Радиотелескопы и их характеристики, принцип действия интерферометров, космический "радиоастрон". Радиоастрономия. Радиотелескопы. Основные характеристики

На фото изображена Мерчисонская радиоастрономическая обсерватория, которая находится в Западной Австралии. Она включает в себя 36 комплексов с такими вот зеркальными антеннами, работающими в диапазоне 1.4 ГГц. Диаметр главного зеркала каждой антенны составляет 12 метров. Совместно эти антенны являются частью одного большого радиотелескопа Pathfinder. Это самый большой из всех существующих на сегодняшний день радиотелескопов.

Десятки зеркальных антенн используются для исследований и наблюдения за галактикой. Они способны заглянуть в такую даль, на которую не способен самый крупный в мире оптический телескоп Hubble. Совместно эти антенны работают как один большой интерферометр и образуют массив, способный собирать электромагнитные волны с самого края вселенной.

Сотни тысяч антенн по всему миру объединяются в один радиотелескоп Square Kilometre Array

Подобные радиотелескопы развернуты по всему земному шару, и многие из них к 2030 году планируется объединить в единую систему Square Kilometre Array (SKA) , имеющую общую площадь приема более одного квадратного километра, как вы наверняка догадались из названия. В него будет входить более двух тысяч антенных систем, расположенных в Африке и полмиллиона комплексов из Западной Австралии. В проекте SKA принимает участие 10 стран: Австралия, Канада, Китай, Индия, Италия, Нидерланды, Новая Зеландия, Южная Африка, Швеция и Соединенное Королевство:

Никто и никогда не строил ничего подобного. Система радиотелескопов SKA позволит решить самые насущные загадки вселенной. Он сможет измерить огромное количество пульсаров, звездных осколков и других космических тел, излучающих электромагнитные волны вдоль своих магнитных полюсов. Наблюдая за подобными объектами вблизи черных дыр, смогут быть открыты новые физические законы и, возможно, будет разработана единая теория квантовой механики и гравитации.

Строительство единой системы SKA начинается поэтапно с более мелких составных частей и Pathfinder в Австралии будет одной из таких частей. Кроме этого в настоящее время уже строится система SKA1, которая будет являться лишь малой частью будущей Square Kilometre Array, но при завершении строительства станет крупнейшим радиотелескопом в мире.

SKA1 будет включать в себя две части на разных континентах в Африке и Австралии

SKA1 будет состоять из двух частей: SKA1-mid в южной части Африки, и SKA1-low в Австралии. SKA1-mid изображена на рисунке ниже и будет включать в себя 197 зеркальных антенн диаметром от 13.5 до 15 метров каждая:

А система SKA1-low будет рассчитана на сбор низкочастотных радиоволн, которые появились в космосе миллиарды лет назад, когда объекты, подобные звездам, только начинали свое существование. Для приема этих радиоволн радиотелескоп SKA1-low не будет использовать зеркальные антенны. Вместо этого будет установлено множество более мелких турникетных антенн, предназначенных для сбора сигналов в широком диапазоне частоте, в том числе телевизионном и FM-диапазонах, которые совпадают с частотой излучения старейших источников во вселенной. Антенны SKA1-low работают в диапазоне от 50 до 350 МГц, их внешний вид изображен ниже:

К 2024 году руководители проекта SKA планируют установить более 131 000 подобных антенн, сгруппированных в кластеры и разбросанных по пустыне на десятки километров. В один кластер будет включено по 256 таких антенн, сигналы которых будут объединяться и передаваться через одну волоконно-оптическую линию связи. Низкочастотные антенны будут работать вместе, принимая излучение, возникшее во вселенной миллиарды лет назад. И тем самым, помогут понять физические процессы, происходящие в далеком прошлом.

