передвигаются на расстояния в сотни и даже тысячи километров со скоростью 500-800 км/ч и более.

В России цунами бывают в Тихом океане у берегов Камчатки и Курильских островов. Одно из таких цунами было в 1952 г. Перед приходом волны море отступило на 500 м, а через 40 мин волна со страшной силой ударила в берег, разрушила все постройки и дороги, покрыла прибрежную территорию песком, илом и обломками пород. Через некоторое время, вслед за первой, пришла вторая волна высотой в 10-15 м, которая довершила разгром берега ниже десятиметровой отметки.

Цунами возникают реже землетрясений. Так, за 200 последних лет на Камчатке и Курилах их было всего 14, из которых четыре были катастрофическими. Последнее глобальное катастрофическое цунами произошло в Индийском океане в конце декабря 2004 г., когда по общим оценкам погибло более 200 тыс. человек в Индонезии и странах Индокитая.

Строительство автодорог и аэродромов на берегах, куда может подойти цунами, требует выполнения защитных мероприятий. В России, как и в сопредельных странах Тихоокеанского региона, действует служба наблюдений, которая своевременно оповещает о приближении цунами. Это позволяет укрыть людей от опасности. Автомобильные дороги размещают на высокой части рельефа, при необходимости прикрывают берега железобетонными молами, ставят волноотбойные стены, создают защитные земляные насыпи.

Землетрясения - это сейсмические явления на суше. В России землетрясения бывают на Кавказе, Алтае, Саянах, Прибайкалье, Сахалине, Курильских островах и Камчатке. Все эти территории находятся в геосинклинальном поясе. До настоящего времени только эти районы считались сейсмическими, но уже во второй половине XX в. стало очевидным, что землетрясения при определенных условиях могут возникать и на платформах, хотя они в отличие от тектонических землетрясений имеют другое происхождение.

По происхождению для суши предлагается различать четыре типа землетрясений:

  • 1. Тектонические, вызванные тектоническими силами земной коры и составляющие подавляющее большинство землетрясений. Они характеризуются широкими площадями и большой силой или, иначе говоря, высокой балльностью.
  • 2. Вулканические, связанные с извержением вулканов и имеющие локальное распространение, но иногда большой силы.
  • 3. Денудационные (обвальные и провальные), порождаемые падением больших массивов горных пород со склонов или падением в провалы в результате карстообразования. Такие землетрясения имеют также локальный характер и сравнительно небольшую силу.
  • 4. Техногенные, связанные с производственной деятельностью человека.

На сегодня вполне очевидно, что производственная деятельность человека может влиять на сейсмическую обстановку даже на глобальном уровне. Это так называемые наведенные землетрясения. Они могут быть вызваны заполнением обширных водохранилищ, откачкой нефти, газа, межпластовых подземных вод, ядерными взрывами, массированными военными бомбардировками и т. д. Вышеприведенный перечень показывает, что человек может оказывать определенное воздействие на геологическое пространство и своей деятельностью


Рис. 8.

способен создавать побудительные причины негативных тектонических событий, известных как природно-техногенные катастрофы.

Оценка силы землетрясений. Человечество уже многие столетия ведет наблюдение и регистрацию землетрясений на земном шаре. Теперь широко используется специальная аппаратура, в частности, сейсмографы, которые позволяют качественно определять, где произошло землетрясение, и оценивать его силу. Приборы автоматически регистрируют колебания Земли и вычерчивают сейсмограмму (рис. 8).

В настоящее время выявлена зависимость землетрясений от строения, состава и состояния земной коры. Это выглядит следующим образом.

  • 1. В плотных породах скорость распространения сейсмического толчка больше, нежели в рыхлых связных и несвязных осадочных породах, однако сила землетрясения (его балльность), наоборот, возрастает в последних.
  • 2. Обводненность, водонасыщение, высокое положение уровня грунтовых вод увеличивают интенсивность землетрясений. Территории, сложенные плывунами, илами, заболоченными и обводненными осадочными породами, являются районами повышенной интенсивности землетрясений.
  • 3. Геологические структуры и тектонические нарушения, расположенные поперек движения сейсмических волн, могут уменьшать интенсивность землетрясений.
  • 4. Отдельно стоящие и резко очерченные формы рельефа поверхности земли (холмы, крутые склоны гор и оврагов) могут повышать сейсмичность территории.

