Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках. Примеры полупроводников. Типы, свойства, практическое применение

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.


Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

4 Электрические свойства "p-n" перехода "p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются. При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью. 5 Полупроводниковые приборы. Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд. Полупроводник с одним "p-n" переходом называется полупроводниковым диодом. При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.
Полупроводниковые диоды - основные элементы выпрямителей переменного тока В полупроводниковых транзисторах также используются свойства "р-n "переходов. - транзисторы используются в схемотехнике радиоэлектронных приборов. 6 Вопросы на закрепление изученной темы. - Какие вещества называются полупроводниками? Приведите примеры полупроводников. - Какова зависимость сопротивления полупроводника от температуры? - Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков? - Объясните механизм собственной и примесной проводимости полупроводников. - Что такое термистор? фоторезистор? - Что такое р-n-переход? Каково его основное свойство? - Как устроен и где применяется полупроводниковый диод? .

Можно считать что полупроводник открыли в 1833 году, когда исследуя температурную зависимость удельной электропроводности - плохого проводника сульфида серебра, Фарадей заметил, что в отличие от хороших металлических проводников, у сульфида серебра при нагревании проводимость не снижалась, а, даже наоборот, увеличивалась. Чуть позже эта особенность была выявлена и у других полупроводников.

Еще два открытия касавшихся проводимости полупроводников были сделаныв 1873 и 1874 годах. В 1873 году Уиллоуби Смит обнаружил увеличение проводимости селена при его освещении внешним источником света, т.е. открыл внутренний фотоэффект, а в 1874 году другой исследователь Ф. Браун, работая с такими материалами, как сернистый свинец (PbS) и пирит (FeS), заметил выпрямление переменного тока при контакте этих веществ с металлом. В начале прошлого века появилось довольно много работ, посвящённых изучению свойств полупроводников. В основном это были сульфиды и оксиды металлов, а также кремний. Именно в это время и сформировался термин полупроводники.

Материал полупроводник, по своей удельной проводимости занимает промежуток между проводниками и диэлектриками и отличается от первых сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения.

Полупроводники это достаточно большая группа веществ, применяемых в радиоэлектроники: германий, кремний, селен, но для изготовления диодов и транзисторов применяют в основном кремний и германий.

По своим электротехническим свойствам они занимают среднее место между проводниками и непроводниками электрического тока.

У полупроводников, ширина запрещённой зоны составляет около нескольких электрон-вольт (эВ). Например,такой материал как алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. К числу полупроводников относятся также многие химические элементы (кремний, германий, селен, мышьяк теллур, и другие), огромное количество сплавов и химических соединений (например арсенид галлия). Почти все неорганические вещества окружающие нас это полупроводники. Самым распространенным полупроводником на нашей планете является кремний, составляющий около 30 % земной коры. В зависимости от того, захватывает ли примесной атом свободный электрон или наоборот отдает его, такие атомы называют акцепторными или донорными.

В первую очередь, надо отметить, что электропроводность при протекании тока полупроводников зависит от температуры. Например, при очень низкой температуре, -273°С, они не проводят его совсем, а с ростом температуры, их сопротивление электрическому току уменьшается.

Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Если на полупроводник навести источник света, то ток в полупроводниках начинает увеличиваться. Используя это свойство увидели этот мир множество фотоэлектрических приборов. Кроме того они способны преобразовывать световой поток воздействующий на полупроводник в электрический ток, например, принцип работы солнечных батарей строится как раз на этом эффекте, а это уже сегодня позволило снизить сжигание нефти и газа, а через некоторое время бензиновые двигатели авто уже будут историей. А при введении в полупроводник примесей различных веществ, их электропроводность резко возрастает.

Характер примеси в полупроводнике может существенно изменяться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается. Проводимость полупроводников сильно зависит от температуры. Около температуры абсолютного нуля полупроводники обладают характеристиками диэлектриков. Для понимания механизма возникновения проводимости в полупроводниках, нужно знать внутреннее строение полупроводниковых кристаллов и связей, удерживающих атомы возле друг друга. Напомним, что фактически у каждого электрона имеется своя собственная орбита и правильнее говорить в этом вопросе, не об одной внешней орбите, а о целом внешнем электронном слое, в котором бывает до восьми орбит.

Принцип строения атомов

Как я уже сказал выше германий и кремний это основные материалы используемые в полупроводниках, так как они имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия имеет в своем составе 32 электрона, а кремния 14. Но только 28 электронов атома германия и 10 кремния, находятся во внутренних слоях своих оболочек и прочно там удерживаются. А эти четыре валентных электрона могут стать свободными, да и то лишь временно. А если атом потеряет хотя бы один из них, то он сразу же превращается в положительный ион.

Внутри пластинки атомы располагаются в строгом порядке: каждый из них окружен 4 подобными атомами. Причем они размещены так близко друг к другу, что их валентные электроны имеют единые орбиты, движущиеся вокруг соседних атомов, тем самым переплетая атомы в единое целое вещество.

Представим взаимосвязь атомов в полупроводнике в виде простой плоской схемы. На схеме шарики с плюсом, условно, показывают ядра атомов - положительные ионы, а маленькие шарики это валентные электроны.

На картинки четко видно, что вокруг каждого атома имеются четыре других атома, а каждый из них имеет связь еще с четырьмя атомами и так далее. Любой из атомов скреплен с соседом двумя валентными электронами, причем один электрон свой собственный, а другой одолжен у соседнего атома. Такая связь из курса химии называется двухэлектронной или ковалентной.

Внешний слой оболочки каждого атома имеет восемь электронов: четыре собственных, и по одному, одолженному у четырех соседей. Здесь уже не возможно понять, какой из этих электронов в атоме свой, а какой чужой. При такой связи во всем объеме кристалла германия или кремния можно условно считать, что кристалл представляет из себя одну огромную молекулу.

Возьмем рисунок кристалла, где атомы обозначаются шариком с плюсом, а межатомные связи изображены двумя линиями.

При температуре абсолютного нулю наш кристалл не будет пропускать ток, так как в нем отсутствуют свободные электроны. Но с ростом температуры связь валентных электронов с ядрами становится слабее и отдельные электроны, вследствие постоянного движения, могут уходить от своих атомов. Становясь свободным, а там где электрон находился, появляется пустое место, которое придумали назвать дыркой.

С ростом температуры, растет количество свободных электронов и дырок. Давайте перейдем к следующей схеме, где схематично изображено явление появления электрического тока в кристалле полупроводника.

Если приложить напряжение к контактам кристалла «+» и «-», то в полупроводнике потечет электрический ток. Вследствие тепловых явлений, из межатомных связей получают свободу электроны, которые, притягиваясь плюсом источника питания, будут двигаться к нему, оставляя дырки, которые заполняются другими свободными электронами. То есть, под действием электрического поля носители заряда получают скорость направленного движения и тем самым генерируют ток.

Пока действует электрическое поле, процесс постоянен: нарушаются межатомные связи, появляются свободные электроны – генерируются дырки. Дырки принимают в себя электроны – восстанавливая одни межатомные связи, но нарушая другие, из которых убегают электроны заполняя следующие дырки

Отсюда, условно можно сказать, что электроны идут от минуса источника питания к плюсу, а дырки двигаются от плюса к минусу.

Рассмотрим вопрос, что такое проводимость полупроводника?

Чуть выше по полочкам мы разобрали механизм проводимости идеальных полупроводников. Проводимость при этих идеальных факторах называют собственной проводимостью полупроводников. Она в некоторых моментах сходна с проводимостью расплавов электролитов или водных растворов. В них также число свободных носителей заряда заметно растет с увеличением интенсивности теплового движения. Поэтому и у полупроводников, и у расплавов электролитов или водных растворов, хорошо заметно увеличение проводимости с увеличением температуры. Особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью появляется дополнительная, так называемая - примесная проводимость. Меняя концентрацию такой примеси, можно существенно регулировать число свободных носителей заряда любого знака. Благодаря этому можно получить полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителями.