Принцип работы радиотелескопов

Антенны, объединенные в один общий массив, работают по тому же принципу, что и оптический телескоп, вот только радиотелескоп фокусирует не оптическое излучение, а принимаемые радиоволны. Законы физики диктуют такие требования, что чем выше принимаемая длина волны, тем больше должен быть диаметр зеркальной антенны. Вот так, например, выглядит радиотелескоп без пространственного разнесения приемных антенных систем, - действующий пятисотметровый сферический радиотелескоп FAST в юго-западной провинции Гуйчжоу в Китае. Этот радиотелескоп в будущем также станет частью проекта Square Kilometre Array (SKA):

Но увеличивать диаметр зеркала до бесконечности не получится, а реализация интерферометра как на фото выше, не всегда и не везде возможна, поэтому приходится использовать большое количество территориально разнесенных антенн меньшего размера. Например, таким видом антенн для радиоастрономии являются Murchison Widefield Array (MWA). Антенны MWA работают в диапазоне от 80 до 300 МГц:

Антенны MWA также входят в состав системы SKA1-low в Австралии. Они также способны заглянуть в темный период ранней вселенной, называемой эпохой реионизации. Эта эпоха существовала 13 миллиардов лет назад (примерно через миллиард лет после Большого взрыва), когда только зарождающиеся звезды и другие объекты начали нагревать вселенную, заполненную атомами водорода. Примечательно то, что до сих пор можно обнаружить радиоволны, излучаемые этими нейтральными атомами водорода. Волны испускались с длиной волны 21 см, но к тому времени, как они достигли Земли, прошли миллиарды лет космической экспансии, растянувшие их еще на несколько метров.

Антенны MWA будут использоваться для того, чтобы обнаружить эхо дальнего прошлого. Астрономы надеются, что изучение этого электромагнитного излучения поможет глубже понять, как формировалась ранняя вселенная, и как структуры, подобные галактикам, формировались и изменялись в эту эпоху. Астрономы отмечают, что это одна из основных фаз во время эволюции Вселенной, которая совершенно нам неизвестна.

На изображении ниже секции с MWA-антеннами. Каждая секция содержим по 16 антенн, которые объединяются между собой в единую сеть с помощью оптоволокна:

Антенны MWA принимают радиоволны частями с разных направлений одновременно. Входящие сигналы усиливаются в центре каждой антенны с помощью пары малошумящих усилителей, а затем направляются в ближайший формирователь луча. Там волноводы различной длины придают сигналам антенны определенную задержку. При правильном выборе этой задержки формирователи луча "наклоняют" диаграмму направленности массива так, что радиоволны, поступающие с определенного участка неба, достигают антенну в одно и то же время, как если бы они принимались одной большой антенной.

Антенны MWA делятся на группы. Сигналы от каждой группы отправляются на один приемник, который распределяет сигналы между различными частотными каналами, а затем отправляет их в центральное здание обсерватории по оптоволокну. Там с помощью специализированных программных пакетов и блоков обработки графики данные коррелируются, перемножая сигналы от каждого приемника и интегрируя их по времени. Этот подход позволяет создать единый сильный сигнал, как будто он был принят одним большим радиотелескопом.

Подобно оптическому телескопу, дальность видимости такого виртуального радиотелескопа пропорциональна его физическому размеру. В частности, для виртуального телескопа, состоящего из набора зеркальных или фиксированных антенн, максимальное разрешение телескопа определяется его расстоянием между несколькими приемными частями. Чем больше это расстояние, тем точнее разрешение.

Сегодня астрономы используют это свойство для создания виртуальных телескопов, которые охватывают целые континенты, что позволяет увеличить разрешение телескопа настолько хорошо, чтобы разглядеть черные дыры в центре Млечного пути. Но размер радиотелескопа не является единственным требованием для получения детальной информации о далеком объекте. Качество разрешения зависит также от общего количества приемных антенн, частотного диапазона и расположения антенн относительно друг друга.

Данные, полученные с помощью MWA, отправляются через сотни километров в ближайший центр обработки данных с суперкомпьютером. MWA может отправлять более 25 терабайт данных в день и в ближайшие годы c выходом SKA1-low эта скорость станет еще выше. И 131 000 антенн в составе радиотелескопа SKA1-low, работая в одном общем массиве, будет собирать каждый день более терабайта данных.

А вот так решается проблема с электропитанием радиотелескопов. В Мерчисонской радиоастрономической обсерватории электропитание антенных комплексов обеспечивается за счет солнечных панелей емкостью в 1,6 мегаватт:

До недавнего времени антенны обсерватории работали на дизель-генераторах, а сейчас помимо солнечных панелей она имеет еще и огромное количество блоков литиево-ионных батарей, которые могут хранить 2,6 мегаватт-часов. Некоторые части антенного массива вскоре получат собственные солнечные панели.

