Химические свойства гетероциклических соединений. Применение гетероциклических соединений. II. Ароматические свойства

ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Гетероциклические соединения - это углеродные циклические соединения, в которых один или несколько атомов кольцевой системы являются отличными от углерода неметаллами (кислородом, азотом или серой). Как и карбоциклические соединения, гетероциклы можно подразделить на имеющие ароматический характер и продукты восстановления таких ароматических гетероциклов, которые аналогично алициклическим соединениям обнаруживают свойства и реакции, сходные со свойствами и реакциями алифатических соединений. Гетероциклы удобно классифицировать а) по числу атомов в кольце, б) по числу и природе гетероатомов. Ненасыщенные гетероциклы, обнаруживающие максимально ароматический характер, берутся в качестве ключевых представителей каждой циклической системы.
А. ПЯТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом

2. Два гетероатома

3. Три и более гетероатомов


Резонанс (см. "Резонанс" в начале разд. IV-3) пятичленных колец включает значительный вклад следующих структур:


Приобретенная таким путем энергия резонанса делает эти системы весьма устойчивыми к реакциям присоединения по двойным связям, и они вступают во многие типичные реакции ароматического замещения.
Б. ШЕСТИЧЛЕННЫЕ ГЕТЕРОЦИКЛЫ
1. Один гетероатом


2. Два гетероатома


В. КОНДЕНСИРОВАННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СИСТЕМЫ
Важные ряды соединений в каждом классе получают конденсацией гетероциклического кольца с одним или несколькими бензольными, например:


Гетероциклические системы широко распространены в природе, особенно в алкалоидах, растительных пигментах (антоцианины, флавоны), порфиринах (гемин, хлорофилл) и витаминах группы В (тиамин, рибофлавин, фолевая кислота). Ниже рассмотрены подробнее некоторые гетероциклические соединения.
Г. ПРАКТИЧЕСКИ ВАЖНЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Фуран, летучая жидкость, устойчивая к действию щелочей, но чувствительная к кислотам

Его легче всего получить декарбоксилированием пирослизевой кислоты (2,5-дикарбоксифурана), продукта пиролиза слизевой (тетрагидроксиадипиновой) кислоты. Наиболее общим методом получения фурановых производных является дегидратация g-дикетонов над хлоридом цинка:


Сухая перегонка пентоз HOCH2(CHOH)3CHO дает фурфурол (a-формилфуран). Фурфурол проявляет многие свойства ароматического альдегида. Так, подобно бензальдегиду, он вступает в реакцию Канниццаро и в бензоиновую конденсацию. Кумарон (бензофуран) (см. выше "Конденсированные гетероциклические системы") вместе с его гомологами содержится в каменноугольной смоле. Он имеет некоторую ценность для получения кумароновых смол, которые образуются при его обработке серной кислотой. Производные кумарона могут быть получены разложением дибромкумаринов щелочью:


или действием щелочи на о-гидрокси-b-хлорстирол, о-HO-C6H4-CH=CH-Cl. Кумароновая структура встречается во многих природных растительных веществах, которые являются мощными инсектицидами и ядами для рыб, например:


Тиофен (формулу см. выше, т. кип. 84° С) содержится в каменноугольной смоле и сопровождает бензол при ее фракционировании. Его можно удалить из бензола осаждением комплекса с ацетатом ртути, из которого при обработке соляной кислотой можно регенерировать тиофен. Серная кислота также удаляет его из бензола путем образования a-тиофенсульфокислоты. Производные тиофена можно получить следующими способами: 1) перегонкой янтарных кислот или g-кетокислот с P2S3:


2) перегонкой g-дикетонов с P2S5:


Тиофен и его гомологи очень устойчивы к окислению или восстановлению кольца. Реакции ароматического замещения (сульфирование, нитрование и т.д.) идут в a-положение. Тионафтен (бензотиофен) получают окислением о-меркаптокоричной кислоты красной кровяной солью (феррицианидом калия). Его 3-гидроксипроизводное, имеющее большое промышленное значение в химии красителей, получают действием уксусного ангидрида на о-карбоксифенилтиогликолевую кислоту о-HOOCC6H4-S-CH2COOH. Оно легко сочетается с солями диазония в положение 2, давая азокрасители, и конденсируется с альдегидами и кетонами, образуя тиоиндигоидные красители.