Итак, в чистом кристалле полупроводника число свободных в определенный момент электронов равно числу дырок, поэтому электропроводность такого кристалла мала, так как он оказывает току достаточно большое сопротивление, и ее называют собственной. Но если в кристалл ввести немного примеси, точнее минимальное количество атомов других элементов, то электропроводность его увеличится в разы, и в зависимости от структуры добавленных атомов примесей элементов электропроводность будет называться электронной или дырочной.

Полупроводник с электронной проводимостью

Предположим, в кристалле атомы имеют 4-ре валентных электрона, мы поменяем один атом другим, у которого пять валентных частиц. Этот атом с четырьмя эл. соединится с 4 соседними атомами, а пятый останется «не удел» – то есть окажется полностью свободным. И чем выше их количество в кристалле, тем большее число свободных электронов, а значит, такой кристалл по своим свойствам, станет похож на металлический проводник, и чтобы через него потек ток, в нем не нужно рвать межатомные связи.

Кристаллы, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или n-типа. Здесь латинская буква n получила название от слова «negative» . Отсюда понятно, что в полупроводнике n-типа основные носители заряда – электроны, а не основные – дырки.

Полупроводник с дырочной проводимостью

В другом случае в том же кристалле, поменяем атом на другой с тремя свободными электрона, которыми он свяжется только с тремя соседними атомами, а для сцепки с четвертым атомом у него появится дефицит одного электрона. В итоге получается "бублик" или дырка. Понятно, что она примет в себя любой другой свободный электрон, схваченный рядом, И чем больше будет добавлено в кристалл таких атомов, тем выше будет число дырок.

Чтобы в таком случае могли высвобождаться и перемещаться свободные электроны, обязательно надо прорывать валентные связи между атомами. Но электронов все равно не хватит, так как количество дырок всегда будет превышать количество электронов в любой момент.

Такие кристаллы называют полупроводниками с дырочной проводимостью или p-типа, что с латинского значит «positive». То есть, электрический тока в кристалле p-типа обусловлен непрерывным появлением и исчезновением положительных зарядов или дырок. А это говорит о том, что в кристалле p-типа основными носителями заряда будут дырки, а не основными – электроны.

Давайтк рассмотрим полупроводник, правая часть которого содержит донорные примеси и поэтому является кристаллом n-типа, а левая акцепторные и представляет собой типовой полупроводник р-типа. Место соединения двух полупроводников называют р-n переходом. Подключим такой полупроводник к источнику питания и посмотрим его работу при разных подключениях. Сначала соединим так, чтобы потенциал полупроводника р-типа был соединен с плюсом, а n типа с минусом. При этом ток через полупроводник, а точнее его р-n переход будет генерироваться основными носителями: из области n в область р электронами, а из области р в n дырками.

Проводимость в целом будет достаточно большой, а сопротивление - малым. Показанный на рисунке переход называют прямым. Если переключить полюса источника питания, то проводимость образца оказывается малой, а сопротивление большим. Так как образуется запирающий слой. Подробней работа устройства с одним p-n переходом описана в разделе работа диода, нашего сайта.

Детекторный радиоприемник.



Обычный детектор.


С чего начинает юный радиолюбитель? С детекторного приемника. Предельно прост этот удивительный аппарат. Проволочная катушка, невзрачный камешек детектора, наушники. Вот и вся премудрость. А какая сказочная сила воплощена в соединении нехитрых деталей! Расспросите людей старшего поколения, которые своими руками делали первые детекторные приемники. Они скажут: пожалуй, в наши дни новенький телевизор вызывает меньше радости, чем те деревянные ящички.

Вот собранный приемник торжественно водружен на столе. Его создатель залезает на крышу и протягивает длинную, метров в тридцать - сорок, антенну. Идущий от нее провод он подключает к приемнику {108} и некоторое время возится с детектором. Упираясь концом упругой пружинки в серебристый кристаллик, помещенный в стеклянной трубочке, надо нащупать на нем чувствительную точку. И как только это удается, совершается долгожданное «волшебство»: в наушниках звучит музыка или речь.

Кристаллик детектора - это, пожалуй, самый первый полупроводник, нашедший широкое практическое применение. Зачем он нужен?

Радиоволны возбуждают в антенне электрическое поле, быстро меняющее направление. Электрическое поле приводит в движение электроны провода. Они летят в проводе то вперед, то назад. Сотни тысяч раз в секунду происходят такие колебания электронов. Чтобы услышать передачу, нужно словно рассечь пополам эти колебания, пропустить в наушники только те движения электронов, которые направлены в одну сторону. В этом случае переменный ток, как говорят, выпрямляется, превращается в пульсирующий постоянный ток. А в сравнительно медленных изменениях его силы (сотни и тысячи колебаний в секунду) как раз и запечатлены передаваемые звуки. Больше сила выпрямленного тока - значит, сильнее оттягивается электромагнитом стальная мембрана наушника. Слабеет ток - и она отходит от электромагнита. Мембрана вибрирует, передает свои колебания воздуху, и вокруг разносятся звуковые волны.

Такова вкратце сущность действия наипростейшего радиоприемника. Как видим, кроме проводов, здесь требуется всего два устройства: наушники и выпрямитель тока. Детектор и выполняет роль выпрямителя.

ДЕТЕКТОР РАБОТАЕТ

Кристаллик, который находится в стеклянной трубочке, - полупроводник. Электропроводность его, как мы хорошо уяснили раньше, может быть либо электронной, либо дырочной. Допустим, он наделен электронной проводимостью. Но кристаллик неоднороден. На поверхности его попадаются участки, в той или иной степени засоренные примесями. Есть среди них и такие места, где под влиянием примесей электронный полупроводник превратился в дырочный. А на границе электронной и дырочной областей обязательно возникает знакомый нам запирающий слой - зона, в которой нет ни электронов, ни дырок.

Напомним особенность этого слоя: с одной его стороны как бы стоят на страже электроны-«пограничники». Они отталкивают все свободные электроны в глубь электронной области. По другую сторону границы стоит такая же стража дырок. Они, как вы помните, отталкивают другие дырки в глубь дырочной области. Словом, в запирающем слое возникает пограничное электрическое поле. Оно противодействует продвижению электронов и дырок к границе соприкосновения электронной и дырочной областей полупроводника.

К запирающему слою подведем внешнее электрическое поле. В зависимости от направления оно либо добавит свою силу к силе пограничной стражи в полупроводнике (расширит запирающий слой), либо, наоборот, ослабит и даже сметет прочь электроны и дырки-«пограничники».

А если подвести переменное, то есть меняющее направление, электрическое поле? Очевидно, запирающий слой будет периодически расширяться и исчезать, Пограничная стража станет то усиливаться, то сниматься вовсе - в такт с изменениями направления внешнего поля. И результат будет такой: в моменты расширения запирающего слоя ток через полупроводник не пойдет (электроны и дырки разбегаются в разные стороны); в моменты же {110} исчезновения запирающего слоя ток через кристалл пойдет (электроны и дырки бегут навстречу друг другу).

Подведем итог. Чувствительная точка детектора - это участок поверхности полупроводника, где носители тока иные, чем в остальном кристалле. Значит, под острием пружинки - запирающий слой. Детектор включен в провод, ведущий от антенны к наушникам. Электрическое поле антенны, пронизывая кристалл, то расширяет этот слой, то уничтожает его. И ток через детектор идет лишь в одном направлении - когда электроны и дырки движутся навстречу друг другу.



Ртутная лампа - выпрямитель переменного тока. Прибор этот громоздкий, неэкономичный и хрупкий. Внизу - полупроводниковый германиевый выпрямитель, отличающийся простотой устройства, надежностью, исключительной экономичностью.

Нужно сказать, что по этому принципу выпрямляется ток не только в простейшем радиоприемнике. Выпрямители из полупроводников - закиси меди, селена, сернистой меди, а в последнее время из германия - всё шире применяются в технике. Возможности их использования огромны: от простеньких измерительных приборов до радиостанций, электрометаллургических установок, электровозов. И во многих случаях полупроводники-выпрямители оказались наилучшими из выпрямляющих устройств. Их коэффициент полезного действия доходит до 98-99 процентов. Добавьте к этому прочность, надежность, небольшие размеры - и вы поймете, почему производству полупроводниковых выпрямителей уделено особое внимание в Директивах XX съезда партии.