В таких амбициозных проектах всегда довольно остро стоит вопрос финансирования. На данный момент бюджет строительства SKA1 в Южной Африке и Австралии составляет около 675 миллионов евро. Это сумма, установленная 10 странами-членами проекта: Австралией, Канадой, Китаем, Индией, Италией, Нидерландами, Новой Зеландией, Южной Африкой, Швецией и Соединенным Королевством. Но это финансирование не покрывает всю стоимость SKA1, на которые надеются астрономы. Поэтому обсерватория пытается привлечь больше стран к партнерству, которое могло бы увеличить финансирование.

Заключение

Радиотелескопы позволяют наблюдать за далекими космическими объектами: пульсарами, квазарами и др. Вот так, например, с помощью радиотелескопа FAST удалось обнаружить в 2016 году радиопульсар:

После обнаружения пульсара удалось установить, что пульсар в тысячу раз тяжелее Солнца и на земле один кубический сантиметр такого вещества весил бы несколько миллионов тонн. Сложно переоценить значимость информации, которую можно получить с помощью вот таких необычных радиотелескопов.

Принцип действия радиотелескопа

2.1.1 Радиотелескоп состоит из двух основных элементов: антенного устройства и очень чувствительного приёмного устройства - радиометра. Радиометр усиливает принятое антенной радиоизлучение и преобразует его в форму, удобную для регистрации и обработки.

Конструкции антенн радиотелескопов отличаются большим разнообразием, что обусловлено очень широким диапазоном длин волн, используемых в радиоастрономии (от 0,1 мм до 1000 м). Антенны радиотелескопов, принимающих мм, см, дм и метровые волны, чаще всего представляют собой параболические отражатели, подобные зеркалам обычных оптических рефлекторов. В фокусе параболоида устанавливается облучатель - устройство, собирающее радиоизлучение, которое направляется на него зеркалом. Облучатель передаёт принятую энергию на вход радиометра, и, после усиления и детектирования, сигнал регистрируется на ленте самопишущего электроизмерительного прибора. На современных радиотелескопах аналоговый сигнал с выхода радиометра преобразуется в цифровой и записывается на жёсткий диск в виде одного или нескольких файлов.

Для направления антенн в исследуемую область неба их устанавливают обычно на Азимутальных монтировках, обеспечивающих повороты по азимуту и высоте (полноповоротные антенны). Существуют также антенны, допускающие лишь ограниченные повороты, и даже полностью неподвижные. Направление приёма в антеннах последнего типа (обычно очень большого размера) достигается путём перемещения облучателей, которые воспринимают отражённое от антенны радиоизлучение.

2.1.2 Принцип работы радиотелескопа больше схож принципом работы фотометра, нежели оптического телескопа. Радиотелескоп не может строить изображение непосредственно, он лишь измеряет энергию излучения, приходящего с направления, в котором «смотрит» телескоп. Таким образом, чтобы получить изображение протяженного источника, радиотелескоп должен промерить его яркость в каждой точке.

Ввиду дифракции радиоволн на апертуре телескопа, измерение направления на точечный источник происходит с некоторой ошибкой, которая определяется диаграммой направленности антенны и накладывает фундаментальное ограничение на разрешающую способность инструмента:

где - длина волны, - диаметр апертуры. Высокая разрешающая способностью позволяет наблюдать более мелкие пространственные детали исследуемых объектов. Чтобы улучшить разрешающую способность, нужно либо уменьшить длину волны, либо увеличить апертуру. Однако использование малых длин волн повышает требования к качеству поверхности зеркала. Поэтому обычно идут по пути увеличения апертуры. Увеличение апертуры также позволяет улучшить ещё одну важную характеристику - чувствительность. Радиотелескоп должен обладать высокой чувствительностью, чтобы обеспечить надёжную регистрацию как можно более слабых источников. Чувствительность определяется уровнем флюктуаций плотности потока :

,

где - мощность собственных шумов радиотелескопа, - эффективная площадь (собирающая поверхность) антенны, - полоса частот и - время накопления сигнала. Для повышения чувствительности радиотелескопов увеличивают их собирающую поверхность и применяют малошумящие приёмники и усилители на основе мазеров, параметрических усилителей и т. д.

Опытные радисты знают: когда в радиоприёмнике иногда раздаются шум и треск, не стоит сразу винить аппаратуру: вполне возможно, что это подаёт голос... Солнце!