Пиррол (формулу см. выше), бесцветная, приятно пахнущая жидкость, содержащаяся в каменноугольной смоле, легко полимеризуется на воздухе. У него практически нет свойств основания, он устойчив к окислителям и щелочам, но легко полимеризуется в форме компонентов белков (пролин, триптофан), алкалоидов (никотин, атропин) и порфиринов (гемин, хлорофилл). Производные пиррола можно получить: 1) перегонкой сукцинимидов

С цинковой пылью; 2) нагреванием g-дикетонов с аммиаком; 3) нагреванием слизевой кислоты (см. выше) с аммиаком или первичными аминами; 4) одновременным восстановлением эквивалентных количеств b-кетоэфира и изонитрозокетона


Пирролы вступают в типичные реакции ароматического замещения в a-положение. Обработка реактивов Гриньяра превращает их в a-пиррилмагнийгалогениды


которые вступают в типичные реакции Гриньяра. Расширения кольца с образованием пиридиновой системы можно достичь: 1) обработкой хлороформом и этилатом натрия


2) пропусканием a-алкилпирролов через трубку, нагретую до красного каления


Восстановление путем каталитического гидрирования под давлением, хотя и медленно, ведет к пирролидинам:

Индол (бензопиррол; формулу см. в табл. 4, разд. III) содержится в каменноугольной смоле и эфирных маслах цветов апельсина и жасмина. Производные индола получают: 1) из о-аминофенилацетальдегида о-H2NC6H4CH2CH=O отщеплением воды; 2) нагреванием гидрохлоридов о-оў-диаминостильбенов:

3) из фенилгидразонов нагреванием с галогенидами меди или цинка


По своим реакциям индол похож на пиррол с тем исключением, что в реакциях замещения участвует b-положение. Заслуживают упоминания следующие производные индола: 1) скатол (b-метилиндол), вещество с неприятным запахом, присутствующее в экскрементах; 2) триптофан (b-(b-индолил)аланин), аминокислота, встречающаяся во многих белках; 3) гетероауксин (b-индолилуксусная кислота или 3-индолилуксусная кислота), фактор роста растений; 4) индиго


Оксазол (формулу см. выше) известен в чистом виде. Его производные можно получить конденсацией амидов с a-галогенокетонами:


или действием пентахлорида фосфора на ациламинокетоны:


Оксазолы - слабые основания, чувствительные к расщеплению сильными кислотами. Изоксазол

И его производные представляют меньший интерес. Они могут быть получены дегидратацией монооксимов b-дикетонов. Тиазол и его гомологи - слабые основания, в которых кольцо обнаруживает высокую устойчивость к окислению, восстановлению и действию сильных кислот

Тиазолы можно получить из a-ациламинокетонов действием P2S5, а также реакцией тиоамидов с a-галогенокетонами:


Сильные кислоты превращают тиазолы в соли (C3H3SN + HX (r) C3H3SNH+X-), которые устойчивы, но заметно гидролизуются в водных растворах. С алкилгалогенидами образуются N-замещенные соли тиазолия, содержащие четвертичный азот:

Наиболее важным природным соединением, содержащим тиазольное кольцо, является витамин B1 (тиамин). Ценный химиотерапевтический препарат сульфатиазол получают действием N-ацетилсульфанилхлорида на 2-аминотиазол с последующим удалением ацетильной группы гидролизом:


Имидазол (глиоксалин) и его гомологи

Получают из альдегидов, a-дикетонов и аммиака:


Их также можно приготовить взаимодействием амидинов

С a-галогенокетонами. Имидазолы - более сильные основания, чем пирролы. С алкилгалогенидами они дают N-алкилимидазолы. Эти вещества при пропускании через трубку при температуре красного каления изомеризуются в 2-алкилимидазолы; при взаимодействии со второй молекулой алкилгалогенида они превращаются в соли имидазолия, содержащие четвертичный азот

Действие реактивов Гриньяра RMgX на имидазолы ведет к соответствующим 2-имидазолилмагнийгалогенидам C3H3N2MgX, которые вступают в реакции, обычные для реактивов Гриньяра. Имидазольное кольцо встречается во многих природных соединениях, в том числе в аминокислоте гистидине (см. разд. IV-1.Б.4, "Аминокислоты"), алкалоидах группы пилокарпина и пуриновых основаниях. Пиразол и его производные - только синтетические соединения; кольцевая система пиразола

Не встречается в природе. Пиразолы получают взаимодействием гидразина с b-дикетонами:


или действием диазоалканов на ацетилен:


Реакция фенилгидразина с a,b-ненасыщенными кетонами или эфирами дает дигидропиразолы, или пиразолины:


Эти соединения легко окисляются в соответствующие пиразолы. Пиразольное кольцо очень устойчиво к окислению, восстановлению и действию сильных кислот. Пиразолиниевые соли, получаемые действием сильных кислот на пиразолины, нестойки и разлагаются в вакууме. Наиболее важный класс пиразолов - пиразолоны


получаемые действием гидразина и его производных на b-кетоэфиры, например,


Пиразолоны ведут себя как смесь трех таутомерных (т.е. находящихся в равновесии) форм, например:


1-Фенил-3-метилпиразол-5 является важным веществом. Окисление красной кровяной солью (феррицианидом калия) превращает его в индигоидный краситель пиразоловый голубой:


Метилирование (CH3I при 100° С) превращает его в жаропонижающий препарат антипирин (1-фенил-2,3-диметилпиразолон), 4-N-диметиламинопроизводное которого представляет собой аналогичное лекарственное средство амидопирин (пирамидон). Кольцевые системы с тремя и более гетероатомами не представляют практического интереса. Все они устойчивы к окислению, восстановлению и действию сильных кислот. Фуразаны получают дегидратацией диоксимов a-дикетонов. 1,2,3-Триазолы и тетразолы также относятся к этой группе соединений.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

    - (гетероциклы) органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее… … Википедия

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (т. н. гетероатомы). Природные гетероциклические соединения, напр., хлорофилл, гем,… … Большой Энциклопедический словарь

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - см. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ новые гербициды, из которых перспективны реглон и базагран. Они могут попадать в водоемы с поверхностным стоком и со сточными водами химической промышленности. Реглон и базагран представляют собой коричневые… … Болезни рыб: Справочник

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ - ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, обширный класс органич. соединений с циклическим строением молекул, в состав цикла к рых входят не только атомы углерода, но и атомы других элементов (гетероатомы). Известны циклические соединения, в к рых роль… … Большая медицинская энциклопедия

    ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ, см. ЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ … Научно-технический энциклопедический словарь

    Органические соединения, содержащие в молекуле цикл, в состав которого наряду с атомами углерода входят атомы других элементов, чаще всего азота, кислорода, серы (так называемые гетероатомы). Природные гетероциклические соединения, например… … Энциклопедический словарь

    Орг. соединения, молекулы к рых содержат циклы, включающие наряду с атомами углерода один или неск. атомов др. элементов (гетероатомов). Наиб. значение имеют Т. е., в цикл к рых входят атомы N, О, S. К ним относятся мн, алкалоиды, витамины,… … Химическая энциклопедия

    - (см. гетеро... + циклический) органические соединения с циклическим (кольцевым) строением, в состав цикла которых входят атомы не только углерода, но и других элементов (азота, кислорода, серы и др.). Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    Гетероциклы (от гетеро… (См. Гетеро...) и греч. kýklos круг), органические вещества, содержащие цикл, в состав которого, кроме атомов углерода, входят атомы других элементов (гетероатомы), наиболее часто N, О, S, реже Р, В, Si и др.… … Большая советская энциклопедия

    - (от гетеро... и греч. kyklos круг, цикл) органич. соединения, содержащие в молекуле цикл, в состав к рого, кроме атомов углерода, входят атомы др. элементов (гетероатомы), чаще всего азота (см., напр., Пиридин), кислорода, серы, реже фосфора,… … Большой энциклопедический политехнический словарь

Книги

  • Гетероциклические соединения с тремя и более гетероатомами. Учебное пособие , Миронович Людмила Максимовна. В учебном пособии излагаются основы химии гетероциклических соединений, имеющих в своем составе три и более гетероатома. Представлены основные способы полученияоксадиазолов, тиадиазо-лов,…
ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ – один из самых многочисленных классов органических соединений (см . ОРГАНИЧЕСКАЯ ХИМИЯ), они содержат в составе углеводородного цикла они содержат один или несколько гетероатомов: O , N , S (рис. 1).

Рис. 1. ПРОСТЕЙШИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ

Классификация гетероциклических соединений. В зависимости от природы гетероатома различают кислород-, азот- и серосодержащие соединения. Существуют и соединения, в составе которых есть одновременно несколько одинаковых (рис. 2, диоксан) или различных гетероатомов (рис. 2, тиазол, оксазин). Кроме того, их делят на насыщенные соединения (рис. 1, пиперидин) и ненасыщенные, т.е. содержащие кратные связи (рис. 1, фуран, пиридин, тиофен). В зависимости от числа циклических фрагментов в молекуле различают моноядерные – моноциклические соединения (рис. 1) и полиядерные – содержащие несколько циклов, причем циклы могут быть конденсированные (содержать два общих атома, рис. 2, индол), либо соединенные простой связью (рис. 2, бипиридил). В особую группу выделяют макроциклические соединения, так называемые краун-эфиры (crown англ. – корона), содержащие свыше четырех гетероатомов и более десяти звеньев в структуре цикла (звеном называют фрагмент из двух химически связанных атомов, (рис. 2).

Рис. 2. РАЗЛИЧНЫЕ ТИПЫ БОЛЕЕ СЛОЖНЫХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ : с двумя одинаковыми (диоксан), или различными (тиазол, оксазин) гетероатомами. Биядерные соединения: с конденсированными (индол) или разделенными циклами (бипиридил). Краун-эфиры – соединения с крупными циклами (макроциклические).