Но вернемся к нашему детектору.

ИЗОБРЕТЕНИЕ ОЛЕГА ЛОСЕВА

В ту пору, когда появились первые детекторы, они были еще очень несовершенны. Подчас больших трудов стоило найти чувствительную точку. Пружинка с нее то и дело соскакивала. Приходилось снова и снова налаживать приемник. Много изобретательности приложили инженеры, чтобы улучшить детектор.



Современные полупроводниковые приборы - наследники первых примитивных детекторов и вакуумных ламп-диодов.


В 1919 году совершенствованием детектора увлекся молодой радиолюбитель Олег Владимирович Лосев. Мечтая посвятить жизнь радиотехнике, он начал с того, что еще совсем юным поступил рассыльным на первую в {112} нашей стране Нижегородскую радиолабораторию. Здесь заметили любознательного и талантливого юношу. Сотрудники лаборатории помогли ему пополнить образование, и вскоре Лосев приступил к самостоятельной научной работе. Он тщательно исследовал природные минералы, применяемые в качестве детекторов, изучил их электрические особенности и в 1922 году пришел к неожиданному открытию. Молодой ученый доказал, что если особым способом включить в схему приемника два детектора и электрическую батарейку, то можно усилить электрические колебания, поступающие в наушники.

Для того времени открытие Лосева было очень важным. Ведь обычный детекторный приемник давал возможность слушать лишь близкие станции. Дальний прием, особенно В городах, где много помех и трудно устроить высокую и длинную антенну, оказывался практически невозможным. А приемники Лосева, которые он назвал кристадинами , уверенно принимали передачи сравнительно далеких радиостанций. Изобретатель построил на кристаллах и другие аппараты - генераторы, то есть возбудители электрических колебаний.

Лосев сразу же опубликовал свои открытия, не запатентовав их, не требуя за них никакого денежного вознаграждения. Во многих странах радиолюбители принялись строить приемники по его схемам. Американский журнал писал: «Молодой русский изобретатель передал свое изобретение миру». Французский журнал вторил: {113} «Научная слава ожидает Лосева. Он обнародовал свое открытие, думая прежде всего о своих друзьях - радиолюбителях всего мира».

Несколько лет имя изобретателя не сходило со страниц журналов, но потом стало появляться все реже и реже. К концу 20-х годов идея его - использовать кристаллы для усиления и возбуждения электрических колебаний - была забыта. Наука еще не созрела для творческого, созидательного развития этого замысла. Теории полупроводников не существовало, искусственно создавать такие вещества почти не умели. Все надежды радиоинженеров сосредоточились на другом новшестве - радиолампах.

РАДИОЛАМПА РАБОТАЕТ

Радиолюбители старшего поколения хорошо помнят первые годы победного шествия радиоламп. В миллионах радиоприемников, поблескивая стеклом и металлом, гордыми рядами выстроились эти нежные, хрупкие приборы. Какими они казались совершенными по сравнению с примитивными камешками детекторов!

Радиолампам и впрямь было чем гордиться. Ведь с ними мы получили возможность слушать радио без надоевших наушников! Именно тогда в наших домах зазвучали первые громкоговорители.

Что же делает радиолампа?

Вспомните, как сегодня утром вы умывались у водопроводного крана. Если кран хорошо отрегулирован, достаточно было чуть его коснуться, и струя заметно уменьшалась или, наоборот, увеличивалась. Ничтожные усилия руки вызывали резкие перемены потока воды.

Нечто похожее происходит и в радиолампе. Там еле уловимые колебания антенного электрического поля изменяют мощный поток электронов.




Схема вакуумного триода. Слева - лампа «отперта»; справа - «заперта».


Как это практически осуществляется?

Простейшая радиолампа - стеклянный баллон, освобожденный от воздуха. Заглянув внутрь, мы увидим три изолированных друг от друга металлических электрода: катод, сетку и анод. Катод и анод включены в наружную электрическую цепь с высоким постоянным напряжением. А на сетку подают слабые сигналы антенны.

Тонкая нить катода раскаляется электрическим током. Поэтому из нее вылетают электроны. Подхваченные сильным полем, они немедленно устремляются к аноду. Но на пути электронов - проволочная спираль сетки. Своим небольшим полем она вблизи заметно действует на летящие электроны: либо свободно пропускает их, либо замедляет полет, ослабляя ток, идущий через лампу, либо, наконец, отбрасывает электроны назад к катоду - «запирает» лампу. Все такие перемены электронного потока происходят в такт с изменениями электрического поля сетки. Электронный поток как водяная струя в трубе, а сетка напоминает кран. И как легкие движения крана создают в трубе резкие толчки воды, так и слабые сигналы, уловленные антенной, вызывают в радиолампе заметные импульсы тока. {115}

Сигналы можно усиливать многократно в нескольких лампах подряд. Да и не только усиливать. Радиолампы с двумя электродами (без сетки) выпрямляют переменные токи - играют роль детекторов. Радиолампы, снабженные дополнительными электродами, исключительно тонко управляют потоками электронов. Наконец, в этих приборах нетрудно возбуждать разнообразные электрические колебания.

ТРИУМФ И КРИЗИС

В руках ученых и инженеров радиолампа стала мощным средством технического прогресса. Непрерывно совершенствуясь, за несколько лет она завоевала всю радиотехнику. Благодаря ей развилось телевидение, появились радиолокация, радионавигация, при ее участии возникли звуковое кино, магнитная звукозапись и множество других замечательных изобретений. Произошла настоящая техническая революция, которая вызвала к жизни новую обширную область знания - электронику.

Казалось, и будущее радиотехники неразрывно связано с радиолампами. Однако прошли десятилетия, и постепенно выяснилось, что радиолампы не так уж безупречны.

На полярной зимовке радист терял с трудом налаженную связь - «садилась» очередная лампа. Летчик неудачно приземлял самолет - лампы бортовой радиостанции не выдерживали встряски и портились. В подавляющем большинстве случаев любой радиоаппарат выходил из строя из-за недолговечности ламп. Срок их службы, исчисляющийся сотнями и тысячами часов, перестал удовлетворять технику. И мало-помалу они приобрели репутацию самых ненадежных, капризных элементов радиосистемы.

Потом и размеры радиоламп оказались слишком большими. Ведь не одну сотню, даже не одну тысячу их насчитывают иные современные радиоаппараты. Нелегко {116} конструктору компоновать это оборудование так, чтобы оно не занимало слишком много места.

Все это заставило радиоинженеров всерьёз подумать о замене радиоламп какими-то другими - компактными и надежными приборами.

Начались поиски новых решений.

ЗАЧЕМ НУЖНА ПУСТОТА?

Любой ламповый радиоприемник, рассуждали ученые, сочетает в себе трудно совместимые конструкционные элементы: твердые тела и... пустоту. Провода, конденсаторы, катушки, сопротивления - все это твердое, все это можно закрепить, сделать прочно, надолго. А радиолампы? Чтобы увеличить стойкость, баллоны ламп выполняют из металла, из специальных пластмасс, керамики. Это, конечно, помогает. Однако главное неудобство - пустота - остается. В ней приходится монтировать сложные электроды, разогревать нить катода. Все там нежное, тонкое, боящееся толчков, тряски.

Казалось бы, пустота незаменима. В ней электронные потоки словно обнажаются, становятся доступными регулировке, попадают во власть слабого электрического поля сетки радиолампы.

Впрочем, только ли в пустоте можно управлять движением электронов?

Что, если попробовать вместо пустоты полупроводниковый кристалл? Надо, очевидно, пропускать через него ток и извне менять электропроводность кристалла. Но каким способом менять ее? Можно ли вообще этого добиться?

От решения этих вопросов зависела судьба всего дальнейшего развития радиотехники.

Так на новой основе возродилась идея О. В. Лосева об усилителях и генераторах на кристаллах. {117}

Конечно, многое в ней изменилось. Применять для такой цели обычные детекторы стало нецелесообразно. Эффект они давали небольшой. Речь шла о создании кристаллического прибора, способного уверенно соперничать с современной радиолампой.