Впервые о том, что Солнце имеет собственную «радиостанцию», люди узнали в 30-х годах прошлого века. Открывателем космических радиоволн стал молодой физик Карл Янский. Он работал в одной из американских радиокомпаний, и ему поручили изучить направление прихода атмосферных коротковолновых радиопомех.

Молодой исследователь сконструировал специальную антенну, способную принимать короткие волны. Вооружившись этой антенной, он стал изучать источники радиопомех и их направление. Каково же было его удивление, когда прибор упрямо стал указывать на... солнечный диск! Причем эти шипящие помехи повторялись каждые 24 часа. Это указывало на то, что источник помех может быть связан с Солнцем (24 часа, как мы помним, длятся солнечные сутки на Земле). Но проанализировав полученные данные более тщательно, Карл Янский увидел, что обнаруженный им радиосигнал повторялся на каждые 24 часа, а каждые 23 часа 56 минут - это уже длительность звёздных суток, а не солнечных, то есть период вращения Земли относительно дальних звезд, а не Солнца. Сверившись с астрономическими картами, Карл Янский обнаружил, что источником излучения была область в центре нашей галактики Млечный Путь , в созвездии Стрельца.

Карл Янский опубликовал статью, в которой рассказал о своем открытии, однако ему не поверили. Но факты - упрямая вещь. Радиоголоса были обнаружены и у других звёзд, у планет и прочих небесных объектов. Так было положено начало новой науке - радиоастрономии. Она позволила узнать о Вселенной много такого, о чем люди раньше и не подозревали.


Круговая "антенна-карусель" Карла Янского - первый радиотелескоп

Антенна современного радиотелескопа давно уже не напоминает ту «раскладушку», с которой работал Янский.


Радиотелескоп РТ-32 РАО "Бадары"
Находится в урочище Бадары Тункинского р-на республики Бурятия (Россия).

Чаще всего это гигантская металлическая чаша диаметром в несколько десятков, а то и сотен метров.

Например, крупный радиотелескоп Аресибо расположен в кратере потухшего вулкана на Больших Антильских островах. Склоны кратера выровняли и прикрыли металлическими щитами. Получилась огромная чаша-зеркало, с помощью которой и улавливаются радиоголоса звёзд.


Обсерватория Аресибо (Пуэрто-Рико).
Радиотелескоп Аресибо, построенный в 1963 году,
по размерам уступает только китайскому телескопу FAST, запущенному в 2016 году.
Диаметр зеркала радиотелескопа Аресибо - почти 305 метров

Один из крупнейших радиотелескопов мира РАТАН-600 находится в нашей стране, в районе станицы Зеленчукской в Ставропольском крае.

Даже построив такую махину, астрономы на этом не успокоились. В 1980 году совместными усилиями специалистов стран Восточный и Западной Европы, а также Китая и Южной Африки был создан радиотелескоп, антенна которого оказалась диаметром... в половину земного шара! Самое удивительное, что никаких новых установок при этом не строили.

Вся хитрость в оригинальном подходе, который использовали учёные. Представьте себе, скажем, у нас в Крыму и где-то в Швеции два радиотелескопа направлены на один и тот же небесный объект. На обоих телескопах принятые сигналы записываются и передаются на компьютер. Затем радиоастрономы сравнивают записи, оценивают информацию с помощью электронных вычислительных машин. В итоге получается, что два телескопа работают как один - в общей упряжке.

Причём таким образом не только два, но и большее количество телескопов могут действовать сообща. Антенна такого всепланетарного радиотелескопа получается гигантской, простираясь на тысячи километров. Такие сети радиотелескопов называют РСДБ-сетями (расшифровывается как радиоинтерферометрия со сверхдлинными базами). Метод РСДБ придумали американцы в 1970-х годах. В наше время существует три крупных сети: "КВАЗАР" в России, EVN в Европе (в ней тоже участвуют российские радиотелескопы), и VLBA в США.

В будущем учёные замахиваются создать радиотелескоп размерами во всю Солнечную систему. Каким образом? Точно таким же. Один из радиотелескопов они хотят разместить на борту автоматической межпланетной станции и отравить её куда-нибудь на окраину Солнечной системы, допустим, к орбите Сатурна или Плутона. Другие радиотелескопы включатся на Земле. А когда полученные сведения обработают с помощью сверхмощных компьютеров, получится, будто работал сверхгигантский радиотелескоп.

