Как определить центр масс в карьере. Применение интеграла. Примеры задач с решением

Термин «центр масс» используется не только в механике и в расчетах движения но и обыденной жизни. Просто люди не всегда задумываются о том, какие же законы природы проявляются в той или иной ситуации. Например, фигуристы в парном катании активно используют центр масс системы, когда раскручиваются, взявшись за руки.

Понятие центра масс также применяется при проектировке кораблей. Необходимо учесть не просто два тела, а огромное их количество и все привести к единому знаменателю. Ошибки в расчетах означают отсутствие устойчивости корабля: в одном случае он будет чрезмерно погружен в воду, рискуя пойти ко дну при самых незначительных волнах; а в другом слишком приподнят над уровнем моря, создавая опасность переворота на бок. Кстати, именно поэтому каждая вещь на борту должна быть на своем месте, предусмотренным расчетами: наиболее массивные в самом низу.

Центр масс используется не только в отношении небесных тел и проектировании механизмов, но и при изучении «поведения» частиц микромира. К примеру, многие из них рождаются парами (электрон-позитрон). Обладая изначальным вращением и подчиняясь законам притяжения/отталкивания, они могут быть рассмотрены как система с общим центром масс.

Нарисуйте схему системы и отметьте на ней центр тяжести. Если найденный центр тяжести находится вне системы объектов, вы получили неверный ответ. Возможно, вы измерили расстояния от разных точек отсчета. Повторите измерения.

  • Например, если на качелях сидят дети, центр тяжести будет где-то между детьми, а не справа или слева от качелей. Также центр тяжести никогда не совпадет с точкой, где сидит ребенок.
  • Эти рассуждения верны в двумерном пространстве. Нарисуйте квадрат, в котором поместятся все объекты системы. Центр тяжести должен находиться внутри этого квадрата.

Проверьте математические вычисления, если вы получили маленький результат. Если точка отсчета находится на одном конце системы, маленький результат помещает центр тяжести возле конца системы. Возможно, это правильный ответ, но в подавляющем большинстве случаев такой результат указывает на ошибку. Когда вы вычисляли моменты, вы перемножали соответствующие веса и расстояния? Если вместо умножения вы сложили веса и расстояния, вы получите гораздо меньший результат.

Исправьте ошибку, если вы нашли несколько центров тяжести. Каждая система имеет только один центр тяжести. Если вы нашли несколько центров тяжести, скорее всего, вы не сложили все моменты. Центр тяжести равен отношению «суммарного» момента к «суммарному» весу. Не нужно делить «каждый» момент на «каждый» вес: так вы найдете положение каждого объекта.

  • Проверьте точку отсчета, если ответ отличается на некоторое целое значение. В нашем примере ответ равен 3,4 м. Допустим, вы получили ответ 0,4 м или 1,4 м, или другое число, оканчивающееся на «,4». Это потому, что в качестве точки отсчета вы выбрали не левый конец доски, а точку, которая расположена правее на целую величину. На самом деле, ваш ответ верен, независимо от того, какую точку отсчета вы выбрали! Просто запомните: точка отсчета всегда находится в положении x = 0. Вот пример:

    • В нашем примере точка отсчета находилась на левом конце доски и мы нашли, что центр тяжести находится на расстоянии 3,4 м от этой точки отсчета.
    • Если в качестве точки отсчета выбрать точку, которая расположена на расстоянии 1 м вправо от левого конца доски, вы получите ответ 2,4 м. То есть центр тяжести находится на расстоянии 2,4 м от новой точки отсчета, которая, в свою очередь, находится на расстоянии 1 м от левого конца доски. Таким образом, центр тяжести находится на расстоянии 2,4 + 1 = 3,4 м от левого конца доски. Получился старый ответ!
    • Примечание: при измерении расстояния помните, что расстояния до «левой» точки отсчета отрицательные, а до «правой» – положительные.
  • Расстояния измеряйте по прямым линиям. Предположим, на качелях два ребенка, но один ребенок намного выше другого, или один ребенок висит под доской, а не сидит на ней. Проигнорируйте такую разницу и измерьте расстояния по прямой линии доски. Измерение расстояний под углами приведет к близким, но не совсем точным результатам.

    • В случае задачи с качелями-доской помните, что центр тяжести находится между правым и левым концами доски. Позже вы научитесь вычислять центр тяжести более сложных двумерных систем.
  • Определение

    При рассмотрении системы частиц, часто удобно найти такую точку, которая характеризует положение и движение рассматриваемой системы как единого целого. Такой точкой является центр масс .

    Если у нас две частицы одинаковой массы, то такая точка находится посередине между ними.

    Координаты центра масс

    Допустим, что две материальные точки, имеющие массы $m_1$ и $m_2$ находятся на оси абсцисс и имеют координаты $x_1$ и $x_2$. Расстояние ($\Delta x$) между этими частицами равно:

    \[\Delta x=x_2-x_1\left(1\right).\]

    Определение

    Точку С (рис.1), делящую расстояние между этими частицами на отрезки, обратно пропорциональные массам частиц называют центром масс этой системы частиц.