Не сразу нащупали путь решения проблемы. Много было досадных неудач, срывов, сомнений. Но в конце концов ответ был найден: да, проводимостью кристалла можно управлять, можно создать полупроводниковый прибор - заменитель радиолампы. Теорию прибора разработал американский физик Вильям Шокли. Его соотечественники Бардин и Браттейн создали в 1948 году первые образцы приборов, названных кристаллическими триодами или транзисторами.

Как они устроены? Об этом мы расскажем немного дальше. Прежде - несколько слов о материале, из которого они изготовляются.

ПРЕДСКАЗАННОЕ ВЕЩЕСТВО

Делают кристаллические триоды главным образом из полупроводника германия. Мы уже упоминали о применениях этого вещества, сыгравшего огромную роль в развитии физики и техники полупроводников. С ним связана и другая интереснейшая страница истории естествознания.



Кристаллический элемент германий - важнейший полупроводник. Впереди - монокристалл германия.


В 1869 году, когда Дмитрий Иванович Менделеев создавал свою знаменитую периодическую систему, о существовании германия никто не подозревал. Но гениальный химик по чисто теоретическим соображениям предсказал его открытие. Ученый отвел ему место в своей многоэтажной таблице и даже описал заранее, какими могут быть его основные свойства. Согласно периодическому закону, это неведомое в ту пору вещество должно было во многом походить на известный элемент кремний. Менделеев {118} поэтому присвоил ему условное название экасилиций (силиций - латинское название кремния, а приставка «эка» на санскритском языке означает «сходный»).

Спустя шестнадцать лет замечательное предвидение сбылось. Немецкий исследователь Винклер отыскал в одном из природных минералов экасилиций и дал ему имя своей родины. То был подлинный триумф научной мысли.

«Едва ли, - писал Винклер, - можно найти более поразительное доказательство справедливости учения о периодичности... Это не просто подтверждение смелой теории; здесь мы видим... мощный шаг в области познания».

Практического применения вновь открытый элемент сначала почти не получил. Долгое время его серебристо-серые блестящие кристаллы служили лишь уникальными экспонатами в химических коллекциях. Зато за последние годы германий стал важнейшим техническим материалом. И венца славы он достиг, как только стал основой кристаллических приборов - заменителей радиоламп.

ПОЛУПРОВОДНИК-УСИЛИТЕЛЬ

Вот он перед нами - германиевый триод, кристаллик, идущий на смену пустоте, на смену стеклянному пузырю радиолампы. Он похож на крошечный, величиной с горошинку, грибок. Из шляпки тянутся три проволочки.



Полупроводниковые триоды. Насколько они меньше радиолампы!


Вскройте его, и вы убедитесь, что даже в сталь миниатюрном устройстве подавляющая часть объема занята {119} корпусом, оболочкой. А сам кристалл еще в десятки раз меньше.

Разберемся, как устроен прибор, как управляет он потоками электронов. На металлической подножке, которую называют базой, покоится кристаллическая пластиночка германия с электронной проводимостью. На верхней поверхности кристалла специальной обработкой создана область с дырочной проводимостью. Между дырочной и электронной областями, как всегда в подобных случаях, возникает запирающий слой. К поверхности кристалла присоединены рядом концы двух тончайших платиновых проволочек. Одна из них называется эмиттером, Другая - коллектором.

Эмиттер, коллектор и база - три электрода кристаллического усилителя. Они соответствуют катоду, аноду и сетке радиолампы. Но в усилительную схему кристалл вводится не так, как радиолампа.

Источник управляющих сигналов включается между базой и эмиттером. Включение делают с таким расчетом, чтобы запирающий слой не служил препятствием для управляющих сигналов (электрическое поле сигналов направляют против электрического поля запирающего слоя). Источник тока сравнительно высокого напряжения, которым нужно управлять, подводят через сопротивление к коллектору и базе. Но его включают в противоположном направлении, чтобы запирающий слой не пропускал тока.




Схема полупроводникового триода.


Схема готова. Подадим управляющий сигнал.

Через проволочку эмиттера в дырочную область кристаллика входит импульс электрического поля. Он прорывает брешь в запирающем слое и увлекает туда дырки. Таким образом, дырки как бы впрыскиваются эмиттером в электронную область кристаллика. Недолго блуждая в кристалле, они успевают попасть под проволочку коллектора, А когда запирающий слой на мгновение обогащается здесь дырками, он делается электропроводным и для тока высокого напряжения, включенного между базой и коллектором. Толчок этого тока пролетает через запирающий слой в «запретном» направлении. Это немедленно сказывается на состоянии внешней цепи прибора. Там возникает усиленный сигнал. Он тем значительнее, чем ближе расположены на кристалле концы проволочек эмиттера и коллектора.

ДОРОГУ КРИСТАЛЛАМ

Итак, мы усилили слабый электрический сигнал при помощи кристалла, обошлись без радиолампы. Кристалл надежен. Он тверд и прочен. Он не лопнет, не разобьется, как стеклянный баллон. {121}

Специальная обработка германиевых кристаллов позволяет создать так называемые плоскостные полупроводниковые триоды. В них кристалл разделен на три сравнительно крупные области электронной и дырочной проводимости.

Плоскостные триоды не нуждаются в тончайших проволочных вводах, поэтому они еще прочнее и долговечнее. Кроме того, они способны пропускать через себя более значительные токи, устойчивее работают.

Полупроводниковые усилители отличаются и еще одним замечательным свойством - экономичностью. Ведь в них не нужно тратить энергию на разогрев катода, на создание сильного электрического поля. Если коэффициент полезного действия радиолампы составляет доли процента, то в кристаллических триодах он доходит до 50-60 процентов.

Во всем этом огромный выигрыш. Однако есть у полупроводниковых приборов и недостатки.

Тончайшие вводы и слои, ничтожные расстояния между электродами - все это, казалось бы, должно делать кристаллический триод исключительно быстродействующим, способным усиливать чрезвычайно частые электрические колебания. На самом деле как раз наоборот. В твердом теле, в кристалле электроны не столь свободны, как в пустоте радиолампы. Они как бы стеснены в возможностях изменять свое движение, и поэтому сверхвысокие частоты электрических колебаний, столь важные в современной радиотехнике, кристаллические приборам пока недоступны.

Во многих странах физики стремятся сделать полупроводниковые устройства более «поворотливыми», быстродействующими. На этом пути достигнуты некоторые успехи. Довольно «расторопны», например, триоды, в которых наружная поверхность электронная, а сам кристалл дырочный. Тогда в запирающий слой эмиттер впрыскивает электроны, а они почти вдвое подвижнее дырок. В результате {122} процессы, о которых мы говорили, совершаются гораздо быстрее. Современные кристаллические триоды такого типа успевают усиливать каждую секунду до десяти миллионов электрических колебаний.

Появились и еще более совершенные кристаллические усилители - тетроды - с четырьмя областями полупроводников разной проводимости. Среди кристаллов - это рекордсмены по быстроте действия. Они возбуждают или усиливают десятки, сотни, даже тысячи миллионов электрических колебаний в секунду. Более же частые колебания остаются и, очевидно, останутся областью вакуумной электроники,

Есть и другие недостатки у новых приборов. На кристаллах пока не удается делать аппаратуру большой мощности. Германий сильно меняет свойства при нагревании. Повышение температуры германиевые усилители переносят с трудом. Вот почему в последнее время все чаще предпочитают делать кристаллические приборы из кремния. Они менее капризны.

Правда, здесь возможен любопытный выход: заключать крошечные кристаллические усилители в столь же миниатюрные полупроводниковые электрохолодильники (о них вы читали выше - в главе «Погоня за теплом»). Такие опыты ставятся и дают хорошие результаты.

Все же иногда случается, что кристаллический усилитель, несмотря на всяческие меры предосторожности, без видимых причин вдруг меняет свойства. Не всегда приборы одного типа работают одинаково. Причина здесь одна: недостаточно изучены особенности полупроводниковых устройств, не разработана до конца технология их производства. Поэтому совсем неверно думать, что всюду радиолампы сразу сменятся полупроводниками.