Номенклатура гетероциклических соединений. Для большой группы гетероциклических соединений допускают использование тривиальных (см . ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ ) названий, сложившихся исторически (например, рис. 1), всего таких названий около 60. В остальных случаях названия (их именуют систематическими) составляют по специальным правилам ИЮПАК (Международный Союз Теоретической и Прикладной Химии), которые в этом случае своеобразны и отличаются от той системы, которая принята для большинства органических соединений иных классов. Из специально предложенных для этой цели корней и приставок формируют название, соблюдая оговоренный порядок. В его основе лежит корень, состоящий из двух слогов. Первый слог указывает на количество звеньев цикла, например, слог «ир » (две переставленные буквы из латинского корня « tri ») соответствует трехчленному циклу, слог «ет » (фрагмент латинского tet ra ) – четырехзвенный цикл, слог «ок » (часть латинского octa ) используют для восьмичленных циклов. Происхождение некоторых других слогов, обозначающих размер цикла, не всегда логически обосновано, например, для шестичленных циклов используют слог «ин », взятый из названия распространенного гетероцикла «пиридин » (рис. 1).

Второй слог укаывает, является ли гетероцикл насыщенным – слог «ан », или ненасыщенным – слог «ен » (аналогия с названиями углеводородов: этан – этен) . Перед корнем помещают приставку, обозначающую природу гетероатома: О – окса,

S – тиа, N – аза. Поскольку корень часто начинается с гласной буквы, в приставке обычно опускают последнюю букву «а». В результате насыщенный трехчленный цикл, содержащий S , называют тииран (рис. 3А): «ти -» сокращенная приставка «тио-», часть корня «ир » обозначает трехчленный цикл, а вторая часть корня «ан » соответствует насыщенному соединению. Аналогично трехчленный О-содержащий ненасыщенный цикл называют оксирен (рис. 3Б). Если в гетероцикле несколько гетероатомов, то их положение указывают с помощью числовых индексов, пронумеровав предварительно атомы в цикле, а количество таких атомов обозначают приставками ди-, три- и т.д., например, 1,3,5-триазин (рис. 3В). Если есть различные гетероатомы, их упоминают в следующем порядке: O > S > N (этот установленный порядок носит условный характер и не связан с химическими свойствами). В конце названия с помощью корня указывают размер цикла и ненасыщенность, например, 1,2,6-оксадиазин (рис. 3Д). Способ написания корней для N -содержащих циклов несколько отличается от описанного выше, что также специально оговорено, например, корень «ин » в названии 1,2,6-оксадиазин (рис. 3Д) обозначает одновременно и шестичленный и ненасыщенный цикл. Правила составления систематических названий применимы к любым гетероциклическим соединениям, в том числе и к тем, для которых есть устоявшиеся тривиальные названия, например, у бициклического соединения с тривиальным названием хинолин (рис. 3Е) систематическое название бензазин. Часто химики вместо сложной системы систематических названий используют более простую, основанную на тривиальных названиях: в молекуле «вычленяют» фрагмент тривиального названия и с помощью цифровых индексов указывают положение заместителей По такой схеме составлено название 8-оксихинолин (рис. 3Ж).

Рис. 3. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ (А-Д). Сопоставление систематического и тривиального названия (Е). Использование тривиального термина при составлении названия (Ж). В 8-оксихинолине (Ж) два атома углерода, принадлежащие одновременно двум циклам, не нумеруют,т.к. у них не может быть заместителей.

Химические свойства гетероциклических соединений. Трех- и четырехчленные гетероциклы представляют собой напряженные системы, для них характерны реакции с раскрытием цикла. Этиленоксид (при 150° С и давлении 2 мПа) гидролизуется, образуя этиленгликоль (рис. 4А). Реакция О-содержащих напряженных циклов со спиртами приводит к соединениям с ОН-группой и простой эфирной связью (целлозольвы, рис. 4Б), а при действии на них галогенводородов образуются соединения, содержащие Hal и ОН-группу (галогенгидрины, рис. 4В). N -содержащие напряженные циклы, взаимодействуя с галогеноводородами образуют галогеналкиламины (рис. 4Г).

Рис. 4. ПЯТИ- И ШЕСТИЧЛЕННЫЕ НЕНАСЫЩЕННЫЕ ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , а также их производные обладают ароматичностью , поэтому их химическое поведение напоминает свойства ароматических соединений (производных бензола) – при различных превращениях циклический фрагмент сравнительно устойчив, а атомы Н при углеродных атомах кольца, как у бензола, могут замещаться разнообразными группами (см . ХИМИЯ ОРГАНИЧЕСКАЯ ). При сульфировании (рис. 5А), нитровании (рис. 5Б), ацилировании (рис. 5В,Г) атомы Н замещаются соответствующими группами, а цикл сохраняется неизменным. Тем не менее, устойчивость циклических фрагментов в таких соединениях ниже, чем у бензольного цикла, поэтому все реакции замещения проводят в более мягких условиях.