Первый шаг в этом направлении уже сделан - это международный проект "РадиоАстрон". Размеры этой сети уже превышают диаметр нашей планеты, потому что в неё, помимо наземных радиотелескопов, включен космический радиотелескоп на российском космическом аппарате «Спектр-Р», запущенном на околоземную орбиту в 2011 году.

Зачем учёным такие гулливеровы «игрушки»? Оказывается, чем больше радиотелескоп, тем при прочих равных условиях чувствительнее его «радиоухо». Особенно удобны «упряжки» радиотелескопов для обнаружения источников со сложной пространственной структурой. То есть когда из одного места доносится не один, а сразу хор радиоголосов, и надо разобраться, кому какой принадлежит.

В свою очередь, накопленные знания нужны специалистам, чтобы лучше понять устройство мира. Например, мы до сих пор плохо знаем, как именно шло образование нашей Солнечной системы. Геологические процессы на планетах, химические реакции в их недрах сильно изменили облик небесных тел, и теперь нелегко представить, какими они были первоначально. Так что было бы важно отследить образование какой-либо другой планетной системы. Тогда по аналогии мы могли бы получить наглядное представление и о том, как образовывалась наша.

Так, проводя совместными усилиями «прослушивание» газопылевой туманности в созвездии Ориона, радиоастрономы пяти стран сумели не только услышать в общем хоре отдельные радиоголоса, но и догадаться, о чём шёл «разговор». Скорее всего, полагают учёные, радиотелескопам удалось обнаружить протозвёзды (звёзды, формирование которых ещё не закончено), возможно, даже отдельные далёкие системы, подобные Солнечной, как раз в разгар строительства. Так что, наблюдая за ними, мы можем узнать, судя по всему, немало интересного и о собственной.

Удалось радиоастрономам отыскать и следы Большого взрыва. Радиоастрономы зафиксировали в глубинах Вселенной фоновое или реликтовое радиоизлучение, которое представляет собой не что иное, как эхо Большого взрыва . Представляете, сколько миллиардов лет прошло, а радиоэхо до сих пор разгуливает по просторам Вселенной. И учёным удалось услышать его.

Благодаря РСДБ-сетям, астрономы получили возможность изучать такие загадочные космические объекты, как пульсары, нейтронные звёзды, чёрные дыры .

Появление радиотелескопов изменило характер труда астрономов. Как шутят они сами, многие теперь перестали смотреть по ночам на звёзды через «ночезрительную трубу» обычного, оптического телескопа, бормоча себе под нос стихи М. В. Ломоносова: «Открылась бездна звёзд полна...» Они теперь работают на сверхмощных компьютерах, выполняя сложные астрономические расчёты, напевая слова из романса на слова М. Ю. Лермонтова: «...И звезда с звездою говорит...»

Таблица 2

Характеристики телескопа

Перигей-350000 км.

Апогей-600км. /2/

Зеркальная параболическая антенна радиотелескопа имеет диаметр в 10метров, состоит из 27 лепестков и 3-х метрового цельного зеркала.

Полная масса полезного научного груза - приблизительно 2600 кг. Она включает массу антенны(1500кг), электронного комплекса, содержащего приёмники, малошумящие усилители, синтезаторы частот, блоки управления, преобразователи сигналов, стандарты частоты, высокоинформативную систему передачи научных данных - около 900 кг.

В настоящий момент для сеансов двусторонней связи используются крупнейшие в России антенные комплексы П-2500 (диаметр 70 м) в приморском городе Уссурийск и ТНА-1500 (диаметр 64 м) в подмосковном посёлке Медвежьи Озера.

Связь с аппаратом «Спектр-Р» возможна в двух режимах. Первый режим - двусторонняя связь, включающая передачу команд на борт и прием с него телеметрической информации.

Второй режим связи - сброс радиоинтерферометрических данных через узконаправленную антенну высокоинформативного радиокомлекса (ВИРК).