Полупроводники оказываются весьма полезны и в развитии вакуумной Электроники. Из них вырабатывают новые высоко эффективные источники электронов для радиоламп, устройства, поджигающие разряд в ртутных {123} выпрямителях, и многое другое. Не вражда, а дружеское соревнование разворачивается между полупроводниками и вакуумными приборами.

В обеих областях впереди большой исследовательский труд, поиски новых систем, новых конструктивных решений. Замечательными изобретениями обогащается вакуумная электроника. Вместе с тем с каждым годом совершенствуются полупроводниковые радиоприборы. Огромная армия ученых, инженеров, радиолюбителей неустанно работает, своим трудом прокладывая дорогу кристаллам.

ПРОИЗВОДСТВО ПОД МИКРОСКОПОМ

В кристаллическом приборе все компактно и просто. Но нелегко дается эта простота. Филигранный труд вложен в миниатюрный полупроводниковый усилитель.

Сначала германиевую болванку на специальном станке распиливали алмазной пилой на тончайшие пластинки. Их и в руку не возьмешь - так они малы. Тем не менее их сортировали, очищали химическими растворами. Глядя в микроскоп, к кристаллику присоединили почти невидимые усики проводов, а противоположные концы припаяли к проволочкам потолще. Потом покрыли прибор защитным лаком, заключили в корпус, все пустоты заполнили особой пластмассой. Некоторые операции приходилось вести в безвоздушной среде,- а правильность сборки то и дело контролировать электрическими измерениями. Но и этим дело далеко не завершается. Много еще придется повозиться с полупроводниковым усилителем, прежде чем он будет окончательно готов.

Такая ювелирная работа почти вся выполняется вручную. И легко представить себе, каким огромным опытом, каким тонким мастерством должны обладать сборщики полупроводниковых радиоприборов.

Инженеры и ученые добиваются сейчас механизации и {124} даже автоматизации производства кристаллических диодов и триодов.

Вместо алмазной пилы для резки германия и кремния стали применять ультразвук. Лезвие безопасной бритвы, приделанное к часто вибрирующему стержню ультразвукового генератора, входит в хрупкий кристалл, как столовый нож в масло. А обычным способом обработать иной кристаллический полупроводник так же трудно, как, скажем, выпилить узорную звездочку из чайного сухаря. Ультразвук здесь экономит материалы (получается несравненно меньше опилок, не нужен драгоценный алмаз), ускоряет работу, а главное - открывает возможность ее механизации.

Применяется и оригинальный способ электрохимической обработки кристаллов. Для некоторых видов плоскостных полупроводниковых триодов нужно получать необычайно тонкие (0,005 миллиметра) пластинки германия. Никакой механической отделкой их не получишь. Но выход все же был найден.

На кристаллическую пластинку германия направляют с двух сторон тонкие струи травящего раствора. Они одновременно играют роль проводов: через них сквозь слой полупроводника пропускается электрический ток от батарейки. Полторы - две минуты кристалл разъедается этим электрохимическим способом. С двух сторон в пластинке германия образуются лунки, между которыми остается тончайшая пленка полупроводника.

Затем поверхность пленки таким же электрохимическим способом покрывают слоями металла.

Во время обработки нужно постоянно и исключительно тонко регулировать силу тока в струях раствора и в полупроводнике. Регулировку ведут световым лучом, направленным на пластинку германия. Ведь этот полупроводник значительно повышает свою проводимость при освещении. Сильнее направленный на него свет - и больше электропроводность пластинки; следовательно, и ток, {125} текущий через него и струи травящего раствора увеличиваются.

При производстве плоскостных триодов применяют также явление диффузии - медленное проникновение атомов одного вещества в толщу другого.

Предлагаются также и другие удивительные приемы изготовления кристаллических радиоприборов.

Некоторые ученые считают, что, вероятно, можно будет наращивать кристаллы с различными слоями. По мнению ряда специалистов, в одном крошечном кристаллике удастся создавать целые радиоэлектронные системы - подобно тому, как давно уже химики получают из растворов обычные кристаллы. Радиоприемник, построенный в колбе или в тигле химическим путем! Что может быть поразительнее!

Появляются и своеобразные машины-ювелиры для сборки кристаллических усилителей. Техника идет к тому, чтобы производство полупроводниковых приборов стало по-настоящему массовым, чтобы они были еще миниатюрнее. Инженеры сейчас всерьез говорят о создании матрицы объемом в детский кубик с тысячью кристаллическими триодами. И не только говорят, но и упорно работают над этой проблемой.

НОВЫЕ ЗАДАЧИ

Большое открытие никогда не остается изолированным. Оно выдвигает новые задачи, питает изобретательскую мысль в смежных областях. Это особенно хорошо видно на примере внедрения в радиотехнику полупроводников.

Как только были созданы первые образцы кристаллических усилителей, стало ясно, что размеры радиоаппаратов могут быть резко уменьшены. Но тут же возник вопрос: а антенна? Неужели она останется такой же длинной, как и раньше? Или, скажем, индукционные катушки, конденсаторы? Ведь если их не уменьшить, получится диспропорция {126} - и не только в размерах деталей, но и в их техническом уровне. В самом деле, ставить громоздкую проволочную катушку рядом с крошечным, идеальным по простоте и совершенству полупроводниковым усилителем - это, пожалуй, все равно, что освещать свечами поезда метрополитена. Так назрела задача: преобразовать буквально все радиодетали, перевооружить всю практическую радиотехнику.

И снова здесь пришли на помощь полупроводники, в первую очередь - материалы, называемые ферритами.

Каждый видел подкову магнита. Вы найдете ее в громкоговорителе, в любом электрогенераторе, в магнето автомобиля. Постоянные магниты имеют серьезный недостаток - они тяжелы. Чтобы облегчить их, металловеды разработали специальные сплавы. Некоторые из них весьма ценны. Но металл все же очень легким не сделаешь.

Отметим и другую особенность металлических магнитных материалов: они отлично проводят электрический ток. Это свойство в ряде случаев применяется с пользой - например, при высокочастотной закалке. Переменное поле разгоняет в металле электроны. Там возникают вихри электрических токов, которые быстро повышают температуру. Здесь это и требуется. Зато в других случаях нагрев вреден.

Возьмем, к примеру, сердечник трансформатора. Его совсем не нужно греть. Ведь на это уходит лишняя энергия. К тому же вихревые токи не дают магнитному металлу быстро размагничиваться и намагничиваться, тормозят такие процессы. А в современных радиоаппаратах часто необходимы весьма «поворотливые» магнитные вещества.

Много труда положили электрики и радиотехники, чтобы избавиться от вихревых токов. Сердечники трансформаторов, дросселей, катушек решили набирать из тонких железных пластинок, покрытых изоляционным лаком. Делали такие сердечники из изоляционной массы со вкрапленными в нее железными опилками. Пользу это кое-какую {127} приносило, но хотелось большего. Идеально было бы найти легкие магнитные вещества, почти совсем не проводящие электрический ток.

Именно такими оказались ферриты.

КЕРАМИЧЕСКИЕ МАГНИТЫ

Вид у ферритов совсем будничный. Серо-черные невзрачные пластинки, колечки, стерженьки. Сделаны они из самых обычных, широко распространенных в природе веществ - из окислов железа и некоторых других металлов. Обыкновенная руда магнетит тоже относится к ним.

Еще в прошлом столетии химики знали состав подобных соединений, их внутреннюю структуру, основные свойства. Казалось, наука давно взяла от них все, что они могут дать человеку.

Но в действительности вышло иначе. Несколько лет назад за исследование ферритов взялись физики. Они стали их размалывать в порошок, смешивать в разных пропорциях, прессовать, обжигать, спекать. И выяснилось, что, если такие материалы специальным образом обработать, они приобретают разнообразные и очень ценные сочетания электрических свойств с магнитными.

Есть среди ферритов материалы, которые молниеносно намагничиваются даже в слабом магнитном поле и также быстро меняют намагниченность в такт с переменами магнитного поля. Обмотанный проволокой стерженек из такого материала может служить отличной антенной.