Рис. 5. РЕАКЦИИ ЗАМЕЩЕНИЯ в гетероциклических соединениях: А – сульфирование, Б – нитрование, В, Г – ацетилирование. Подобно реакциям замещения в бензольном ядре, циклический фрагмент остается неизменным.

Для возникновения ароматической системы в циклах среднего размера (5–7-звенных) нужно 6 р -электронов (см. АРОМАТИЧНОСТЬ ). Каждая двойная связь состоит из двух связей (см . ОРБИТАЛИ ), первую образуют два

s -электрона двух соседних атомов, а вторую – образует пара р- электронов (обозначены точками внутри цикла пиридина, рис. 6А). Шестиэлектронная система в пиридине образуется за счет пяти р- электронов, принадлежащих атомам углерода (черные точки) и одного р- электрона от азота (синяя точка). В результате неподеленная электронная пара азота (красные точки) не участвует в образовании ароматической системы, поэтому такой атом азота может быть донором (дающим электроны) при образовании донорно-акцепторной связи (этим же свойством обладают и амины ). Часто такой донор называют Льюисовским основанием, поскольку он проявляет свойства, типичные для основания: образует с минеральными кислотами устойчивые соли (рис. 6А), являющиеся комплексными соединениями. Аналогично ведет себя хинолин (рис. 6Б), который можно рассматривать как производное пиридина. Наиболее ярко свойства основания проявляются у 8-оксихинолина (рис. 3Ж). Это соединение прочно связывает ионы большинства металлов, образуя две обычные химические связи атома металла с двумя атомами О, и две донорно-акцепторных связи с атомами N . Такие комплексы называют хелатными (от греч. chele – клешня) или клешневидными. Это свойство 8-оксихинолина широко используют в аналитической химии для количественного определения металлов.

Рис. 6. ОБРАЗОВАНИЕ КОМПЛЕКСНЫХ СОЛЕЙ с участием шестичленных N-содержащих гетероциклов (А, Б). Хелатные комплексы ионов металлов (В).

При переходе от шестичленных к пятичленным

N -содержащим ненасыщенным гетероциклам (пиррол, рис. 7) ситуация меняется. В этом случае неподеленная электронная пара азота (рис. 7, красные точки) вовлечена в образование шестиэлектронной ароматической системы и не может участвовать в образовании донорно-акцепторной связи, в итоге отчетливо проявляются кислотные свойства связи N - H : водород может замещаться металлом (рис. 7). Такие металлопроизводные являются удобными промежуточными соединениями для присоединения к азоту алкильных (рис. 7А) или ацетильных групп (рис. 7Б).

Пятичленный гетероцикл имидазол (рис. 7В), содержащий два атома

N , также представляет собой ароматическое соединение – в образовании цикла участвует 6 р -электронов. Интересно, что он обладает одновременно и кислотными и основными свойствами. Атом N в группировке N - H может реагировать как кислота, аналогично пирролу (рис. 7А, Б), второй атом N по свойствам напоминает такой же атом в пиридине, для него характерны реакции, показанные на рис. 6А.

Рис. 7. КИСЛОТНЫЕ СВОЙСТВА ПЯТИЧЛЕННОГО ГЕТЕРОЦИКЛА ПИРРОЛА (А,Б). Сочетание кислотных и основных свойств в имидазоле (В). Два атома

N в имидазоле и принадлежащие им электроны отмечены различающимися цветами.

Гетероциклические соединения получают с помощью различных конденсационных процессов, проходящих через стадию замыкания цикла (рис. 8А-В). Протекание таких реакций в нужном направлении стимулируется тем, что в результате образуются сравнительно стабильные гетероароматические соединения. Некоторые гетероциклические соединения получают, взяв за основу соединения сходного состава. При декарбонилировании (удалении СО) фурфурола получают фуран (рис. 8Г, фурфурол – устоявшееся тривиальное название, неточно отражающее состав, правильнее, фурфураль). Гидрирование фурана приводит к тетрагидрофурану (рис. 8Д).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

В ненасыщенных пятичленных гетероциклах один гетероатом заменяется другим без изменения циклического фрагмента (рис. 9).

Рис. 9. ВЗАИМОПРЕВРАЩЕНИЯ ПЯТИЧЛЕННЫХ ГЕТЕРОЦИКЛОВ

Многие гетероциклические соединения получают переработкой природных продуктов. Пиррол и индол (рис. 2) содержатся в каменноугольной смоле, тиофен добывают из продуктов коксования каменного угля и термического разложения горючих сланцев, фуран выделяют из продуктов сухой перегонки некоторых пород древесины. Пиридин (рис. 1) получают из каменноугольной смолы, продуктов сухой перегонки дерева и торфа. Фурфурол (рис. 8) получают гидролизом растительного сырья (кукурузных початков, овсяной и рисовой шелухи) в присутствии разбавленных минеральных кислот.