Заключение

Я считаю, что данная работа в достаточной мере описываетимеющиеся методы получения космического радиоизлучения. При помощь данной работы можно проследить за тенденциями в развитии радиотелескопов. Можно заметить, что ученые акцентировали свои усилия в улучшении телескопов больше на увеличении характеристики углового расширения, чем на увеличении чувствительности радиотелескопов. Это, скорее всего, связано с тем, что увеличение чувствительности требует увеличения площади,следовательно и диаметра, антенн(2.5), что делать после определенного порога(150м) очень сложно. Так как наблюдения, проводимые при помощи ‘Радиоастрона’ оказались очень результативными, я думаю, что радиоастрономия будут продолжать развитие в этом направлении(увеличение разрешения за счет увеличения апертуры) путем размещения новых орбитальных обсерватории, которые будут подобны ‘Радиоастрону’. Мою мысль подтверждает наличие такого проекта как SNAP(SuperNova Acceleration Probe), который планируют запустить в 2020 году. /5/


Список используемых источников

1.Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. - М.: Советское радио, 1973. - С. 14-21. - 456 с.

2. Сопутствующие определения[Электронный ресурс] // Электронная Энциклопедия: сайт.- URL: http://ru.wikipedia.org/wiki/(дата обращения: 12.05.2014)

3. Вокруг света.-М.:Науч.-попул. 2006-2007

4. Проект Радиоастрон и космическая радиоастрономия [Электронный ресурc] //Федеральное космическое агенство: cайт. - URL: http://www.federalspace.ru/185/ (дата обращения: 12.05.2014)

5. Информация о проекте SNAP [Электронный ресурс ] // Supernova Acceleration Probe:

cайт. - URL: http://snap.lbl.gov/index.php (дата обращения: 12.05.2014)

Приложение

Фотографии радиоинтерфероматра VLA и фотография получаемых с них изображений

Рис. 1VeryLargeArray(видсземли)

Рис. 2VeryLargeArray(вид со спутника)

Рис. 3Изображение черной дыры 3C75 в радиодиапазоне

Телескоп(от теле. . . и греч. skopeo - смотрю) Телескоп(от теле. . . и греч. skopeo - смотрю), астрономический инструмент для изучения небесных светил по их электромагнитному излучению. Телескопы делятся на гамма-телескопы, рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиотелескопы. Существуют 3 типа оптических телескопов: рефракторы (линзовые), рефлекторы (зеркальные) и комбинированные зеркально-линзовые системы. Первые астрономические наблюдения при помощи телескопов(оптического рефрактора) проведены в 1609 Г. Галилеем.

Оптические телескопы АСТРОНОМЫ НАБЛЮДАЮТ ЗВЕЗДЫ, ПЛАНЕТЫ И ДРУГИЕ ОБЪЕКТЫ ВСЕЛЕННОЙ С ПОМОЩЬЮ ТЕЛЕСКОПОВ. ТЕЛЕСКОП - ОСНОВНОЙ РАБОЧИЙ ИНСТРУМЕНТ КАЖДОГО ИССЛЕДОВАТЕЛЯ ВСЕЛЕННОЙ. КОГДА ЖЕ ПОЯВИЛИСЬ ПЕРВЫЕ ТЕЛЕСКОПЫ И КАК ОНИ БЫЛИ УСТРОЕНЫ? В 1609 ГОДУ ПРОФЕССОР ПАДУАНСКОГО УНИВЕРСИТЕТА ГАЛИЛЕО ГАЛИЛЕЙ (1564 -1642) ВПЕРВЫЕ НАПРАВИЛ ИЗГОТОВЛЕННУЮ ИМ САМИМ НЕБОЛЬШУЮ ЗРИТЕЛЬНУЮ ТРУБУ НА ЗВЕЗДНОЕ НЕБО. В ИЗУЧЕНИИ НЕБЕСНЫХ СВЕТИЛ НАЧАЛАСЬ ЭПОХА ТЕЛЕСКОПИЧЕСКОЙ АСТРОНОМИИ.

Принцип работы оптического телескопа… основан на свойствах выпуклой линзы или вогнутого зеркала, выполняющих в телескопе роль объектива, собирать в фокус параллельные лучи света, приходящие к нам от различных небесных источников, и создавать в фокальной плоскости их изображения. Астрономнаблюдатель, рассматривающий в окуляр изображение космического объекта, видит его увеличенным. При этом под увеличением телескопа понимают отношение видимых угловых размеров объекта при наблюдении в телескоп и без него. Увеличение телескопа равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра.