Такие стерженьки можно увидеть сейчас во многих новых радиоприемниках и телевизорах. Антенны настолько невелики, что их монтируют прямо в корпусе. Например, приемник «Дорожный» оснащен антенной длиной в карандаш. Она заменяет много метров металлической проволоки. Магнитная ферритовая антенна может быть даже величиной со спичку! {128}



Ферритовые сердечники для катушек, трансформаторов, дросселей - чудесный подарок радиотехнике. Имея такой сердечник, уже не нужно ухищряться в борьбе с вихревыми токами, заботиться о быстроте перемагничивания. Трудно поверить, что крошечная спиралька из электропроводящего вещества, нанесенная кисточкой на ферритовую пластинку (иначе говоря, нарисованная), будет играть в приемнике ту же роль, какую обычно играет громоздкая индукционная катушка из проволоки.

Конечно, спиральку можно не только нарисовать, но и напечатать. Нетрудно напечатать и соединительные проводники и такие детали, как сопротивления (их, кстати, теперь удается делать размером в точку, которую оставляет на бумаге остро отточенный карандаш). Наконец, даже конденсаторы удается печатать, только не на феррите, а на пластинах из других веществ - сегнетоэлектриков, например из так называемых титанатов бария.

Титанаты бария и другие подобные вещества - это тоже замечательные материалы современной радиотехники. Несколько лет назад их ценные свойства раскрыл советский физик член-корреспондент Академии наук СССР Б. М. Бул. Применяя их, удается делать крошечные {129} конденсаторы - вариконды - с необычайными свойствами, создавать миниатюрные антенны и другие устройства, которые значительно упрощают радиоаппаратуру.

Внедрение кристаллических диодов и триодов, ферритовых деталей, варикондов, показывает, что даже сложные радиосистемы - целые радиопередатчики или радиоприемники - можно довести до ничтожных размеров. Открывается возможность создавать их целиком своеобразным типографским способом, подобно тому, как выпускаются открытки или почтовые марки.

ПИТАНИЕ КРИСТАЛЛОВ

Любой радиоаппарат надо питать энергией. На работу домашнего приемника уходят десятки ватт. Их берут из осветительной сети, от батарей, в последнее время от знакомых уже нам термоэлектрогенераторов.

А если радиоприемники получат размер почтовой марки и будут попросту пришиваться к лацкану пиджака? Неужели их тоже придется включать в сеть или присоединять к тяжеловесным громоздким батареям?

Нет, такие источники питания для миниатюрного полупроводникового радиоаппарата не нужны. Энергии ему потребуется в десятки, сотни, даже во многие тысячи раз меньше, чем обычными современным радиоустройствам. Поэтому ему хватит маленькой батарейки, которые, кстати, теперь научились делать емкими и долговечными.


Вот одна из них - она вдвое меньше спички. Вес ее - 5 граммов, срок службы - больше года. Есть батарейки двухгодичного срока службы величиной с пуговицу. Существуют также крошечные аккумуляторы.

Пожалуй, еще интереснее так называемая атомная батарея. Срок ее непрерывного действия - более двадцати лет. {130}

Устройством атомная батарея напоминает полупроводниковый вентильный фотоэлемент, только источником энергии в ней служит не свет, а радиоактивное излучение. На кристалл кремния, в котором особой обработкой созданы электронная и дырочная области, нанесен слой радиоактивного стронция - вещества, которое нетрудно получить в атомном котле. Претерпевая распад, атомы стронция испускают так называемые бета-лучи, то есть попросту поток электронов.

Каждый из них, попадая в полупроводник, освобождает в нем около двухсот тысяч электронов проводимости.

Такую батарею можно вмонтировать в радиоприемник прямо при его изготовлении, и она будет служить, пока приемник не устареет (можно ручаться, что за двадцать лет это произойдет наверняка).

Впрочем, полупроводниковые радиоаппараты иногда обходятся и вовсе без батарей. Энергию им могут давать, например, вентильные фотоэлементы - ловушки света. Недавно карманный «солнечный» радиоприемник с четырьмя кристаллическими усилителями построен инженерами одной из американских фирм. Стоит некоторое время подержать его на свету, и он потом может пятьсот часов работать в полной темноте. Вес этого приемника - 280 граммов.

Наконец, радиолюбители придумали и другой удивительный способ безбатарейного питания радиоаппарата. Крошечной полупроводниковой радиостанции дает электроэнергию... голос человека - тот самый звук, который передается по радио.

Вы говорите в микрофон. Там звуки голоса преобразуются в импульсы электрического тока. Некоторая доля энергии полученного пульсирующего тока поступает в радиопередатчик для усиления и преобразования в радиоволны. А другая доли микрофонного тока сглаживается в специальном устройстве и идет на питание этого же {131} передатчика, а заодно и приемника, воспринимающего ответные радиосигналы. Звук с помощью полупроводниковых кристалликов словно сам себя переделывает в радиоволны. Вся эта система необычайно компактна: радиостанция умещается в корпусе микрофона.

МИКРОРАДИОТЕХНИКА

Спросим радиоинженера - энтузиаста полупроводников:

Каких же наименьших размеров могут достичь радиоаппараты на кристаллах?

Инженер пожмет плечами:

В наши дни специалисты не удивятся, прочитав сообщение о радиоприемнике величиной с пшеничное зернышко!

Восхищаясь этим чудом, этим поразительным достижением науки, мы вместе с тем невольно задумаемся о возможностях его практической службы. И если уж заходит речь о приемнике с пшеничное зерно, возникает вопрос: зачем все-таки такой микроскопический радиоаппарат? Он годится разве для радиофикации муравейников, похож на безделушку, вроде стальной блохи, которую описал Лесков в рассказе «Левша». Помните, крохотная «сориночка», которую надо было завести ключиком, и тогда она принималась танцевать. Если радиоаппарат-малютка под стать лесковской блохе, то какая от него польза? Ровно никакой.

Конечно, вовсе не к предельному уменьшению радиоустройств стремится радиотехника на полупроводниках. Задача не в том, чтобы ставить рекорды миниатюрности, а в том, чтобы в удобные объемы вмещать самое совершенное оборудование.

Каково оно?

Не такой уж редкостью стал сложный радиоприемник {132} величиной с портсигар. Вы кладете его в карман и слушаете радио по пути на работу в троллейбусе.

Приемно-передающую радиоустановку на кристаллах удается уместить в спичечной коробке. Это отличное подспорье, например, в спорте. Парашютист, впервые бросившийся с самолета в воздушную бездну, разговаривает со своим опытным товарищем, находящимся на земле, выслушивает его спокойные советы. Тренер дает по радио указания лыжнику-слаломисту, пловцу, бегуну.

А как полезны такие миниатюрные радиостанции в строительном деле! Бригадир каменщиков сможет постоянно поддерживать связь с машинистом подъемного крана. Не нужно будет надрывать голос криком, уйдут в прошлое возгласы «майна», «вира», отпадет необходимость в рупорах.

Дальше - новые возможности. Представьте себе телефонный аппарат будущего. Это либо маленькая пластинка в кармане пиджака, либо, скажем, специально оборудованная авторучка: с одной стороны микрофон, с другой - наушник вроде желудя.



Для телефона станут лишними провода. Ультракороткие радиоволны свяжут наши квартиры, заводы и учреждения с автомобилями и самолетами, с железнодорожными поездами и пешеходами. Человек сможет вести телефонные переговоры в любом месте, в любое время, с любым пунктом. Эта проблема в наши дни всерьез обсуждается на страницах специальных журналов. Есть уже и общепринятый термин для такой связи - «всеобщая».

РАДИОСТАНЦИЯ В МЯЧЕ

Как вы думаете, можно ли радиопередатчиком играть в футбол?

Вопрос человека, который выжил из ума, - скажете вы.

Оказывается, ответ этот слишком поспешный.

Полупроводниковые радиоаппараты делают теперь настолько прочными и надежными, что их можно приделать к покрышке мяча, не рискуя, что от ударов футболистов аппараты выйдут из строя. А какая польза от этого? Зачем нужна радиостанция в мяче?