    В соответствии с определением для рис.1 имеем:

    \[\frac{l_1}{l_2}=\frac{m_2}{m_1}\left(2\right).\]

    где $x_c$ - координата центра масс, то получаем:

    Из формулы (4) получим:

    Выражение (5) легко обобщается для множества материальных точек, которые расположены произвольным образом. При этом абсцисса центра масс равна:

    Аналогично получают выражения для ординаты ($y_c$) центра масс и его аппликаты ($z_c$):

    \ \

    Формулы (6-8) совпадают с выражениями, определяющими центр тяжести тела. В том случае, если размеры тела малы в сравнении с расстоянием до центра Земли, центр тяжести считают совпадающим с центром масс тела. В большинстве задач центр тяжести совпадает с центром масс тела.

    Если положение N материальных точек системы задано в векторной форме, то радиус - вектор, определяющий положение центра масс находим как:

    \[{\overline{r}}_c=\frac{\sum\limits^N_{i=1}{m_i{\overline{r}}_i}}{\sum\limits^N_{i=1}{m_i}}\left(9\right).\]

    Движение центра масс

    Выражение для скорости центра масс (${\overline{v}}_c=\frac{d{\overline{r}}_c}{dt}$) имеет вид:

    \[{\overline{v}}_c=\frac{m_1{\overline{v}}_1+m_2{\overline{v}}_2+\dots +m_n{\overline{v}}_n}{m_1+m_2+\dots +m_n}=\frac{\overline{P}}{M}\left(10\right),\]

    где $\overline{P}$ - суммарный импульс системы частиц; $M$ масса системы. Выражение (10) справедливо при движениях со скоростями которые существенно меньше скорости света.

    Если система частиц является замкнутой, то сумма импульсов ее частей не изменяется. Следовательно, скорость центра масс при этом величина постоянная. Говорят, что центр масс замкнутой системы перемещается по инерции, то есть прямолинейно и равномерно, и это движение не зависимо от движения составных частей системы. В замкнутой системе могут действовать внутренние силы, в результате их действия части системы могут иметь ускорения. Но это не оказывает влияния на движение центра масс. Под действием внутренних сил скорость центра масс не изменяется.

    Примеры задач с решением

    Пример 1

    Задание. Запишите координаты центра масс системы из трех шариков, которые находятся в вершинах и центра равностороннего треугольника, сторона которого равна $b\ (м)$ (рис.2).

    Решение. Для решения задачи используем выражения, определяющие координаты центра масс:

    \ \

    Из рис.2 мы видим, что абсциссы точек:

    \[\left\{ \begin{array}{c} m_1=2m,\ \ x_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ x_2=\frac{b}{2};; \\ m_3=m,\ \ x_3=\frac{b}{2};; \\ m_4=4m,\ \ x_4=b. \end{array} \right.\left(2.3\right).\]

    Тогда абсцисса центра масса равна:

    Найдем ординаты точек.

    \[ \begin{array}{c} m_1=2m,\ \ y_1=0;;\ \ \\ {\rm \ }m_2=3m,\ \ \ \ y_2=\frac{b\sqrt{3}}{2};; \\ m_3=m,\ \ y_3=\frac{b\sqrt{3}}{6};; \\ m_4=4m,\ \ y_4=0. \end{array} \left(2.4\right).\]

    Для нахождения ординаты $y_2$ вычислим, чему равна высота в равностороннем треугольнике:

    Ординату $y_3$ найдем, помня, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, получаем:

    Вычислим ординату центра масс:

    Ответ. $x_c=0,6b\ {\rm \ }{\rm м}$; $y_c=\frac{b\sqrt{3}\ }{6}$ м

    Пример 2

    Задание. Запишите закон движения центра масс.

    Решение. Закон изменения импульса системы частиц является законом движения центра масс. Из формулы:

    \[{\overline{v}}_c=\frac{\overline{P}}{M}\to \overline{P}=M{\overline{v}}_c\left(2.1\right)\]

    при постоянной массе $M$ продифференцировав обе части выражения (2.1), получим:

    \[\frac{d\overline{P}}{dt}=M\frac{d{\overline{v}}_c}{dt}\left(2.2\right).\]

    Выражение (2.2) означает, что скорость изменения импульса системы равняется произведению массы системы на ускорение ее центра масс. Так как

    \[\frac{d\overline{P}}{dt}=\sum\limits^N_{i=1}{{\overline{F}}_i\left(2.3\right),}\]

    В соответствии с выражением (2.4) получаем, что центр масс системы движется так, как двигалась бы одна материальная точка массы M, если на нее действует сила, равная сумме всех внешних сил, действующих на частицы, которые входят в рассматриваемую систему. Если $\sum\limits^N_{i=1}{{\overline{F}}_i=0,}$ то центр масс движется равномерно и прямолинейно.

    (хотя чаще всего совпадает).