Участие гетероциклических соединений в биологических процессах. Три соединения – урацил, тимин и цитозин, которые представляют собой производные азотсодержащего гетероцикла пиримидина (рис. 10, в скобках), а также два производных гетероцикла пурина (рис. 10, в скобках) – гуанин и аденин, входят в состав нуклеиновых кислот , порядок чередования этих гетероциклов вдоль полимерных цепей ДНК и РНК определяет всю наследственную информацию живого организма и способ сборки белковых молекул.

Рис.10. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ , входящие в состав нуклеиновых кислот

Некоторые аминокислоты (рис. 11), участвующие в образовании белков , также содержат гетероциклические фрагменты: триптофан включает в себя фрагмент индола (рис. 2), в гистидине есть цикл имидазола (рис. 7), пролин – производное пирролидина.

Фрагменты гетероциклов есть в структуре многих биологически-активных веществ, среди наиболее используемых лекарственных препаратов свыше 60% составляют гетероциклические соединения. Четырехчленный цикл азетидинон (рис. 11) входит в состав антибиотиков пенициллина и цефалоспорина, аскорбиновая кислота (витамин С) содержит в своем составе фурановый гетероцикл, другой витамин никотинамид включает в себя фрагмент пиридина, молекула кофеина «построена» на базе упомянутого ранее пурина (рис. 10).

Рис. 11. ПРИСУТСТВИЕ ФРАГМЕНТОВ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ в структуре биологически важных молекул

Для всех соединений (рис. 10), за исключением азетидинона, приведены тривиальные названия, которые утвердились и вошли в употребление до того, как были сформулированы правила систематической номенклатуры.

Применение гетероциклических соединений. Диоксан (рис. 2) и тетрагидрофуран (рис. 8) широко используют в качестве высокополярных растворителей в органическом синтезе.

Фурфурол (рис. 8) является исходным продуктом для получения фурана (рис. 8), тетрагидрофурана, а также для синтеза некоторых лекарственных препаратов (фурацилин).

При конденсации фурфурола в кислой среде образуются полимерные продукты (фурановые смолы), по строению напоминающие фенольные смолы, – метиленовые группы СН 2 , соединяющие гетероциклы (рис. 12А). При нагревании таких смол в присутствии кислотных катализаторов (например, толуолсульфокислота) двойные связи раскрываются с образованием поперечных сшивок, в результате полимер переходит в нерастворимое состояние, что позволяет его использовать в качестве связующего при изготовлении различных наполненных прессматериалов: стекло- и углепластиков, древесноволокнистых плит и т.п. В твердом состоянии фурановые полимеры представляют собой химически стойкие вещества (до 300° С), это позволяет применять их и как коррозийноностойкие и огнеустойчивые герметики и мастики.

При конденсации ароматических тетраминов (4 амино-группы) с эфирами ароматических дикарбоновых кислот (см. СЛОЖНЫЕ ЭФИРЫ ) образуются полимеры, в структуре которых в процессе синтеза возникают фрагменты бензимидазола (рис. 12Б). Такие полимеры, получившие название полибензимидазолы, обладают высокой прочностью и термостойкостью (до 500° С), из них изготавливают пленки, волокна (торговое название АРМОС и РУСАР), армированные пластики.


Рис. 12. ПОЛИМЕРЫ, СОДЕРЖАЩИЕ В ЦЕПИ ГЕТЕРОЦИКЛИЧЕСКИЕ ФРАГМЕНТЫ : фурановый полимер (А), полибензимидазол (Б).

Производные бензимидазола входят в состав лекарственных препаратов (дибазол).

Индол (рис. 2) применяют как фиксатор запахов в парфюмерной промышленности и при изготовлении некоторых лекарств (индометацин).

Михаил Левицкий

ЛИТЕРАТУРА Джилкрист Т. Химия гетероциклических соединений . М., Мир, 1996
Ким Д.Г. Введение в химию гетероциклических соединений . Соросовский образовательный журнал, т. 7, 2001, № 11

Гетероциклическими называют такие соединения циклического строения, в циклах которых наряду с атомами углерода находятся атомы других элементов. Эти другие атомы называются гетероатомами. Чаще всего такими гетероатомами являются атомы кислорода, серы и азота. В гетероциклах может находиться один, два, три и более гетероатомов. Однако, согласно теории напряжения циклов, трех- и четырехчленные циклы малоустойчивы. Наиболее прочные и поэтому чаще встречаются пяти- и шестичленные гетероциклы.

Классификацию гетероциклов осуществляют в зависимости от величины цикла. В соответствии с этим различают трех-, четырех-, пяти-, шестичленные гетероциклы и гетероциклы с большим количеством атомов.