В Америке распространена спортивная игра гольф. По маленькому твердому мячу бьют палкой - он подскакивает, катится, попадает в лунки, но иногда теряется в траве, в кустах. Игрокам подчас приходится подолгу искать его. И вот, чтобы ускорить поиски, чтобы мячи не пропадали, в них предложили ставить радиопередатчики на полупроводниках. Как туго ни приходится мячу, радиопередатчик в нем действует не переставая. Он излучает радиосигнал, который можно уловить приемником с направленной антенной, вделанными в палку игрока. Если {134} мяч потерялся, игрок прикладывает к уху радиопалку и без труда находит направление, откуда слышится «голос» пропавшего мяча. Теперь найти его совсем легко.

Правда, это применение полупроводниковых усилителей носит скорее рекламный, чем практический характер. С той же целью радиопередатчики на кристаллах монтируют в обыкновенном слесарном молотке. Можно как угодно стучать молотком, аппарат не перестанет работать.

Подобных радиотехнических курьезов, игрушек на полупроводниках, делают сейчас немало. Они дают особенно наглядное представление о величайшей практической ценности кристаллических диодов и триодов. Аппаратура, которую мы привыкли считать нежной и хрупкой, приобретает прочность камня. Ее можно устанавливать в высотной ракете, даже в артиллерийском снаряде - для изучения его полета. В самой беспокойной обстановке она будет служить безотказно.

Каким незыблемо прочным становится с приходом полупроводников радиооборудование самолетов, вертолетов, кораблей. Не страшны уже самые резкие удары, самая сильная тряска!

Мы привели лишь несколько примеров замечательной службы полупроводниковой радиотехники. Может быть, они и не самые показательные.

Но сейчас еще очень трудно предвидеть все богатейшее многообразие возможностей применения полупроводников в этой области. Чуть ли не каждый день приносит вести о новых находках, новых решениях.




На рисунке справа - возможный облик телевизора, собранного целиком на полупроводниках. Вместо электронно-лучевой трубки в нем будет применен своеобразный плоский светящийся экран с металлической сеткой.


Строят звукозаписывающие аппараты величиной с чернильницу. Создается телевизор без вакуумной трубки, с плоским экраном. Его можно будет повесить на стену, как картину, или положить на стол, словно перекидной календарь. Когда-нибудь появятся и карманные телевизоры - видеотелефоны на манер записной книжки.

МУЗЫКА ЗАВТРА

Рояль изобретен около двухсот пятидесяти лет назад. Скрипка, виолончель, разнообразные медные и деревянные трубы созданы еще раньше.

За века все они достигли высшего совершенства. Можно с уверенностью сказать: красивее звука, чем в современных музыкальных инструментах, из струн, язычков и вибрирующих воздушных столбов не извлечешь. Но значит ли это, что невозможно создать более красивые звучания? Конечно, нет. За последние десятилетия появились энтузиасты новой музыки - электрической. Они построили немало инструментов, обладающих чудесными, неведомыми прежде голосами, Электрические колебания там {136} рождаются, преобразуются, усиливаются в радиолампах. Поэтому всем электромузыкальным инструментам присущ недостаток ламповых радиоприемников: они недолговечны, тяжелы, громоздки. Например, одноголосый инструмент эмиритон весит около 90 килограммов. Слишком много!

Сейчас энтузиасты электрической музыки горячо взялись за освоение полупроводников. Первые электроорганы с кристаллическими генераторами и усилителями уже построены. Пройдет несколько лет - ив наших домах, в парках, на улицах зазвенят чудесные электрические трубы, колокола, струны. Композиторы станут создавать не только партитуры, но и новые тембры. Появятся легкие и надежные электромузыкальные инструменты, доступные каждому, не требующие для освоения многих лет ученья.

Обогащенная наукой, музыкальная культура станет еще ближе народу.

КРИСТАЛЛЫ-ВЫЧИСЛИТЕЛИ

Вершина современной электроники - это, бесспорно, вычислительные устройства. Они производят сложнейшие математические расчеты, управляют машинами, переводят тексты с одного языка на другой, решают шахматные задачи. Человек дает машине «поручение», а она потом сама за несколько часов или даже минут выполняет титанический вычислительный труд - труд, на который ушли бы долгие годы работы многих сотен людей.

Электронные вычислительные машины необычайно сложны и громоздки. Они занимают огромные залы, иногда целые здания. И каждая насчитывает тысячи радиоламп. Нетрудно понять, какой замечательный эффект дает здесь применение полупроводников. Счетные машины на кристаллах требуют в несколько раз меньше места, значительно легче, несравненно экономнее в потреблении {137} энергии, а главное - надежнее. Трехмиллиметровое ферритовое колечко, пересеченное несколькими тонкими проволочками, может заменить в счетной машине сразу пару радиоламп и несколько других деталей. Ферриты иных типов играют роль своеобразных ячеек памяти электронного счетного устройства.

В будущем, несомненно, появятся настольные, а может быть, и карманные вычислительные машины на полупроводниках. То будут средства подлинно всесторонней механизации уже не только физического, но и умственного труда человека.



Один из узлов электронно-счетной машины на вакуумных лампах. Слева - такой, же узел на ферритовых деталях.


Электронная вычислительная техника придет на помощь метеорологам, и мы получим астрономически точные прогнозы погоды. Бухгалтеры, библиотекари, диспетчеры поручат машинам составление различных каталогов, информационных сводок, расписаний, статистических отчетов.

Соединенные со светофорами, вычислительные машины будут регулировать уличное движение.

Сделаны первые опыты автоматического управления с земли движением самолетов. По командам электронной вычислительной машины самолет самостоятельно стартует, поднимается в воздух, выполняет маневры, приземляется в нужном {138} месте. Как далеко оставила позади эта чудесная автоматика «зрячий» автомобиль научно-фантастического рассказа!

В промышленности электронные устройства станут управлять цехами и целыми заводами. Человек заставит их выдавать сырье, контролировать и изменять технологию, сортировать, подсчитывать продукцию. И всюду здесь будут нести безотказную службу полупроводники.

НАВСТРЕЧУ БУДУЩЕМУ

Наше время называют началом атомного века. Оправданное имя, только неполное. Переделка планеты на благо человечества связана со множеством великих побед науки. Здесь и достижения ядерной физики, и бурное развитие электроники, и прогресс физики полупроводников, и поразительные успехи химии. Здесь могучая и умная техника энергетики, металлургии, машиностроения, строительства, сельского хозяйства.

Учение о полупроводниках идет вперед в едином строю со всеми важнейшими отраслями точного знания и индустрии, опираясь на их многолетний опыт.

В свою очередь, физика полупроводников обогащает смежные области науки и техники.

Выяснилось, например, что полупроводниковые материалы являются великолепными катализаторами - ускорителями химических процессов. Член-корреспондент Академии наук СССР С. З. Рогинский на одной научной конференции заметил, что химики до недавних пор были на положении «мещанина во дворянстве». Герой Мольера не подозревал, что всю жизнь говорит прозой, а химики не знали, что во многих химических процессах они имеют дело с полупроводниками, с электронными процессами в полупроводниках.

Приборостроению предстоит освоить еще одну особенность {139} полупроводников - смещение в них электрического тока под действием внешнего магнитного поля. На этой основе можно создать небывало чувствительные и точные компасы, построить аппараты, которые способны уловить перемещение предметов на десятимиллионную долю миллиметра!

Физике полупроводников пришлось встретиться и с такой неожиданной для этой науки областью знания, как физиология. Оказывается, и здесь электронные явления играют немалую роль. Венгерский физиолог Э. Эрнст не так давно заметил, что ряд характерных особенностей нервных процессов находит простое объяснение, если допустить, что некоторые структурные образования нервов являются своеобразными полупроводниковыми выпрямителями. Кто знает, может быть, хирурги, применяя какие-то неведомые пока полупроводники, научатся делать искусственные нервы!

Еще мало изучены механические свойства полупроводниковых веществ. Между тем поле подобных исследований широко и благодарно. Некоторые полупроводники исключительно прочны и жаростойки - выдерживают нагрев до температуры более 4000 градусов! Быть может, из таких материалов когда-нибудь будут строиться камеры сгорания двигателей межпланетных кораблей, оборудование атомных двигателей.