Телескоп Галилео Галилея Но телескоп Галилея имел существенный недостаток: У первого телескопа Галилея… объективом служила плосковыпуклая у него было очень малое поле линза диаметром 4 см с фокусным расстоянием 50 см. Роль окуляра выполняла плоско-вогнутая линза размером поменьше. Такая комбинация оптических стекол давала трехкратное увеличение. Затем Галилей сконструировал более совершенный телескоп с объективом 5, 8 см в диаметре и фокусным расстоянием 165 см. Он увеличивал изображения Луны и планет в 33 раза. С его помощью ученый сделал свои замечательные астрономические открытия: гор на Луне, спутников Юпитера, фаз Венеры, пятен на Солнце и множества слабых звезд. . . зрения, то есть в трубу был виден совсем крохотный кружочек неба. Поэтому, наводить инструмент на какое-нибудь небесное светило, и наблюдать его было совсем непросто.

Прошел лишь год со времени начала телескопических наблюдений, как немецкий астроном и математик Иоганн Кеплер (1571 -1630) предложил свою конструкцию телескопа. Новизна заключалась в самой оптической системе: объектив и окуляр были двояковыпуклыми линзами. В результате изображение в кеплеровском телескопе Конечно, так обозревать земные предметы получалось не прямое, неудобно, но при астрономических как в трубе Галилея, а наблюдениях это совершенно не имеет перевернутое. никакого значения. Ведь во Вселенной нет ни абсолютного верха, ни абсолютного низа.

Телескоп Кеплера ОКАЗАЛСЯ НАМНОГО ЛУЧШЕ ОПТИЧЕСКИХ ПЕРВЕНЦЕВ ГАЛИЛЕЯ: ОН ОБЛАДАЛ БОЛЬШИМ ПОЛЕМ ЗРЕНИЯ И БЫЛ УДОБЕН В РАБОТЕ. ЭТИ ВАЖНЫЕ ДОСТОИНСТВА НОВОГО ИНСТРУМЕНТА ОДНОЗНАЧНО ОПРЕДЕЛИЛИ ЕГО СУДЬБУ: В ДАЛЬНЕЙШЕМ ЛИНЗОВЫЕ ТЕЛЕСКОПЫ СТАЛИ КОНСТРУИРОВАТЬ ИСКЛЮЧИТЕЛЬНО ПО СХЕМЕ КЕПЛЕРА. А ОПТИЧЕСКАЯ СИСТЕМА ГАЛИЛЕЕВСКОГО ТЕЛЕСКОПА СОХРАНИЛАСЬ ЛИШЬ В УСТРОЙСТВЕ ТЕАТРАЛЬНОГО БИНОКЛЯ.

Таким образом, различают два основных типа телескопов: ЛИНЗОВЫЕ ТЕЛЕСКОПЫ-РЕФРАКТОРЫ, У КОТОРЫХ ЛУЧИ СВЕТА, ПРОХОДЯ ЧЕРЕЗ ОБЪЕКТИВ, ПРЕЛОМЛЯЮТСЯ, И ЗЕРКАЛЬНЫЕ (ОТРАЖАТЕЛЬНЫЕ) ТЕЛЕСКОПЫРЕФЛЕКТОРЫ. ЗЕРКАЛЬНЫЕ ТЕЛЕСКОПЫ СО ВРЕМЕНЕМ СТАЛИ ИСПОЛЬЗОВАТЬСЯ ДЛЯ НАБЛЮДЕНИЙ ОЧЕНЬ ДАЛЕКИХ И СЛАБОСВЕТЯЩИХСЯ ОБЪЕКТОВ. ЧЕЛОВЕЧЕСКИЙ ГЛАЗ СПОСОБЕН РАЗЛИЧАТЬ В ОТДЕЛЬНОСТИ ДВЕ ЧАСТИ НАБЛЮДАЕМОГО ПРЕДМЕТА ТОЛЬКО В ТОМ СЛУЧАЕ, ЕСЛИ УГЛОВОЕ РАССТОЯНИЕ МЕЖДУ НИМИ НЕ МЕНЬШЕ ОДНОЙ-ДВУХ МИНУТ ДУГИ. ТАК, НА ЛУНЕ НЕВООРУЖЕННЫМ ГЛАЗОМ МОЖНО РАССМОТРЕТЬ ДЕТАЛИ РЕЛЬЕФА, РАЗМЕР КОТОРЫХ ПРЕВЫШАЕТ 150 -200 КМ. НА СОЛНЕЧНОМ ДИСКЕ, КОГДА СВЕТИЛО КЛОНИТСЯ К ЗАКАТУ И ЕГО СВЕТ ОСЛАБЛЕН ПОГЛОЩАЮЩИМ ЭФФЕКТОМ ЗЕМНОЙ АТМОСФЕРЫ, БЫВАЮТ ВИДНЫ ПЯТНА ПОПЕРЕЧНИКОМ 50 -100 ТЫС. КМ. НИКАКИХ ДРУГИХ ПОДРОБНОСТЕЙ НЕВООРУЖЕННЫЙ ГЛАЗ РАССМОТРЕТЬ НЕ В СИЛАХ. И ТОЛЬКО БЛАГОДАРЯ ТЕЛЕСКОПУ, КОТОРЫЙ УВЕЛИЧИВАЕТ УГОЛ ЗРЕНИЯ, МОЖНО "ПРИБЛИЖАТЬ" К СЕБЕ ДАЛЕКИЕ НЕБЕСНЫЕ ОБЪЕКТЫ - НАБЛЮДАТЬ ИХ КАК БЫ РЯДОМ.