Гетероциклические соединения многочисленны, очень распространенны в природе и имеют важное практическое значение. К ним относятся такие вещества, как хлорофилл - зеленое вещество растений, гемоглобин - окрашивающее вещество крови и много других природных красящих веществ, витамины, антибиотики (пенициллин), лекарственные вещества, пестициды.

Номенклатура гетероциклов

Гетероциклические соединения называют по тривиальной, рациональной и систематической номенклатуре. Для давно известных гетероциклических соединений часто используют тривиальные названия. Например, пиррол, пиридин, фуран, индол, пурин и др. В рациональной номенклатуре за основу берут название определенного гетероцикла - фуранов, тиофена, пиррола, пиридина или другого, а положение заместителей в них обозначают цифрами или буквами греческого алфавита. В гетероциклах с одним гетероатомом нумерацию начинают с этого гетероатома.

Рисунок 1.

Современная научная номенклатура гетероциклических систем включает величину цикла, его ненасыщенность, количество гетероатомов, их вид и положение. Название гетероцикла по этой номенклатуре состоит из трех частей:

  • корня - указывает размер цикла,
  • суффикса - указывает степень ненасыщенности гетероциклического системы
  • и приставки - указывает вид гетеро атомов и их количество.

Трехчленное кольцо имеет корень -ир, четырехчленное - -ет, пятичленное - -ол, шестичленное - ин. Насыщенные гетероциклы с атомом азота имеют суффикс -идин, насыщенные гетероциклы без атома азота имеют суффикс -ан, насыщенные гетероциклические системы имеют суффикс -ин.

Природа гетероатома указывается приставками окса-, тиа- и аза- соответственно для кислорода, серы и азота префиксы диокса-, дитиа-, диаза- означают соответственно два атома кислорода, серы и азота. Если в гетероцикле два и более разных гетероатомов, то они перечисляются по старшинству кислород раньше серы, а сера раньше азота, и их нумеруют в следующем порядке: $O$, $S$, $N$.

При наличии в гетероцикле одного атома кислорода и одного атома азота используют префикс - оксаза-, а при наличии одного атома серы и одного атома азота - тиаза-. При одновременном пребывании в цикле третичного атома азота и группы $NH$ цифрой 1 обозначают атом азота группы $NH$. В этом случае нумерацию проводят в следующем порядке: $O$, $S$, $NH$, $N$.

Гетероциклы, которые не содержат крайних связей, как правило, по химическим и физическим свойствам похожи на соответствующие циклические соединения.

Ароматиченость гетероциклов

Существует огромная группа гетероциклов, которые имеют сопряженную систему кратных связей. Такого рода гетероциклы напоминают по своей стойкостью и типами реакций бензол и его производные и называются ароматическими гетероциклическими соединениями.

Согласно правилу Хюккеля, циклическая система имеет ароматические свойства, если она:

  • содержит $4n + 2$ обобщающих электронов;
  • имеет непрерывную цепь сопряжения;
  • является планарный.

Сравним два соединения - бензол и пиридин:

Рисунок 2.

Рисунок 3.

В молекуле бензола атомы углерода находятся в состоянии $sp2$ - гибридизации. Четвертый электрон каждого атома С является не гибридизующимся. При этом образуется секстет электронов, обобщенных всеми атомами цикла (ароматический секстет).

Облака негибридизованих $\pi$-электронов, имеющих форму объемных восьмерок, перекрываясь друг с другом, образуют единое $\pi$-электронное облако:

Рисунок 4.

Аналогично можно объяснить ароматический характер пиридина. Только в образовании электронного секстета в природе участвуют 5$\pi$-электронов от атомов углерода и один электрон от азота:

Рисунок 5.

В атоме азота сохраняется неразделенная пара электронов. Эта пара электронов не входит в ароматический секстет; система планарная; соответствует правилу Хюккеля: $4n + 2$.

Электронное строение пятичленных гетероциклов

Рассмотрим электронное строение пятичленного гетероцикла - пиррола, образованного четырьмя атомами углерода и атомом азота, и содержит два двойных связи:

Рисунок 6.

В молекуле пиррола также образуется ароматический секстет за счет четырех $\pi$-электронов атомов углерода и двух неразделенных р-электронов атома азота. Таким образом в ядре образуется общая система секстета электронов и ядро имеет ароматические свойства. Выполняется первое правило ароматичности: содержится $4n + 2 = 4\cdot1 + 2 = 6$ обобщенных электронов. Выполняется и второе условие ароматичности - сохраняется непрерывная цепь сопряжения, в которую входит неразделенная пара электронов атома азота. Все атомы лежат в одной плоскости, система планарная. Таким образом, в пятичленных гетероциклах 6 электронов делокализованных между 5-ю атомами, образующими данный цикл.

Рисунок 7.