    Энциклопедичный YouTube

    • 1 / 5

      Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом :

      r → c = ∑ i m i r → i ∑ i m i , {\displaystyle {\vec {r}}_{c}={\frac {\sum \limits _{i}m_{i}{\vec {r}}_{i}}{\sum \limits _{i}m_{i}}},}

      где r → c {\displaystyle {\vec {r}}_{c}} - радиус-вектор центра масс, r → i {\displaystyle {\vec {r}}_{i}} - радиус-вектор i -й точки системы, m i {\displaystyle m_{i}} - масса i -й точки.

      Для случая непрерывного распределения масс:

      r → c = 1 M ∫ V ρ (r →) r → d V , {\displaystyle {\vec {r}}_{c}={1 \over M}\int \limits _{V}\rho ({\vec {r}}){\vec {r}}dV,} M = ∫ V ρ (r →) d V , {\displaystyle M=\int \limits _{V}\rho ({\vec {r}})dV,}

      где M {\displaystyle M} - суммарная масса системы, V {\displaystyle V} - объём, ρ {\displaystyle \rho } - плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

      Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами M i {\displaystyle M_{i}} , то радиус-вектор центра масс такой системы R c {\displaystyle R_{c}} связан с радиус-векторами центров масс тел R c i {\displaystyle R_{ci}} соотношением :

      R → c = ∑ i M i R → c i ∑ i M i . {\displaystyle {\vec {R}}_{c}={\frac {\sum \limits _{i}M_{i}{\vec {R}}_{ci}}{\sum \limits _{i}M_{i}}}.}

      Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

      Центры масс плоских однородных фигур

      Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа - Гульдина):

      x s = V y 2 π S {\displaystyle x_{s}={\frac {V_{y}}{2\pi S}}} и y s = V x 2 π S {\displaystyle y_{s}={\frac {V_{x}}{2\pi S}}} , где V x , V y {\displaystyle V_{x},V_{y}} - объём тела, полученного вращением фигуры вокруг соответствующей оси, S {\displaystyle S} - площадь фигуры.

      Центры масс периметров однородных фигур

      Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass ): оба термина эквивалентны.

      Скорость центра масс в релятивистской механике можно найти по формуле:

      v → c = c 2 ∑ i E i ⋅ ∑ i p → i . {\displaystyle {\vec {v}}_{c}={\frac {c^{2}}{\sum \limits _{i}E_{i}}}\cdot \sum \limits _{i}{\vec {p}}_{i}.} вес массы P = m·g зависит от параметра гравитационного поля g ), и, вообще говоря, даже расположен вне стержня.

      В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.

      По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

      Центр масс это геометрическая точка находящаяся внутри тела, которая определяет распределение массы этого тела. Любое тело можно представить в виде суммы некоторого количества материальных точек. В этом случае положение центра масс определяет радиус вектор.

      Формула 1 - Радиус вектора центра масс.


      mi - масса итой точки.

      ri - радиус вектор итой точки.

      Если просуммировать массы всех материальных точек, то получится масса всего тела. На положение центра масс влияет однородность распределения массы по объему тела. Центр масс может находиться как внутри тела, так и за его приделами. Скажем у кольца, центр масс находится в центре окружности. Там где нет вещества. В общем, для симметричных тел обладающих однородным распределением массы центр масс всегда находится в центре симметрии или на ее оси.

      Рисунок 1 - Центры массы симметричных тел.


      Если к телу прикладывать некоторую силу, то оно начнет двигаться. Представьте себе кольцо, лежащее на поверхности стола. Если к нему приложить силу, а попросту начать толкать, то оно будет скользить по поверхности стола. А вот направление движения будет завесить от места приложения силы.

      Если силу направить от внешнего края к центру, по перпендикуляру к внешней поверхности, то кольцо начнет прямолинейно двигаться по поверхности стола в направлении приложения силы. Если же силу приложить по касательной к внешнему радиусу кольца, то оно начнет поворачиваться относительно своего центра масс. Таким образом, можно заключить, что движение тела состоит из суммы поступательного движения и вращательного относительно центра масс. То есть движение любого тела можно описать движением материальной точки находящейся в центре масс и имеющей массу всего тела.

      Рисунок 2 - Поступательное и вращательное движение кольца.


      Существует также понятие центр тяжести. В общем, это не одно и то же что и центр масс. Центр тяжести это точка относительно, которой общий момент силы тяжести равен нулю. Если представить себе стержень длинной скажем 1 метр, диаметром 1см, и однородный по своему сечению. На концах стержня закреплены металлические шары одинаковой массы. То центр масс этого стержня будет находиться посередине. Если этот стержень поместить в неоднородное гравитационное поле, то центр тяжести будет смещён в сторону большей напряжённости поля.

      Рисунок 3 - Тело в неоднородном и однородном гравитационном поле.


      На поверхности земли, где сила тяжести однородна, центр масс практически совпадает с центром тяжести. Для любого постоянного однородного гравитационного поля центр тяжести всегда будет совпадать с центром масс.