Характеристики радиотелескопов СОВРЕМЕННЫЕ РАДИОТЕЛЕСКОПЫ ПОЗВОЛЯЮТ ИССЛЕДОВАТЬ ВСЕЛЕННУЮ В ТАКИХ ПОДРОБНОСТЯХ, КОТОРЫЕ ЕЩЕ НЕДАВНО НАХОДИЛИСЬ ЗА ПРЕДЕЛАМИ ВОЗМОЖНОГО НЕ ТОЛЬКО В РАДИОДИАПАЗОНЕ, НО И В ТРАДИЦИОННОЙ АСТРОНОМИИ ВИДИМОГО СВЕТА. ОБЪЕДИНЕННЫЕ В ЕДИНУЮ СЕТЬ ИНСТРУМЕНТЫ, РАСПОЛОЖЕННЫЕ НА РАЗНЫХ КОНТИНЕНТАХ, ПОЗВОЛЯЮТ ЗАГЛЯНУТЬ В САМУЮ СЕРДЦЕВИНУ РАДИОГАЛАКТИК, КВАЗАРОВ, МОЛОДЫХ ЗВЕЗДНЫХ СКОПЛЕНИЙ, ФОРМИРУЮЩИХСЯ ПЛАНЕТНЫХ СИСТЕМ. РАДИОИНТЕРФЕРОМЕТРЫ СО СВЕРХДЛИННЫМИ БАЗАМИ В ТЫСЯЧИ РАЗ ПРЕВЗОШЛИ ПО «ЗОРКОСТИ» САМЫЕ КРУПНЫЕ ОПТИЧЕСКИЕ ТЕЛЕСКОПЫ С их помощью можно не только отслеживать перемещение космических аппаратов в окрестностях далеких планет, но и исследовать движения коры нашей собственной планеты, в том числе непосредственно «почувствовать» дрейф материков. На очереди космические радиоинтерферометры, которые позволят еще глубже проникнуть в тайны Вселенной.

Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности» . Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца. Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире - примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света - лишь малая доля богатства «красок» Вселенной. Во второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.

Один из наиболее интересных и информативных диапазонов спектра для астрономии - радиоволны. Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы - в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли - слой ионизованного газа на высоте около Главная характеристика радиотелескопа - его диаграмма направленности. Она показывает чувствительность инструмента к 70 км - отражает в космос все излучение сигналам, приходящим с разных направлений в пространстве. Для на волнах длиннее 30 «классической» параболической антенны диаграмма направленности м. На волнах короче 1 состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на мм космическое излучение полностью порядки) более слабых боковых лепестков. «Зоркость» «съедают» молекулы радиотелескопа, то есть его угловое разрешение, определяется атмосферы (главным шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, образом кислород и сливаются для радиотелескопа в один. Поэтому ширина диаграммы водяной пар). направленности определяет размер самых мелких деталей радиоисточника, которые еще можно различить по отдельности.

Принцип действия радиотелескопов Полноповоротные параболические антенны - аналоги оптических телескопов-рефлекторов - оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником - «копить сигнал» , как говорят радиоастрономы, - и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас - пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.

Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50 метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.

Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться. Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке - фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе - они усиливают друга, в противофазе - ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.

В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)