Сегодняшний день учения о полупроводниках приподнял перед нами лишь уголок завесы времени, скрывающей завтра. Но и через эту щелку мы разглядели немало. В городе завтрашнего дня мы встретили здания, отапливающиеся морозом, в пустынях - удивительные ловушки лучистой энергии. Мы предугадали рождение солнечной энергетики. Мы увидели всеобщее распространение новой радиотехники, победное шествие миниатюрных машин со зрением и памятью, уловили звуки неслыханных музыкальных инструментов.

Это крупицы нашего будущего. Но добыть их нелегко. {140} Предстоит преодолеть тысячи больших и малых препятствий, еще дальше развить теорию полупроводников - не только кристаллических, но и стекловидных и жидких, найти лучшие способы их очистки, обработки.

Герой Социалистического Труда академик А. Ф. Иоффе - старейший советский ученый, отдавший более четверти века работе в области физики полупроводников, говорит: «Мы вступаем в новую эру технического прогресса. У нас достаточно сил и возможностей, и моральных и материальных, чтобы решать задачи любого масштаба в ближайшие годы, в ближайшие десятилетия».

Ученые и инженеры Советской страны уверенно смотрят вперед. Люди смелой мечты, ясного разума, неутомимые энтузиасты науки, они сегодня готовят то, что завтра станет достоянием народа, что войдет в грядущие бессчетные века коммунизма.


), и веществами, [фактически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1-1%, можно изменить их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами - электронами, но и равными им по величине положительными зарядами - дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких-нибудь примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по-другому можно сказать, что они переходят в зону проводимости). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд , равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньше энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки - это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativus и positivus электронную электропроводность называют электропроводностью я-типа, а дырочную - р-типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой - неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по-прежнему остается 2 типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Содержание в 1 см3 (концентрация) электронов п и дырок р для данного полупроводника при данной температуре есть величина постоянная: n- p=const. Это значит, что, увеличивая за счет введения

Если приложить к структуре металл - диэлектрик полупроводник n-типа напряжения (указанной на рисунке полярности), то в приповерхностном слое полупроводника возникает электрическое поле, отталкивающее электроны. Этот слой оказывается обедненным электронами и будет обладать более высоким сопротивлением. При изменении полярности напряжения электроны будут притягиваться электрическим полем и у поверхности создастся обогащенный слой с пониженным сопротивлением.

В полупроводнике р-типа, где основными носителями являются положительные заряды - дырки, та полярность напряжения, которая отталкивала электроны, будет притягивать дырки и создавать обогащенный слой с пониженным сопротивлением. Схема полярности в этом случае приведет к отталкиванию дырок и образованию приповерхностного слоя с повышенным сопротивлением.

Следующее важное свойство полупроводников - их сильная чувствительность к температуре и облучению. С ростом температуры повышается средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти ее. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по-разному реагируют на те или иные участки спектра облучения.

В качестве основных полупроводниковых материалов используют кристаллы кремния и германия, а в роли примесей - бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Получение полупроводниковых кристаллов с заданным содержанием примесей - сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности.блоках электронной вычислительной машины. Инженеры не могут сегодня обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить


Полупроводниковый кристалл представляет собой систему, состоящую из атомных ядер и электронов, в большей или меньшей степени связанных с ядрами.  

Полупроводниковый кристалл или комплект кристаллов, на которых реализуется центральный процессор ЭВМ (С. Обязательными компонентами микропроцессора являются арифметико-логическое устройство (А. Они характеризуются скоростью, длиной слова (внутренней и внешней), архитектурой (А. Эффективность микропроцессора определяется сочетанием этих характеристик, а не только временем цикла. Большинство микропроцессоров имеет фиксированную систему команд. Микропрограммируемые процессоры оснащаются управляющим запоминающим устройством, в котором хранится микропрограмма или встроенные программы, определяющие набор реализуемых команд. Такие процессоры могут быть однокристальными или разрядно-модульными (В.  

Полупроводниковые кристаллы отличаются от диэлектрических большими значениями показателя преломления (до - 9), что требует во многих случаях нанесения просветляющих покрытий. Оптические свойства полупроводников весьма сильно зависят от температуры. Полупроводниковые кристаллы являются перспективными оптическими материалами ввиду возможности синтеза большего числа полупроводниковых соединений с самыми различными оптическими характерист иками.  

Полупроводниковые кристаллы, используемые в этих диодах, не претерпели каких-либо существенных конструктивных изменений, однако отсутствие герметичного корпуса требует особенно тщательной их защиты от воздействия окружающей среды. Для этого используют окисные или другие диэлектрические пленки, которые получают в процессе изготовления полупроводникового активного элемента в сочетании с последующим нанесением лаков или смол, служащих также и для защиты кристаллов от случайных механических воздействий, а также герметизацию всей схемы. Надо отметить также сложность монтажа диодов с круглым керамическим держателем в схему, так как трудно добиться полного совмещения полоски на держателе с полоской на подложке, в результате чего в передающем тракте возникают ступеньки, увеличивающие потери в схеме. В связи с тем, что теплопроводность материалов, применяемых для изготовления подложек микросхем, значительно ниже (за исключением бериллиевой керамики), чем у металлов, мощность рассеяния у приборов с керамическим теплоотводом меньше, чем у диодов в корпусах с металлическими кристал-лодержателями.  

Полупроводниковый кристалл представляет собой систему, состоящую из огромного числа атомных ядер и электронов.  

Полупроводниковые кристаллы выращивают в горизонтальных лодочках по тому или иному варианту метода Бриджмена - Стокбаргера.  

Полупроводниковый кристалл с прямоугольным поперечным сечением 1X2 мм2 и длиной 2 см содержит 10 см-3 акцепторов. Затем этот кристалл легируется донорами с концентрацией 5 - Ю16 см-3.  

Полупроводниковый кристалл способен заменить не одну лампу, а целый ламповый блок со множеством различных деталей, стать основой для аппаратуры принципиально нового типа, где функции электронных приборов выполняют небольшие группы различных молекул.  

Полупроводниковый кристалл чаще всего изготавливается из кремния. Благодаря сложной технологической обработке кристалла в нем создаются электронные молекулы, соединенные в электрическую схему. Это позволяет в одном кристалле (размером примерно 5x5 мм) создавать сотни тысяч взаимосвязанных электронных молекул, выполняющих сложные преобразования информации. Стремление исследователей создать еще более компактные интегральные схемы приводит к поискам решений, в которых элементами этих схем будут молекулы вещества в обычном их понимании.  

Прямозонные полупроводниковые кристаллы обладают очень высоким однофотонным поглощением при зона-зонном переходе. Поэтому необходимо очень точно подстраивать частоту излучения, чтобы потери, вносимые межзонным поглощением, не погубили процесс четырехволнового поглощения. В настоящее время в прямозонных полупроводниках наиболее часто используются процессы многофотонного, в частности двухфотоиного, поглощения, например, в кристаллах CdS и CdSe. При этом коэффициент поглощения определяется мощностью падающего излучения и может регулироваться за счет ее изменения. Возникающая же плазма свободных носителей по-прежнему приводит к изменению показателя преломления.  

Пьезоэлектрические полупроводниковые кристаллы типа А2В6 и А3В5 (ZnS, CdS, ZnO, GaAs и др.) представляют особый интерес из-за удачного сочетания пьезоэлектрических и полупроводниковых свойств.  

Использовался полупроводниковый кристалл, на заднюю грань которого было нанесено высокоотражаюшее покрытие 3i, а передняя грань была просветлена. Излучение лазера объективом / направлялось в кристалл BaTiOa (пятно с d 1 мм), после прохождения которого оно с помощью зеркал Зг и Зз формировало петлю накачки и вновь попадало в кристалл.  

Рассмотрим полупроводниковый кристалл с шириногс запрещенной зоны ДЕ и выясним, какова природа первого возбужденного состояния в нем. IB валентной зоне заняты электронами, а зона проводимости совершенно пуста.  

Некоторые изолирующие и полупроводниковые кристаллы обладают способностью изменять свою проводимость под действием ядерных излучений. Это свойство используют на практике в так называемых кристаллических детекторах. Различают два типа кристаллических детекторов: диэлектрические кристаллические счетчики и полупроводниковые кристаллические счетчики.