Каждое землетрясение обязательно сопровождается рядом физических явлений. Это звуки, световые эффекты, волны на твердых средах, обвалы, оползни и оплывы, трещины и провалы в земле, разрушения домов, дорог и мостов. Очень характерны звуки в виде «подземного гула».

Интенсивность проявления землетрясений на поверхности земли (сотрясаемость поверхности) оценивается по сейсмическим шкалам. В России для оценки силы землетрясений используется шкала, состоящая из 12 баллов (табл. 1). Каждому баллу отвечает определенная величина сейсмического ускорения - а, мм/с 2 , вычисляемая по формуле

а = 4п 2 А/Т 2 ,

где Л - амплитуда колебаний, мм; Т - период колебаний сейсмической волны, с. По величине а определяют коэффициент сейсмичности, который необходим для оценки прочности и устойчивости сооружений:

Кс = а/&

где # - ускорение силы тяжести, мм/с 2 .

Таблица 1

Сейсмическая 12-балльная шкала

Кроме 12-балльной шкалы, которая используется во многих странах мира, очень известной является шкала Рихтера (шкала магнитуд - М). Магнитуды - это расчетные величины. Максимальные значения магнитуд М- 8,5-9.

Строительство автодорог и аэродромов. Важное место занимает сейсмическое районирование территорий и прогноз проявления возможных землетрясений. Сейсмическое районирование выражается в составлении сейсмических карт, по которым можно определять значение максимального балла для данной территории (рис. 9). Эго трудная задача. В последние годы карты периодически обновляют, так как сейсмичность земной коры в ряде районов возрастает. В большинстве случаев на новых картах значения баллов повышают. Стихия коварна. Это можно видеть на следующем примере. В 1976 г. землетрясение

Р и с. 9. Карта сейсмического районирования. Линии сейсмических баллов:

I - от 1 до 5; II - от 5 до 7; III - до 8

в Узбекистане (8 баллов) разрушило поселок Газли. Поселок отстроили, но в 1984 г. землетрясение повторилось, но уже силой 9 баллов и он был снова разрушен.

В последние годы в России создана Карта общего сейсмического районирования территории страны (имеется в виду Карта тектонических землетрясений). Из этой карты видно, что если раньше особо опасными по сейсмике считались Сахалин, Камчатка, Курилы, то теперь к этим территориям относят Восточную Сибирь и примыкающие к ней Прибайкалье и Забайкалье, включая горный Алтай. Для этих территорий возможны землетрясения в 9 баллов (по шкале Рихтера - Л/до8,5). Впервые на Карте появились зоны 10-балльных землетрясений (Сахалин, Камчатка, Курилы). Раньше таких районов в России не было. Территория Северного Кавказа с 6-7-балльной оценки переведена на 9-балльную.

Прогноз землетрясений. Предотвратить землетрясения нельзя. Прогноз требует ответа на три вопроса - где, какой силы и когда произойдет землетрясение. Наука работает в этом направлении, но точные достоверные ответы пока отсутствуют.

Строительство при прогнозе землетрясений в 6 баллов и больше осуществляется согласно Строительным нормам и правилам (СНиП). Величину балла определяют по Карте и корректируют в зависимости от рельефа, геологии и гидрогеологии данной местности. Корректировку баллов осуществляют только в ббльшую сторону.

В сейсмических районах автодороги и аэродромы рекомендуется строить вдали от крутых склонов гор и обрывов, откосы выемок и земляного полотна свыше 4 м делают более пологими, при 6 баллах и более высота насыпей и глубина выемок не должны превышать 15-20 м, водонасыщенные грунты под насыпями следует осушать дренажами, особое внимание уделяется повышению устойчивости мостов, которые опасно строить на тектонических разломах.