Из пятичленных гетероциклических соединений с одним гетероатомом важнейшее значение имеют: фуран, тиофен и пиррол. Для фурана, тиофена, пиррола и их производных типичны реакции электрофильного замещения : нитрование, сульфирование, галогенирование, ацилирование и др. Такая особенность свойств этих гетероциклических соединений связана с их электронным строением. В циклах этих веществ содержатся как атомы углерода, так и гетероатомы. Углеродные атомы и гетероатомы соединены с соседними атомами углерода $\sigma$-связями.

Другие ароматические гетероциклические соединения

Поскольку в полициклических соединениях на гетероатомы могут быть заменены атомы углерода разных циклов и в самых различных комбинациях, число возможных ароматических гетероциклических соединений исключительно велико:

Рисунок 8.

Помимо гетероциклических систем, которые содержат в каждом кольце по шесть $\pi$-электронов, известны многочисленные примеры ароматических ($4n+2$) p-элеткронных гетероциклических соединений, в которых $n >1$. Известны гетероциклические аналоги ароматических аннуленов. В качестве примеров можно привести окса--аннулен, аза--аннулен, аза--аннулен, изоэлектронные ароматическому -аннулену:

Рисунок 9.

Рисунок 10.

Другим наглядным примером ароматического гетероаннулена является мостиковый гомохинолин, изоэлектронный 1,6-метано -аннулену, содержащий 10 p-электронов:

Рисунок 11.

Органические соединения, содержащие в своих молекулах циклы, в состав которых могут входить неуглеродные атомы . Гетероциклические соединения классифицируют по количеству атомов в цикле и по типу гетероатома.

Шестичленные гетероциклы.

Пиридин C 5 H 5 N :

Строение гетероциклов.

Пиридин напоминает бензол: все атомы углерода и атом азота находится в sp 2 - гибридизации . Шесть электронов находятся на негибридных орбиталях и образуют π -электронную ароматическую систему. Из 3х гибридных орбиталей атома азота две вступают в образование сигма-связей С-N , а на третьей находится неподеленная пара:

Пиридин - бесцветная жидкость, немного легче воды , с неприяным запахом, с водой смешивается в любых пропорциях.

Получение гетероциклов.

Пиридин выделяют из каменноугольной смолы. В лабораторных условиях его можно синтезировать из синильной кислоты и ацетилена:

1. Основные свойства гетероциклов. Пиридин - слабое основание, его водных раствор окрашивается в синий цвет:

При реакции с сильными кислотами образуются соли пиридиния:

2. Ароматические свойства гетероциклов. Как и бензол пиридин вступает в реакции электрофильного замещения. Его активность в этих реакция ниже, чем у бензола из-за большой электроотрицательности атома азота. Нитрование проводят при 300 ºС с низким выходом:

Реакции нуклеофильного замещения. Атом азота оттягивает к себе электронную плотность ароматической системы и орто-, пара - положения «обеднены» электронами. Поэтому пиридин может реагировать с амидом натрия, образую смесь орто- и пара- аминопиридинов (реакция Чичибана ):


3. Гидрирование пиридина, в результате чего образуется пиперидин:

4. Гомологи пиридина подвергаются боковому окислению :

Пиримидин С 4 Н 4 N 2 .

Это шестичленный гетероцикл с 2-мя атомами азота:

Пиримидин менее активен в реакциях электрофильного замещения, и основные свойства его выражены хуже, чем и пиридина.

К пиримидиновым основаниям относят: урацил, тимин, цитозин:

Каждое из этих соединений может существовать в 2х формах - лактим-лактамная таутомерия.

Пятичленные циклы.

Ярким представителем является пиррол C 4 H 4 NH :

Строение гетероциклов.

Атомы азота и углерода находятся в sp 2 -гибридизации. 2 электрона на негибридной орбитали атома азота образуют π -элеткронную ароматическую систему:

Электронная пара входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.

Физические свойства гетероциклов.

Пиррол - бесцветная жидкость с запахом хлороформа. Он слабо растворим в воде , но растворим в органических растворителях.

Получение гетероциклов.

Конденсация ацетилена с аммиаком:

Аммонолиз - реакция Юрьева:

Химические свойства гетероциклов.

1. Сильные минеральные соли могут вытянуть электронную пару из ароматической системы, при этом ароматичность нарушается и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Такая неустойчивость в кислой среде называется ацидофобностью.

2. Пиролл - очень слабая кислота, поэтому он может реагировать с калием:

3. Электрофильное замещение, сульфирование:

4. Гидрирование. В результате образуется пирролидин:

Интересными свойствами обладают имидазол и пиразол:

Они могут быть в таутомерной форме, т.к. NH - группа проявляет слабые кислотные свойства и способность отдавать протон невелика. Поэтому протон может переходить от одного атома к другому.